Araştırma Makalesi
BibTex RIS Kaynak Göster

Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi

Yıl 2021, Cilt: 5 Sayı: 1, 22 - 29, 28.06.2021
https://doi.org/10.46460/ijiea.904338

Öz

Baz akışkanlar içerisinde nano boyuttaki partiküllerin kullanılması ile akışkanların ısıl kapasitelerinin arttığı yapılan çalışmalarla bilinen bir olgudur. Bu akışkanları motor soğutma sistemlerinde kullanmak motor performansını olumlu yönde etkilemektedir. Fakat bu akışkanların kullanımının motorlardaki diğer parametreleri nasıl etkilediği tam olarak bilinmemektedir. Bu doğrultuda yapılan bu çalışmada, içten yanmalı motor soğutma sisteminde nanoakışkan desteği ile yapılan soğutmanın, motor yağ sıcaklık değerlerine etkileri incelenmiştir. Soğutma sıvısı olarak, her mevsim şartlarında kullanıma uygun ve yaygın olarak kullanılan etilen glikol-su karışımı (baz akışkan) eşit oranda kullanılmıştır. Baz akışkan içerisine farklı hacimsel oranlarda (%0.1 ve %0.2) farklı nanoakışkanlar (TiO2, Al2O3 ve SiO2) karıştırılarak hazırlanan soğutucuların etkileri deneysel olarak gözlemlenmiştir. Yapılan çalışmada, ortalama 2000 dak-1’da çalıştırılan ve 1400 cm3 motor hacmine sahip gerçek bir taşıt motoru kullanılmıştır. Nanoakışkan kullanımının sağladığı ısı transferindeki artış, motor yağ sıcaklığının daha düşük değerlerde kalmasına olanak sağlamıştır. Motor yağlama yağının %1.5 ile %5 arasında daha soğuk çalışabilmesi imkanı olduğu görülmüştür. En yüksek başarım SiO2 ile %5 civarında olduğu tespit edilmiştir. Genelde baz akışkan içerisindeki hacimsel nanoakışkan oranının artması, ısı transfer miktarının arttırmasına ve yağ sıcaklığının daha düşük kalmasına imkân vermiştir.

Destekleyen Kurum

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP)

Proje Numarası

TEKNO-026

Teşekkür

Bu çalışma, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) tarafından TEKNO-026 proje numarası ile desteklenmiştir.

Kaynakça

  • [1] URL: https://tr.investing.com/news/economy/tum-dunyada-motorlu-arac-says-2-milyara-yaklasyor-1971549#:~:text=Taşıt%20Araçları%20Tedarik%20Sanayicileri%20Derneği,milyar%20motorlu%20taşıt%20olduğu%20açıklandı
  • [2]URL:https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do;jsessionid=Sqdhg09GhPBbfpStMJ4pQ11SrvydJxwVsSpKWDK2GlJbLn7fmCHr!1955124248?id=37411
  • [3] L. Syam Sundar, A. Kirubeil, V. Punnaiah, M. K. Singh, and A. C. M. Sousa, “Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts,” Int. J. Heat Mass Transf., vol. 127, pp. 422–435, Dec. 2018.
  • [4] K. Y. Leong, R. Saidur, Tmi. Mahlia, and Yh. Yau, “Performance investigation of nanofluids as working fluid in a thermosyphon air preheater,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 523–529, 2012.
  • [5] T. S. Krishnakumar, S. P. Viswanath, S. M. Varghese, and J. Prakash M, “Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid,” Int. J. Refrig., vol. 89, pp. 122–130, May 2018.
  • [6] H. Muhammad Ali, H. Ali, H. Liaquat, H. Talha Bin Maqsood, Experimental investigation of convective heat transfer augmentation for car radiator using ZnOe water nanofluids, Energy, Energy 84 (2015) 317-324.
  • [7] M. Hatami, M. Jafaryar, J. Zhou, D. Jing, Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O / (CH2OH)2 based nanofluids, international journal of hydrogen energy 42 (2017) 10891-10900.
  • [8] D. G. Subhedar, B. M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al2O3 / Water-Mono Ethylene Glycol nanofluids as a car radiator coolant, Case Studies in Thermal Engineering 11 (2018) 26—34.
  • [9] S. Ali Ahmed, M. Ozkaymak, A. Sözen, T. Menlik, A. Fahed, Improving car radiator performance by using TiO2-water nanofluid, Engineering Science and Technology, an International Journal 21 (2018) 996-1005.
  • [10] D. Sandhya, M. Chandra S. Reddy, V. Vasudeva Rao, Improving the cooling performance of automobile radiatorwith ethylene glycol water based TiO2 nanofluids, International Communications in Heat and Mass Transfer 78 (2016) 121-126.
  • [11] A. Salami Tijani, A. Suhail bin Sudirman, Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3 / CuO based nanofluid as a coolant for car radiator, International Journal of Heat and Mass Transfer 118 (2018) 48-57.
  • [12] M.M. Elias, I.M. Mahbubul, R. Saidur, M.R. Sohel, I.M. Shahrul, S.S. Khaleduzzaman, S. Sadeghipour, Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant, International Communications in Heat and Mass Transfer 54 (2014) 48-53.
  • [13] K. Goudarzi, H. Jamali, Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts, Applied Thermal Engineering, 118 (2017) 510-517.
  • [14] S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Seifi Jamnani, S.M. Hoseini, Improving the cooling performance of automobile radiator with Al2O3 / water nanofluid, Applied Thermal Engineering, 31 (2011) 1833-1838.
  • [15] M. Elsebay, I. Elbadawy, M.H. Shedid, M. Fatouh, Numerical resizing study of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Applied Mathematical Modelling, 40 (2016) 6437-6450.
  • [16] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO / water nanofluids in a car radiator, International Journal of Thermal Sciences 66 (2013) 82-90.
  • [17] C. Selvam, R. Solaimalai Raja, D. Mohan Lal, Sivasankaran Harish, Overall heat transfer coefficient improvement of an automobile radiator with graphene-based suspensions, International Journal of Heat and Mass Transfer 115 (2017) 580-588. [18] R. Jadar, K. S. Shashishekar, and S. R. Manohara, “Nanotechnology Integrated Automobile Radiator,” Mater. Today Proc., vol. 4, no. 11, pp. 12080–12084, 2017, doi: 10.1016/j.matpr.2017.09.134.
  • [19] SK. Mohammadi, SGh. Etemad, J. Thibault, Measurement of thermal properties of suspensions of nanoparticles in engine oil, Technical proceedings of the 2009 NSTI nanotechnology conference and Expo, NSTI-Nanotech 3; 2009, p. 74–77
  • [20] M. Vasheghani, Enhancement of the thermal conductivity and viscosity of aluminum component-engine oil nanofluids International. J Nanomech Sci Technol. 2012; 3:333–40.
  • [21] E.O.L. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S.S. Mohtasebi, Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transf, 2013; 46:142–7
  • [22] A. M. Hussein, R. A. Bakar, and K. Kadirgama, “Study of forced convection nanofluid heat transfer in the automotive cooling system,” Case Stud. Therm. Eng., vol. 2, pp. 50–61, 2014, doi: 10.1016/j.csite.2013.12.001.
  • [23] A. M. Hussein, H. K. Dawood, R. A. Bakara, and K. Kadirgamaa, “Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system,” Case Stud. Therm. Eng., vol. 9, no. December 2016, pp. 72–78, 2017, doi: 10.1016/j.csite.2016.11.005.
  • [24] N. A. Che Sidik, M. N. A. Witri Mohd Yazid, R. Mamat, “Recent advancement of nanofluids in engine cooling system,” Renew. Sustain. Energy Rev., vol. 75, no. April 2015, pp. 137–144, 2017, doi: 10.1016/j.rser.2016.10.057.
  • [25] K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering 30 (2010) 2685-2692.
  • [26] Y. Soydan, L. Ulukan, Temel Triboloji, 2013.
  • [27] R. Tadepalli, R.K. Gadekula, K.V. Reddy, S.R. Goud, S.K. Nayak, V. Saini, R.S. Dondapati, “Characterization of Thermophysical properties of Al2O3, TiO2, SiO2, SiC and CuO Nano Particles at Cryogenic Temperatures,” Mater. Today Proc., vol. 5, no. 14, pp. 28454–28461, 2018, doi: 10.1016/j.matpr.2018.10.132.

Experimental Investigation of the Effects on Engine Oil Temperature of Different Nanofluids Used in Vehicle Engine Cooling System

Yıl 2021, Cilt: 5 Sayı: 1, 22 - 29, 28.06.2021
https://doi.org/10.46460/ijiea.904338

Öz

It is known from the experimental studies that the thermal capacities of fluids increase with the use of nanoscale particles in base fluids. Using these fluids in engine cooling systems affects engine performance positively. However, it is not known exactly how the use of these fluids affects other parameters in engines. In this study, the effects on engine oil temperature values were investigated of cooling with nano-fluid support in the internal combustion engine cooling system. As cooling liquid, an ethylene glycol-water mixture (base fluid), which is suitable for use in all seasonal conditions and is widely used, has been used in equal ratio. The effects of the refrigerants prepared by mixing different nanofluids (TiO2, Al2O3 and SiO2) in different volumetric ratios (0.1% and 0.2%) into the base fluid has been experimentally observed. In the study, a real vehicle engine with an engine volume of 1400 cm3 and operated at an average of 2000 rpm has been used. The increase in heat transfer provided using nanofluid has enabled to remain the engine oil temperature at lower values. It has been observed that the engine lubricating oil can work between 1.5% and 5% cooler. The highest performance was determined as approximately 5% with SiO2. In general, the increase in the volumetric ratio of the nanofluid in the base fluid has allowed to increase the amount of heat transfer and to remain lower of the oil temperature.

Proje Numarası

TEKNO-026

Kaynakça

  • [1] URL: https://tr.investing.com/news/economy/tum-dunyada-motorlu-arac-says-2-milyara-yaklasyor-1971549#:~:text=Taşıt%20Araçları%20Tedarik%20Sanayicileri%20Derneği,milyar%20motorlu%20taşıt%20olduğu%20açıklandı
  • [2]URL:https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do;jsessionid=Sqdhg09GhPBbfpStMJ4pQ11SrvydJxwVsSpKWDK2GlJbLn7fmCHr!1955124248?id=37411
  • [3] L. Syam Sundar, A. Kirubeil, V. Punnaiah, M. K. Singh, and A. C. M. Sousa, “Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts,” Int. J. Heat Mass Transf., vol. 127, pp. 422–435, Dec. 2018.
  • [4] K. Y. Leong, R. Saidur, Tmi. Mahlia, and Yh. Yau, “Performance investigation of nanofluids as working fluid in a thermosyphon air preheater,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 523–529, 2012.
  • [5] T. S. Krishnakumar, S. P. Viswanath, S. M. Varghese, and J. Prakash M, “Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid,” Int. J. Refrig., vol. 89, pp. 122–130, May 2018.
  • [6] H. Muhammad Ali, H. Ali, H. Liaquat, H. Talha Bin Maqsood, Experimental investigation of convective heat transfer augmentation for car radiator using ZnOe water nanofluids, Energy, Energy 84 (2015) 317-324.
  • [7] M. Hatami, M. Jafaryar, J. Zhou, D. Jing, Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O / (CH2OH)2 based nanofluids, international journal of hydrogen energy 42 (2017) 10891-10900.
  • [8] D. G. Subhedar, B. M. Ramani, A. Gupta, Experimental investigation of heat transfer potential of Al2O3 / Water-Mono Ethylene Glycol nanofluids as a car radiator coolant, Case Studies in Thermal Engineering 11 (2018) 26—34.
  • [9] S. Ali Ahmed, M. Ozkaymak, A. Sözen, T. Menlik, A. Fahed, Improving car radiator performance by using TiO2-water nanofluid, Engineering Science and Technology, an International Journal 21 (2018) 996-1005.
  • [10] D. Sandhya, M. Chandra S. Reddy, V. Vasudeva Rao, Improving the cooling performance of automobile radiatorwith ethylene glycol water based TiO2 nanofluids, International Communications in Heat and Mass Transfer 78 (2016) 121-126.
  • [11] A. Salami Tijani, A. Suhail bin Sudirman, Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3 / CuO based nanofluid as a coolant for car radiator, International Journal of Heat and Mass Transfer 118 (2018) 48-57.
  • [12] M.M. Elias, I.M. Mahbubul, R. Saidur, M.R. Sohel, I.M. Shahrul, S.S. Khaleduzzaman, S. Sadeghipour, Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant, International Communications in Heat and Mass Transfer 54 (2014) 48-53.
  • [13] K. Goudarzi, H. Jamali, Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts, Applied Thermal Engineering, 118 (2017) 510-517.
  • [14] S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Seifi Jamnani, S.M. Hoseini, Improving the cooling performance of automobile radiator with Al2O3 / water nanofluid, Applied Thermal Engineering, 31 (2011) 1833-1838.
  • [15] M. Elsebay, I. Elbadawy, M.H. Shedid, M. Fatouh, Numerical resizing study of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Applied Mathematical Modelling, 40 (2016) 6437-6450.
  • [16] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric study of overall heat transfer coefficient of CuO / water nanofluids in a car radiator, International Journal of Thermal Sciences 66 (2013) 82-90.
  • [17] C. Selvam, R. Solaimalai Raja, D. Mohan Lal, Sivasankaran Harish, Overall heat transfer coefficient improvement of an automobile radiator with graphene-based suspensions, International Journal of Heat and Mass Transfer 115 (2017) 580-588. [18] R. Jadar, K. S. Shashishekar, and S. R. Manohara, “Nanotechnology Integrated Automobile Radiator,” Mater. Today Proc., vol. 4, no. 11, pp. 12080–12084, 2017, doi: 10.1016/j.matpr.2017.09.134.
  • [19] SK. Mohammadi, SGh. Etemad, J. Thibault, Measurement of thermal properties of suspensions of nanoparticles in engine oil, Technical proceedings of the 2009 NSTI nanotechnology conference and Expo, NSTI-Nanotech 3; 2009, p. 74–77
  • [20] M. Vasheghani, Enhancement of the thermal conductivity and viscosity of aluminum component-engine oil nanofluids International. J Nanomech Sci Technol. 2012; 3:333–40.
  • [21] E.O.L. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S.S. Mohtasebi, Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transf, 2013; 46:142–7
  • [22] A. M. Hussein, R. A. Bakar, and K. Kadirgama, “Study of forced convection nanofluid heat transfer in the automotive cooling system,” Case Stud. Therm. Eng., vol. 2, pp. 50–61, 2014, doi: 10.1016/j.csite.2013.12.001.
  • [23] A. M. Hussein, H. K. Dawood, R. A. Bakara, and K. Kadirgamaa, “Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system,” Case Stud. Therm. Eng., vol. 9, no. December 2016, pp. 72–78, 2017, doi: 10.1016/j.csite.2016.11.005.
  • [24] N. A. Che Sidik, M. N. A. Witri Mohd Yazid, R. Mamat, “Recent advancement of nanofluids in engine cooling system,” Renew. Sustain. Energy Rev., vol. 75, no. April 2015, pp. 137–144, 2017, doi: 10.1016/j.rser.2016.10.057.
  • [25] K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering 30 (2010) 2685-2692.
  • [26] Y. Soydan, L. Ulukan, Temel Triboloji, 2013.
  • [27] R. Tadepalli, R.K. Gadekula, K.V. Reddy, S.R. Goud, S.K. Nayak, V. Saini, R.S. Dondapati, “Characterization of Thermophysical properties of Al2O3, TiO2, SiO2, SiC and CuO Nano Particles at Cryogenic Temperatures,” Mater. Today Proc., vol. 5, no. 14, pp. 28454–28461, 2018, doi: 10.1016/j.matpr.2018.10.132.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tahsin Yüksel 0000-0003-3238-9113

Abdullah Kapıcıoğlu 0000-0003-2982-0312

Proje Numarası TEKNO-026
Yayımlanma Tarihi 28 Haziran 2021
Gönderilme Tarihi 27 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Yüksel, T., & Kapıcıoğlu, A. (2021). Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi. International Journal of Innovative Engineering Applications, 5(1), 22-29. https://doi.org/10.46460/ijiea.904338
AMA Yüksel T, Kapıcıoğlu A. Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi. ijiea, IJIEA. Haziran 2021;5(1):22-29. doi:10.46460/ijiea.904338
Chicago Yüksel, Tahsin, ve Abdullah Kapıcıoğlu. “Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi”. International Journal of Innovative Engineering Applications 5, sy. 1 (Haziran 2021): 22-29. https://doi.org/10.46460/ijiea.904338.
EndNote Yüksel T, Kapıcıoğlu A (01 Haziran 2021) Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi. International Journal of Innovative Engineering Applications 5 1 22–29.
IEEE T. Yüksel ve A. Kapıcıoğlu, “Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi”, ijiea, IJIEA, c. 5, sy. 1, ss. 22–29, 2021, doi: 10.46460/ijiea.904338.
ISNAD Yüksel, Tahsin - Kapıcıoğlu, Abdullah. “Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi”. International Journal of Innovative Engineering Applications 5/1 (Haziran 2021), 22-29. https://doi.org/10.46460/ijiea.904338.
JAMA Yüksel T, Kapıcıoğlu A. Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi. ijiea, IJIEA. 2021;5:22–29.
MLA Yüksel, Tahsin ve Abdullah Kapıcıoğlu. “Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi”. International Journal of Innovative Engineering Applications, c. 5, sy. 1, 2021, ss. 22-29, doi:10.46460/ijiea.904338.
Vancouver Yüksel T, Kapıcıoğlu A. Taşıt Motoru Soğutma Sisteminde Kullanılan Farklı Nanoakışkanların Motor Yağ Sıcaklığına Etkilerinin Deneysel Olarak İncelenmesi. ijiea, IJIEA. 2021;5(1):22-9.