BibTex RIS Cite

Multi-Modal Biometrics Fusion Based on Component Analysis and Stationery Wavelet Transform

Year 2020, Volume: 9 Issue: 2, 114 - 125, 01.06.2020

Abstract

It has been observed that the accuracy of multimodal biometric system is highly dependent on the adequacy of the applied fusion technique. Fusion at sample, template, matching and ranking levels have all proved reasonable contributions to the performance of the multi-modal systems. In this paper, a model that is based on the combination of Principal Component Analysis PCA and Stationary Wavelet Transform SWT is proposed for the fusion of biometric images. The model comprises image depuration, histogram balancing, pruning and homogenization as well as PCA-based feature extraction stages. The decomposition and fusion of the images using the extracted features were based on SWT. The experimental study of the model with standard face and ear images revealed its suitability for obtaining high quality fusion. The obtained Peak Signal to Noise Ratio PSNR , Mean Square Error MSE and Standard Deviation SD values established the superiority of the proposed model over some related ones

References

  • O. C. Akinyokun, G. B. Iwasokun and C. O. Angaye, Effect of Parameter Values on Fingerprint Filtering, Artificial Intelligence Research, Vol. 5, No. 1, 160-170, 2016
  • S. Mohamed, D. Noureddine and N. Guersi, Face and Speech Based Multi-Modal Biometric Authentication, International Jour- nal of Advanced Science and Technology, Vol. 21, 2010.
  • J. Fierrez-Aguilar, G. Ortega and R. J. Gonzalez, ”Fusion Strate- gies in Multimodal Biometric Verification”,Biometrics Research Laboratory, 2003.
  • G. B. Iwasokun and O. C. Akinyokun,”Singular-Minutiae Points Relationship-Based Approach to Fingerprint Matching”, Artifi- cial Intelligence Research, Vol. 5, No. 1, 2016.
  • P. Sarala, ”Biometric Recognition Using Unimodal and Multi- modal Feature”, International Journal of Innovative Research in Computer and Communication Engineering, Vol. 2, No. 1, 2014.
  • A. K. Jain and A. Ross,”Multimodal biometric an overview”, Proceedings of 12th European Signal Processing Conference (EUSIPCO), Vienna, Austria. 1221-1224, 2004.
  • S. D. Shwetali, ”Biometric Authentication System”, International Journal of Computer Science and Information Technology Re- search, , Vol. 3, No. 2, pp. 917-920, 2015
  • T. Dunstone and N. Yager, Biometric system and data analysis: Design, evaluation, and data mining, New York: Springer, 2006
  • M. Ashish,”“Multimodal Biometrics: Need for Future System”, International Journal of Computer Applications, Vol. 3, No. 4, 2010.
  • R. Ramya, ”The Advantages of a Biometric Identification Management System”, Blog on Biometric Technology, 2014.
  • K. O. Kadiri, A. M. Odunola and A. O. Alabi, ”Effective and Efficient Means to Prevent and Minimize Identity and Identity Cards Theft, Criminal Vices and Unauthorized Access to Places in Nigeria”, Journal of Scientific Research and Reports, Vol. 9, No. 4, pp.1-17, 2016.
  • H. Austin, U. Brad and W. Craig, ”A Brief Introduction to Bio- metric Fusion”,National Institute of Standards and Technology, 2006, Available: https:// www.nist.gov/ , Accessed 23/01/2018
  • G. B. Iwasokun,”A Fingerprint-Based Scheme for ATM User Authentication”, International Journal of Information Security and Cybercrime, Vol. 5, No. 2, pp.71-86, 2016
  • M. D. Monwar, ”A Multimodal Biometric System Based on Rank Level Fusion”, PhD Thesis, University of Calgary, 2500 University Dr NW, Calgary, 2013
  • G. B. Iwasokun, S. S. Udoh and O. K. Akinyokun, ”Multi- Modal Biometrics: Applications, Strategies and Operations”, Global Journal of Computer Science and Technology, Vol. 15, No. 2, pp.15-28, 2015
  • V. C. Subbarayudu and V. N. Munaga, ”Multimodal Biometric System”, Proceedings of 1st International Conference on Emerg- ing Trends in Engineering and Technology, pp.635 – 640, 2008
  • N. Priya, V. G. Ghotkar and R. Bhowate, ”Multimodal Bio- metric System-A Review”, International Engineering Journal for Research and Development, Vol. 1, No. 1, 2012
  • K. I. Chang, K. W. Bowyer and P. J. Flynn, ”Face recognition using 2D and 3D facial data”, Proceedings of Workshop on Multimodal User Authentication, Santa Barbara, CA, pp. 25–32, 2003
  • A. Kumar, D. C. M. Wong, H. C. Shen and A. K. Jain, ”Personal Verification Using Palmprint and Hand Geometry Biometric”, Proceedings of 4th International Conference on Audio and Video- based Biometric Person Authentication, , Guildford, UK, pp. 668–678, 2003
  • S. Ribaric, D. Ribaric and N. Pavesic, ”Multimodal Biometric User Identification System for Network Based Applications”, IEEE Proceeding of Vision, Image and Signal Processing, Vol. 150, No. 6, pp. 409-416, 2003
  • G. L. Marcialis and F. Roli, ”Experimental Results on Fusion of Multiple Fingerprint Matchers”, Proceedings of 4th Interna- tional Conference on Audio and Video-based Biometric Person Authentication, Guildford, UK. pp. 814–820, 2003
  • A. Ross, A. K. Jain and J. A. Reisman, ”A Hybrid Fingerprint Matcher”, Pattern Recognition, Vol. 36, pp. 1661–1673, 2003
  • X. Lu, Y. Wang, A. K. Jain, ”Combining Classifiers for Face Recognition”, Proceedings of IEEE International Conference on Multimedia and Expo (ICME), Baltimore, MD, Vol. 3, pp. 13–16, 2003
  • R. Brunelli and D. Falavigna, ”Person ˙Identification Using Multiple Cues”, IEEE Transactions on PAMI, Vol. 12, 1995
  • E. Bigun, J. Bigun, B. Duc and S. Fischer, ”Expert Conciliation for Multimodal Person Authentication Systems Using Bayesian Statistics”, Proceedings of First International Conference on AVBPA, (Crans-Montana, Switzerland, pp. 291–300, 1997
  • A. Meraoumia, S. Chitroub and A. Bouridane, ”Multimodal Biometric Person Recognition System based on Iris and Palm- print Using Correlation Filter Classifier”, Procedeedings of IEEE International Conference on Communication, pp. 820-824, 2012
  • T. Zhang, X. Li, D. Tao and J. Yang, ”Multimodal Biometrics Using Geometry Preserving Projections”, Pattern Recognition, Vol. 41, pp. 805 – 813, 2008
  • M. Dhirendra and P. Bhakti, ”Image Fusion Techniques: A Review”, International Journal of Computer Applications, Vol. 130, No. 9, 2015
  • R. Kusum and R. Sharma, ”Study of Different Image fusion Algorithm”, International Journal of Emerging Technology and Advanced Engineering, Vol. 3, No. 5, 2013
  • V. M. Parvatikar and S. P. Gargi, ”Comparative Study of Different Image fusion Techniques”, International Journal of Scientific Engineering and Technology, Vol. 3, No. 4, pp. 375- 379, 2014
  • C. Lupu, ”Car Access Using Multimodal Biometrics”, The Annals of The S¸tefan cel Mare University of Suceava. Fascicle of The Faculty of Economics and Public Administration, 2013
  • S. C. Dass, K. Nandakumar and A. K. Jain, ” Principled Ap- proach to Score Level Fusion in Multimodal Biometric Systems”, Image and Signal Processing, Vol. 150, No. 6, pp. 409-416, 2003
  • T. M. Divyakant and C. K. Kumbharana, ”Comparative Study of Different Fusion Techniques in Multimodal Biometric Authen- tication”, International Journal of Computer Applications, Vol. 66, No. 19, 2013
  • S. R. Soruba and N. Radha, ”A Survey on Fusion Techniques for Multimodal Biometric Identification”, International Journal of Innovative Research in Computer and Communication Engi- neering, Vol. 2, No. 12, 2014
  • V. N. Abhijit and H. G. Virani, ”Multimodal Biometric System using Fingerprint, Iris and Ear” International Journal of Tech- nology and Science, Vol. 9, No. 1, pp. 40-45, 2016
  • Y. Wang, Tan T. and A. K. Jain, ”Combining Face and Iris Biometrics for Identity Verification”, Proceedings of 4th Interna- tional Conference on Audio and Video-based Biometric Person Authentication, , Guildford, UK, pp. 805-813, 2003
  • H. Norsalina, D. R. Athiar and S. A. Suandi, ”Fusion of Face and Fingerprint for Robust Personal Verification System”, International Journal of Machine Learning and Computing, Vol. 4, No. 4, 2014
  • A. Gandhimathi and G. A. Radhamani, ”Multimodal Approach for Face and Ear Biometric System”, International Journal of Computer Science Issues, Vol. 10, No. 5 , 2013
  • L. Songze and Q. Min, ”Multimodal Recognition Method based on Ear and Profile Face Feature Fusion”, International Journal of Signal and Image Processing and Pattern Recognition, Vol. 9, No. 1, pp. 33- 42, 2016
  • Z. Houkui, ”A Stationary Wavelet Transform and Curvelet Transform Based Infrared and Visible Images Fusion Algorithm”, International Journal of Digital Content Technology and its Applications, Vol. 6, No. 1, 2012
  • W. L. Chaunte, G. Ohamed, B. Ruben and H. Abdollah, ”Optimization of Image Fusion Using Genetic Algorithms and Discrete Wavelet Transform”, IEEE Radar signal and image processing, Vol 10, 2010.
  • S. A. Nair, P. Aruna and M. Vadivukarassi, ”PCA based Image Fusion of Face and Iris Biometric Features”, International Journal on Advanced Computer Theory and Engineering, Vol. 1, No. 2, 2013
  • P. P. Mirajkar, D. R. Sachin, ”Image Fusion Based on Stationary Wavelet Transform”, International Journal of Advanced Engi- neering Research And Studies, pp. 99-10, 2013
  • S. Poornima, ”Fusion in Multimodal Biometric using Iris and Ear”, Proceedings of IEEE Conference on Information and Communication Technologies, pp 83-86, 2013
  • C. Sheetal and N. Rajender, ”A New Multimodal Biometric Recognition System Integrating Iris, Face and Voice”, Interna- tional Journal of Advanced Research in Computer Science and Software Engineering, Vol. 5, No. 4, pp. 145-150, 2015
  • K. Devinder, ”Image Fusion using Hybrid Technique”, Interna- tional Journal of engineering and Computer Science, Vol. 5, No. 2, pp. 5661-15667, 2016
  • S. B. G. Tilak, V. Satyanarayana and C. Srinivasarao, ”Shift Invariant and Eigen Feature based Image Fusion”, International Journal on Cybernetics and Informatics, Vol. 5, No. 4, 2016
  • K. Amandeep and R. Sharma, ”Stationary Wavelet Transform Image Fusion and Optimization Using Particle Swarm Optimiza- tion”, Journal of Computer Engineering, Vol. 18, No. 3, pp. 32- 38, 2016
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gabriel Babatunde Iwasokun This is me

Kolawole Isaiah Opatoye This is me

Babajide Oluwaseun Orunmuyi This is me

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE G. B. Iwasokun, K. I. Opatoye, and B. O. Orunmuyi, “Multi-Modal Biometrics Fusion Based on Component Analysis and Stationery Wavelet Transform”, IJISS, vol. 9, no. 2, pp. 114–125, 2020.