Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 2 Sayı: 2, 70 - 81, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00017

Öz

Kaynakça

  • Aleman, A., Richter, S. and Sundberg, C., 1996, Beurling’s Theorem for the Bergman Space, Acta Math. 177, 275-310. google scholar
  • Alpay, D. and Kaptanoğlu, H. T., 2001, Integral Formulas for a Sub-Hardy Hilbert Space on the Ball with Complete Nevanlinna-Pick Reproducing Kernel, C. R. Acad. Sci. Paris Ser. I Math. 333, 285-290. google scholar
  • Gallardo-Gutierrez, E. A., Partington, J. R. and Seco, D., 2020, On the Wandering Property in Dirichlet Spaces, Integral Equations Operator Theory 92, 11 pp. google scholar
  • Gu, C. and Luo, S., 2024, Analytic Representations Backward Shifts on Weighted Bergman and Dirichlet Spaces, J. Math. Anal. Appl. 539, #128502. google scholar
  • Kaptanoğlu, H. T., 2005, Bergman Projections on Besov Spaces on Balls, Illinois J. Math. 49, 385-403. google scholar
  • Kaptanoğlu, H. T., 2014, Aspects of Multivariable Operator Theory on Weighted Symmetric Fock Spaces, Commun. Contemp. Math. 16, #1350034. google scholar
  • Kaptanoğlu, H. T. and Tülü, S., 2011, Weighted Bloch, Lipschitz, Zygmund, Bers, and Growth Spaces of the Ball: Bergman Projections and Characterizations, Taiwanese J. Math. 15, 101-127. google scholar
  • Kaptanoğlu, H. T. and Üreyen, A. E., 2008, Analytic Properties of Besov Spaces via Bergman Projections, Contemp. Math. 455, 169-182. google scholar
  • Richter, S., 1988, Invariant Subspaces of the Dirichlet Shift, J. Reine Angew. Math. 386, 205-220. google scholar
  • Shimorin, S., 2001, Wold-Type Decompositions and Wandering Subspaces for Operators Close to Isometries, J. Reine Angew. Math. 531, 147-189. google scholar

Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections

Yıl 2024, Cilt: 2 Sayı: 2, 70 - 81, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00017

Öz

We express backward shift operators on all Bergman-Besov spaces in terms of Bergman projections in one and several variables including the Banach function spaces and the special Hilbert spaces such as Drury-Arveson and Dirichlet spaces. These operators are adjoints of the shift operators and their definitions for the case 𝑝 = 1 and proper Besov spaces require the use of nontrivial imbeddings of the spaces into Lebesgue classes. Our results indicate that the backward shifts are compositions of imbeddings into Lebesgue classes followed by multiplication operators by the conjugates of the coordinate variables followed by Bergman projections on appropriate spaces. We apply our results to the wandering subspace property of invariant subspaces of the shift operators on certain of our Hilbert spaces.

Kaynakça

  • Aleman, A., Richter, S. and Sundberg, C., 1996, Beurling’s Theorem for the Bergman Space, Acta Math. 177, 275-310. google scholar
  • Alpay, D. and Kaptanoğlu, H. T., 2001, Integral Formulas for a Sub-Hardy Hilbert Space on the Ball with Complete Nevanlinna-Pick Reproducing Kernel, C. R. Acad. Sci. Paris Ser. I Math. 333, 285-290. google scholar
  • Gallardo-Gutierrez, E. A., Partington, J. R. and Seco, D., 2020, On the Wandering Property in Dirichlet Spaces, Integral Equations Operator Theory 92, 11 pp. google scholar
  • Gu, C. and Luo, S., 2024, Analytic Representations Backward Shifts on Weighted Bergman and Dirichlet Spaces, J. Math. Anal. Appl. 539, #128502. google scholar
  • Kaptanoğlu, H. T., 2005, Bergman Projections on Besov Spaces on Balls, Illinois J. Math. 49, 385-403. google scholar
  • Kaptanoğlu, H. T., 2014, Aspects of Multivariable Operator Theory on Weighted Symmetric Fock Spaces, Commun. Contemp. Math. 16, #1350034. google scholar
  • Kaptanoğlu, H. T. and Tülü, S., 2011, Weighted Bloch, Lipschitz, Zygmund, Bers, and Growth Spaces of the Ball: Bergman Projections and Characterizations, Taiwanese J. Math. 15, 101-127. google scholar
  • Kaptanoğlu, H. T. and Üreyen, A. E., 2008, Analytic Properties of Besov Spaces via Bergman Projections, Contemp. Math. 455, 169-182. google scholar
  • Richter, S., 1988, Invariant Subspaces of the Dirichlet Shift, J. Reine Angew. Math. 386, 205-220. google scholar
  • Shimorin, S., 2001, Wold-Type Decompositions and Wandering Subspaces for Operators Close to Isometries, J. Reine Angew. Math. 531, 147-189. google scholar
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

H. Turgay Kaptanoğlu 0000-0002-8795-4426

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kaptanoğlu, H. T. (2024). Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections. Istanbul Journal of Mathematics, 2(2), 70-81. https://doi.org/10.26650/ijmath.2024.00017
AMA Kaptanoğlu HT. Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections. Istanbul Journal of Mathematics. Aralık 2024;2(2):70-81. doi:10.26650/ijmath.2024.00017
Chicago Kaptanoğlu, H. Turgay. “Backward Shift Operators on Bergman-Besov Spaces As Bergman Projections”. Istanbul Journal of Mathematics 2, sy. 2 (Aralık 2024): 70-81. https://doi.org/10.26650/ijmath.2024.00017.
EndNote Kaptanoğlu HT (01 Aralık 2024) Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections. Istanbul Journal of Mathematics 2 2 70–81.
IEEE H. T. Kaptanoğlu, “Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections”, Istanbul Journal of Mathematics, c. 2, sy. 2, ss. 70–81, 2024, doi: 10.26650/ijmath.2024.00017.
ISNAD Kaptanoğlu, H. Turgay. “Backward Shift Operators on Bergman-Besov Spaces As Bergman Projections”. Istanbul Journal of Mathematics 2/2 (Aralık 2024), 70-81. https://doi.org/10.26650/ijmath.2024.00017.
JAMA Kaptanoğlu HT. Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections. Istanbul Journal of Mathematics. 2024;2:70–81.
MLA Kaptanoğlu, H. Turgay. “Backward Shift Operators on Bergman-Besov Spaces As Bergman Projections”. Istanbul Journal of Mathematics, c. 2, sy. 2, 2024, ss. 70-81, doi:10.26650/ijmath.2024.00017.
Vancouver Kaptanoğlu HT. Backward Shift Operators on Bergman-Besov Spaces as Bergman Projections. Istanbul Journal of Mathematics. 2024;2(2):70-81.