Araştırma Makalesi
BibTex RIS Kaynak Göster

BALKABAĞINDA (CUCURBITA MAXIMA L.) FAZLA NİKELE YANIT VEREN MOBİL MİKRORNA'LAR (MIRNA'LAR)

Yıl 2024, , 58 - 64, 29.06.2024
https://doi.org/10.46460/ijiea.1304404

Öz

Nikel (Ni) fazlalığı durumunda, bitki büyümesini, gelişimini ve üremesini engelleyen toksik bir ağır metaldir. MikroRNA'lar (miRNA), gen ekspresyonunu düzenlemek için mesajlar taşımak üzere hücreden hücreye veya organa seyahat eder. Bu çalışma balkabağı (Cucurbita maxima L.) floem özsuyunda dolaşan Ni'ye duyarlı mobil miRNA'ları tanımlamayı amaçlamaktadır. Bu amaçla, Ni (100 μM, NiCl2) uygulanan balkabağı fidelerine ait kök, sürgün ve floem özsuyu örnekleri toplanmıştır. Floem özsuyundaki 14 miRNA'nın ekspresyonunu belirlemek için gövde-ilmek RT-qPCR ve gövde-ilmek yarı-kantitatif RT-PCR yöntemleri kullanıldı. Kontrol ile karşılaştırıldığında, Ni ile muamele edilmiş fidelerde miR160, miR167, miR393, miR397 ve miR398'in miktarının azaldığı tespit edildi. Bu azalma, aşılama deneyleriyle de doğrulanarak, miR167 ve miR393'ün Ni'ye duyarlı olduğu ve yapraktan köke doğru hareket ettiğini ortaya çıkardı. Floemde bulunan bu miRNA'lar, Ni-yanıt mekanizmasında potansiyel olarak rol oynamaktadır. Bu çalışma, bitkilerin fazla Ni'ye karşı erken tepki mekanizmasının anlaşılmasına yardımcı olarak, bitkilerin miRNA aracılı kök-yaprak iletişiminin belirlenmesine yol gösterebilir.

Kaynakça

  • Kehr, J., & Buhtz, A. (2008). Long distance transport and movement of RNA through the phloem. Journal of Experimental Botany, 59, 85-92.
  • Kragler, F. (2010). RNA in the phloem: A crisis or a return on investment. Plant Science, 178, 99-104
  • Kehr, J. (2013). Systemic regulation of mineral homeostasis by micro RNAs. Frontiers in Plant Science, 4, 145.
  • Ruf, A., Oberkofler, L., Robatze, S., & Weiberg, A. (2022). Spotlight on plant RNA-containing extracellular vesicles. Current Opinion in Plant Biology, 69, 102272.
  • Yoo, B. C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Evans, S. A., Lee, Y. M., Lough, T. J., & Lucas, W. J. (2004). A systemic small RNA signaling system in plants. Plant Cell, 16, 1979-2000.
  • Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C., & Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant Journal, 53, 739-749.
  • Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., & MacDiarmid, R. M. (2010). Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biology, 10, 159.
  • Tolstyko, E., Lezzhov, A., & Solovyev, A. (2019). Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ, 7, e8269.
  • Kehr, J., & Kragler, F. (2018). Long distance RNA movement. New Phytologist, 218(1), 29-40.
  • Pant, B. D., Buhtz, A., Kehr, J., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 53, 731-738.
  • Lin, S. I., Chiang, S. F., Lin, W. Y., Chen, J. W., Tseng, C. Y., Wu, P. C., & Chiou, T. J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology, 147, 732-746.
  • Buhtz, A., Pieritz, J., Springer, F., & Kehr, J. (2010). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology, 10(64).
  • Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., ... & Scheible, W. R. (2009). Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology, 150(3), 1541-1555.
  • Kuo, H. F., & Chiou, T. J. (2011). The role of microRNAs in phosphorus deficiency signaling. Plant Physiology, 156, 1016-1024.
  • Calderwood, A., Kopriva, S., & Morris, R. J. (2016). Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell, 28, 610-615.
  • Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282(22), 16369-16378.
  • Ham, B. K., & Lucas, W. J. (2017). Phloem-mobile RNAs as systemic signaling agents. Annual Review of Plant Biology, 68, 173-195.
  • Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., Law, T. F., Grant, S. R., Dangl, J. L., & Carrington, J. C. (2007). High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2.
  • Martin, A., Adam, H., Diaz-Mendoza, M., Zurczak, M., Gonzalez-Schain, N. D., & Suarez-Lopez, P. (2009). Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 136, 2873-2881.
  • Kasai, A., Kanehira, A., & Harada, T. (2010). miR172 can move long distance in Nicotiana benthamiana. The Open Plant Science Journal, 4, 1–6.
  • Alfano, M., & Cavazza, C. (2020). Structure, function, and biosynthesis of nickel‐dependent enzymes. Protein Science, 29(5), 1071-1089.
  • Iyaka, Y. A. (2011). Nickel in soils: A review of its distribution and impacts. Scientific Research and Essays, 6(33), 6774-6777.
  • El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., ... & Chang, S. X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 419, 126421.
  • Kacar, B., Katkat, V., & Öztürk, Ş. (2009). Bitki Fizyolojisi (3. Baskı). Nobel Yayınları No: 848.
  • Zengin, F. K., & Munzuroglu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 47(2), 157-164.
  • Tombuloglu, G., Tombuloglu, H., Sakcali, M. S., & Unver, T. (2015). High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene, 557(1), 71-81.
  • Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156-159.
  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3, 12.
  • Yanik, H., Turktas, M., Dundar, E., Hernandez, P., Dorado, G., & Unver, T. (2013). Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biology, 13, 10-31.
  • Ruiz-Medrano, R., Xocosnostle-Cazares, B., & Lucas, W. J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development, 126, 4405-4419.
  • Zhang, S., Sun, L., & Karger, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiology, 150(1), 378-387.
  • Saleh, S. R., Kandeel, M. M., Ghareeb, D., Ghoneim, T. M., Talha, N. I., Alaoui-Sossé, B., & Abdel-Daim, M. M. (2020). Wheat biological responses to stress caused by cadmium, nickel and lead. Science of The Total Environment, 706, 136013.
  • Bhalerao, S. A., Sharma, A. S., & Poojari, A. C. (2015). Toxicity of nickel in plants. International Journal of Pure and Applied Bioscience, 3(2), 345-355.
  • Rizwan, M., Imtiaz, M., Dai, Z., Mehmood, S., Adeel, M., Liu, J., & Tu, S. (2017). Nickel stressed responses of rice in Ni subcellular distribution, antioxidant production, and osmolyte accumulation. Environmental Science and Pollution Research, 24(20), 20587-20598.

MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.)

Yıl 2024, , 58 - 64, 29.06.2024
https://doi.org/10.46460/ijiea.1304404

Öz

Nickel (Ni) is a toxic heavy metal that inhibits plant growth, development, and reproduction. MicroRNAs (miRNAs) travel from cell to cell or organ to carry messages to regulate gene expression. This study aims to find mobile miRNAs that are Ni-responsive and are present in pumpkin (Cucurbita maxima L.) phloem sap. For this purpose, pumpkin seedlings were exposed to Ni (100 μM, NiCl2), and root, shoot, and phloem-sap specimens were collected at 0 (control), 24, and 48 hours of the treatment. The stem-loop RT-qPCR and stem-loop semi-quantitative RT-PCR methods were used to determine the abundance of 14 miRNAs in the phloem sap. Compared to the control, the abundance of miR160, miR167, miR393, miR397, and miR398 was suppressed in Ni-treated seedlings. The reduction was verified by grafting experiments, revealing that miR167 and miR393 are Ni-responsive and move/travel from the leaf-to-root direction. Those phloem-residential miRNAs potentially play a role in the Ni-response mechanism. This study can help to understand the early response mechanism of plants against excess Ni and lead to identifying miRNA-mediated long-distance communication of plants.

Kaynakça

  • Kehr, J., & Buhtz, A. (2008). Long distance transport and movement of RNA through the phloem. Journal of Experimental Botany, 59, 85-92.
  • Kragler, F. (2010). RNA in the phloem: A crisis or a return on investment. Plant Science, 178, 99-104
  • Kehr, J. (2013). Systemic regulation of mineral homeostasis by micro RNAs. Frontiers in Plant Science, 4, 145.
  • Ruf, A., Oberkofler, L., Robatze, S., & Weiberg, A. (2022). Spotlight on plant RNA-containing extracellular vesicles. Current Opinion in Plant Biology, 69, 102272.
  • Yoo, B. C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Evans, S. A., Lee, Y. M., Lough, T. J., & Lucas, W. J. (2004). A systemic small RNA signaling system in plants. Plant Cell, 16, 1979-2000.
  • Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C., & Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant Journal, 53, 739-749.
  • Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., & MacDiarmid, R. M. (2010). Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biology, 10, 159.
  • Tolstyko, E., Lezzhov, A., & Solovyev, A. (2019). Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ, 7, e8269.
  • Kehr, J., & Kragler, F. (2018). Long distance RNA movement. New Phytologist, 218(1), 29-40.
  • Pant, B. D., Buhtz, A., Kehr, J., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 53, 731-738.
  • Lin, S. I., Chiang, S. F., Lin, W. Y., Chen, J. W., Tseng, C. Y., Wu, P. C., & Chiou, T. J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology, 147, 732-746.
  • Buhtz, A., Pieritz, J., Springer, F., & Kehr, J. (2010). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology, 10(64).
  • Pant, B. D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., ... & Scheible, W. R. (2009). Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology, 150(3), 1541-1555.
  • Kuo, H. F., & Chiou, T. J. (2011). The role of microRNAs in phosphorus deficiency signaling. Plant Physiology, 156, 1016-1024.
  • Calderwood, A., Kopriva, S., & Morris, R. J. (2016). Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell, 28, 610-615.
  • Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282(22), 16369-16378.
  • Ham, B. K., & Lucas, W. J. (2017). Phloem-mobile RNAs as systemic signaling agents. Annual Review of Plant Biology, 68, 173-195.
  • Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., Law, T. F., Grant, S. R., Dangl, J. L., & Carrington, J. C. (2007). High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2.
  • Martin, A., Adam, H., Diaz-Mendoza, M., Zurczak, M., Gonzalez-Schain, N. D., & Suarez-Lopez, P. (2009). Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 136, 2873-2881.
  • Kasai, A., Kanehira, A., & Harada, T. (2010). miR172 can move long distance in Nicotiana benthamiana. The Open Plant Science Journal, 4, 1–6.
  • Alfano, M., & Cavazza, C. (2020). Structure, function, and biosynthesis of nickel‐dependent enzymes. Protein Science, 29(5), 1071-1089.
  • Iyaka, Y. A. (2011). Nickel in soils: A review of its distribution and impacts. Scientific Research and Essays, 6(33), 6774-6777.
  • El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N. K., Yousaf, B., Sharma, A., ... & Chang, S. X. (2021). Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of Hazardous Materials, 419, 126421.
  • Kacar, B., Katkat, V., & Öztürk, Ş. (2009). Bitki Fizyolojisi (3. Baskı). Nobel Yayınları No: 848.
  • Zengin, F. K., & Munzuroglu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 47(2), 157-164.
  • Tombuloglu, G., Tombuloglu, H., Sakcali, M. S., & Unver, T. (2015). High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene, 557(1), 71-81.
  • Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156-159.
  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3, 12.
  • Yanik, H., Turktas, M., Dundar, E., Hernandez, P., Dorado, G., & Unver, T. (2013). Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biology, 13, 10-31.
  • Ruiz-Medrano, R., Xocosnostle-Cazares, B., & Lucas, W. J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development, 126, 4405-4419.
  • Zhang, S., Sun, L., & Karger, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiology, 150(1), 378-387.
  • Saleh, S. R., Kandeel, M. M., Ghareeb, D., Ghoneim, T. M., Talha, N. I., Alaoui-Sossé, B., & Abdel-Daim, M. M. (2020). Wheat biological responses to stress caused by cadmium, nickel and lead. Science of The Total Environment, 706, 136013.
  • Bhalerao, S. A., Sharma, A. S., & Poojari, A. C. (2015). Toxicity of nickel in plants. International Journal of Pure and Applied Bioscience, 3(2), 345-355.
  • Rizwan, M., Imtiaz, M., Dai, Z., Mehmood, S., Adeel, M., Liu, J., & Tu, S. (2017). Nickel stressed responses of rice in Ni subcellular distribution, antioxidant production, and osmolyte accumulation. Environmental Science and Pollution Research, 24(20), 20587-20598.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Guzin Tombuloglu 0000-0002-6743-9996

Erken Görünüm Tarihi 29 Haziran 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 28 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tombuloglu, G. (2024). MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.). International Journal of Innovative Engineering Applications, 8(1), 58-64. https://doi.org/10.46460/ijiea.1304404
AMA Tombuloglu G. MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.). ijiea, IJIEA. Haziran 2024;8(1):58-64. doi:10.46460/ijiea.1304404
Chicago Tombuloglu, Guzin. “MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.)”. International Journal of Innovative Engineering Applications 8, sy. 1 (Haziran 2024): 58-64. https://doi.org/10.46460/ijiea.1304404.
EndNote Tombuloglu G (01 Haziran 2024) MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.). International Journal of Innovative Engineering Applications 8 1 58–64.
IEEE G. Tombuloglu, “MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.)”, ijiea, IJIEA, c. 8, sy. 1, ss. 58–64, 2024, doi: 10.46460/ijiea.1304404.
ISNAD Tombuloglu, Guzin. “MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.)”. International Journal of Innovative Engineering Applications 8/1 (Haziran 2024), 58-64. https://doi.org/10.46460/ijiea.1304404.
JAMA Tombuloglu G. MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.). ijiea, IJIEA. 2024;8:58–64.
MLA Tombuloglu, Guzin. “MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.)”. International Journal of Innovative Engineering Applications, c. 8, sy. 1, 2024, ss. 58-64, doi:10.46460/ijiea.1304404.
Vancouver Tombuloglu G. MOBILE MICRORNAS (MIRNAS) RESPONSIVE TO EXCESS NICKEL IN PUMPKIN (CUCURBITA MAXIMA L.). ijiea, IJIEA. 2024;8(1):58-64.