Research Article
BibTex RIS Cite

A Class of LCD Codes Through Cyclic Codes Over $ZpR$

Year 2023, Volume: 6 Issue: 2, 8 - 19, 29.01.2024
https://doi.org/10.53508/ijiam.1213801

Abstract

In recent time, some mixed types of alphabets have been considered for constructing error correcting codes. These constructions include $\bbbz_{2}\bbbz_{4}-$additive codes, $\bbbz_{2}\bbbz_{2}[u]-$linear codes et cetera. In this paper, we studied a class of codes over a mixed ring $\bbbz_{p}R$ where $R=\bbbz_{p}+v\bbbz_{p}+v^{2}\bbbz_{p}, v^{3}=v.$ We determined an algebraic structure of these codes under certain conditions. We have also constructed a class of LCD cyclic codes over $\bbbz_{p}R$. A necessary and sufficient condition for a cyclic code to be a complementary dual (LCD) code has been obtained.

References

  • P. Delsarte. An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain, 1973.
  • T. Abualrub, I. Siap, and N. Aydin. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes. IEEE Trans. Inf. Theory, 3:1508-1514, 2014.
  • J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
  • I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2^{8}}$additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
  • I. Aydogdu and I. Siap. On $ZZ_{p^{r}}$ $ZZ_{p^{s}}$additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.
  • I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2}[u]$ cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8):4883-4893, 2017.
  • L. Diao and J. Gao. $ZZ_{p}$ $ZZ_{p}[u]$additive cyclic codes. Int. J. Inf. Coding Theory, 1:1-17, 2018.
  • B. Srinivasulu and B. Maheshanand. $ZZ_{2}$($ZZ_{2}$ + $uZZ_{2}$) additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027-1650045, 2016.
  • Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $ZZ_{q}$ + $uZZ_{q}$. Discrete Mathematics Algorithms and Applications, 2022.
  • J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337-342, 1992.
  • C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
  • X. Liu and H. Liu. Lcd codes over finite chain rings. Finite Fields Appl., 34:1-19, 2015.
  • C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. IEEE Trans. Inf. Theory, 63:4344-4356, 2017.
  • X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. Discrete Math., 126:391-393, 1994.
  • L. Diao, J. Gao, and J. Lu. Some results on $ZZ_{p}$$ZZ_{p}[v]$ additive cyclic codes. Adv. Math. Commun., 4:555-572, 2020.
  • M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over $ZZ_{p}$:. Appl. Algebra Engrg. Comm. Comput., 20:459-480, 2009.
Year 2023, Volume: 6 Issue: 2, 8 - 19, 29.01.2024
https://doi.org/10.53508/ijiam.1213801

Abstract

References

  • P. Delsarte. An algebraic approach to the association schemes of coding theory. PhD thesis, Universite Catholique de Louvain, 1973.
  • T. Abualrub, I. Siap, and N. Aydin. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes. IEEE Trans. Inf. Theory, 3:1508-1514, 2014.
  • J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls. $ZZ_{2}$ $ZZ_{4}$ additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory, 11:6348-6354, 2016.
  • I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2^{8}}$additive cyclic codes. Discrete Math. Algorithms Appl., 4:1850048-1850060, 2018.
  • I. Aydogdu and I. Siap. On $ZZ_{p^{r}}$ $ZZ_{p^{s}}$additive codes. Linear Multilinear Algebra, 10:2089-2102, 2014.
  • I. Aydogdu and T. Abualrub. The structure of $ZZ_{2}$ $ZZ_{2}[u]$ cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8):4883-4893, 2017.
  • L. Diao and J. Gao. $ZZ_{p}$ $ZZ_{p}[u]$additive cyclic codes. Int. J. Inf. Coding Theory, 1:1-17, 2018.
  • B. Srinivasulu and B. Maheshanand. $ZZ_{2}$($ZZ_{2}$ + $uZZ_{2}$) additive cyclic codes and their duals. Discrete Math. Algorithms Appl., 2:1650027-1650045, 2016.
  • Z. Hebbache, A. Kaya, N. Aydin, and K. Guenda. On some skew codes over $ZZ_{q}$ + $uZZ_{q}$. Discrete Mathematics Algorithms and Applications, 2022.
  • J-L. Massey. Linear codes with complementary duals. Discrete Math., 106-107:337-342, 1992.
  • C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Cambridge University Press, Cambridge, U.K., 2010.
  • X. Liu and H. Liu. Lcd codes over finite chain rings. Finite Fields Appl., 34:1-19, 2015.
  • C. Li, C. Ding, and S. Li. Lcd cyclic codes over finite fields. IEEE Trans. Inf. Theory, 63:4344-4356, 2017.
  • X. Yang and J-L. Massey. The condition for a cyclic code to have a complementary dual. Discrete Math., 126:391-393, 1994.
  • L. Diao, J. Gao, and J. Lu. Some results on $ZZ_{p}$$ZZ_{p}[v]$ additive cyclic codes. Adv. Math. Commun., 4:555-572, 2020.
  • M. Bhaintwal and S-K. Wasan. On quasi-cyclic codes over $ZZ_{p}$:. Appl. Algebra Engrg. Comm. Comput., 20:459-480, 2009.
There are 16 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Articles
Authors

Zineb Hebbache

Amit Sharma This is me 0000-0001-7308-2199

Early Pub Date January 29, 2024
Publication Date January 29, 2024
Acceptance Date August 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Hebbache, Z., & Sharma, A. (2024). A Class of LCD Codes Through Cyclic Codes Over $ZpR$. International Journal of Informatics and Applied Mathematics, 6(2), 8-19. https://doi.org/10.53508/ijiam.1213801
AMA Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. January 2024;6(2):8-19. doi:10.53508/ijiam.1213801
Chicago Hebbache, Zineb, and Amit Sharma. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics 6, no. 2 (January 2024): 8-19. https://doi.org/10.53508/ijiam.1213801.
EndNote Hebbache Z, Sharma A (January 1, 2024) A Class of LCD Codes Through Cyclic Codes Over $ZpR$. International Journal of Informatics and Applied Mathematics 6 2 8–19.
IEEE Z. Hebbache and A. Sharma, “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”, IJIAM, vol. 6, no. 2, pp. 8–19, 2024, doi: 10.53508/ijiam.1213801.
ISNAD Hebbache, Zineb - Sharma, Amit. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics 6/2 (January 2024), 8-19. https://doi.org/10.53508/ijiam.1213801.
JAMA Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. 2024;6:8–19.
MLA Hebbache, Zineb and Amit Sharma. “A Class of LCD Codes Through Cyclic Codes Over $ZpR$”. International Journal of Informatics and Applied Mathematics, vol. 6, no. 2, 2024, pp. 8-19, doi:10.53508/ijiam.1213801.
Vancouver Hebbache Z, Sharma A. A Class of LCD Codes Through Cyclic Codes Over $ZpR$. IJIAM. 2024;6(2):8-19.

International Journal of Informatics and Applied Mathematics