Research Article
BibTex RIS Cite

The Effect of Waste Molasses on the Growth and the Amount of Lipid and Protein of Chlorella vulgaris

Year 2022, Volume: 6 Issue: 1, 41 - 47, 01.06.2022
https://doi.org/10.47947/ijnls.1092216

Abstract

In recent years, microalgae have become the focus of attention because they are used in different fields (biodiesel, protein extraction, etc.). One disadvantage of microalgae is that their production costs are pretty high. This paper aimed to reduce the cultivation costs of Chlorella vulgaris, which is an important species in terms of protein and lipid content. Molasses solutions at different concentrations were used as media for the cultivation of C. vulgaris. Molasses is a byproduct of the extraction of sucrose from sugar beets. A Jaworski’s medium was used as the control group. C. vulgaris was inoculated into molasses media (0.5 g/L, 1 g/L, 2 g/L, and 4 g/L). Growth and protein, and lipid content were calculated for ten days. C. vulgaris had the highest growth in 4 g/L molasses medium on day five. It had the highest protein content in 2 g/L molasses medium on day five. It had the highest lipid content in 4 g/L molasses medium on day seven. The molasses media promoted the growth and the protein and lipid content of C. vulgaris. The results show that molasses media help significantly reduce microalgae cultivation costs.

References

  • Arora, N., Patel, A., & Pruthi, A. P. (2016). Sinergistic Dynamics of nitrogen and phosphorus influences lipid productivity in Chlorella minutussima for biodiesel production. Biosource Technology, 213, 79-87.
  • Badar, S. N., Mohammad, M., Emdadi, Z., & Yaakob Z. (2018). Algae and Their Growth Requirement for bioenergy: a review. Biofuels, 3, 307-325.
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207-210.
  • Blight, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and prufication. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
  • El-Sheekh, M. M., Bedaiwy, M. Y., Osman, M. E., & Ismail, M. M. (2014). Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. Journal of Agricultural Engineering and Biotechnology, 2, 20-28.
  • Gaurav, K., Srivastava, R., Sharma, J. G., & Singh, R. V. (2016). Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. International Journal of Green Energy, 13(3), 320-327.
  • Gautam, K., Pareek, A., & Sharma, D. K. (2013). Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering, 116(5), 624-627.
  • Gonzáles-Garcinuno, A., Antonio, T., Sánchez-Álvarez, J. M., Martin del Valle, E. M., & Galán, M. A. (2014). Effect of nitrogen sources on growth and lipid accumilation in Scenedesmus abundans and Chlorella ellipsoidea. Biosource Technology, 173, 334-341.
  • Ilavarasi, D., Mukarakali, D., Preveenkumar, R., Baldev, E., & Thajuddin, N. (2011). Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology, 10(6), 540-545.
  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.
  • Jalilian, N., Najafpour, G. D. (2020). Khajouei M. Macro and micro algae in pollution control and biofuel production–a review. ChemBioEng Reviews, 7(1), 18–33.
  • Kumar, S., & Saramma, A. V. (2018). Optimization and effect of culture medium and concentration on the growth and biochemıcal composition of marine microalga - Nannochloropsis salina. International Journal of Current Research in Life Sciences, 7(5), 2013-2019.
  • Leesing, R., & Kookkhunthod, S. (2011). Heterotrophic Growth of Chlorella sp. KKU-S2 for Lipid Production using Molasses as a Carbon Substrate. International Conference on Food Engineering and Biotechnology IPCBEE Vol.9, IACSIT Press, Singapoore.
  • Lino, O. F. S., Basso. T. O., (2018). Sommer MOA. A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels, 11: 221.
  • Liu, J., Huang, J., Jiang, Y., & Chen, F. (2012). Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technology, 17(107), 393-398. Lowry, O. H, Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal Biological Chemistry, 193, 265-275.
  • Ma, C., Wen, H., Xing, D., Pei, X., Zhu, J., Ren, N., & Liu, B. (2017). Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnology and Biofuels, 10, 111.
  • Mondal, M., Ghosh, A., Tiwari, O. N., Gayen, K., Das, P., Mandal, M. K., & Halder, G. Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energy Conversion and Management, 145, 247-254.
  • Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., & Formigoni, A. (2021). A Review Regarding the Use of Molasses in Animal Nutrition. Animals, 11, 115.
  • Mustafa, S., Bahatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009.
  • Niccolaia, A., Zittelli, G. C., Rodolfi, L., Biondi, N., & Tredici, R. M. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42, 101617.
  • Ruangsomboon S. (2015). Effect of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodisel properties based on fatty composition. Bioresource Technology, 191, 377-384.
  • Sangapillai, K., & Marimuthu, T. (2019). Isolation and selection of growth medium for freshwater microalgae Asterarcys quadricellulare for maximum biomass production. Water Science & Technology, 80(11), 2027-2036.
  • Thompson, A. S., Rhodes, J. C., & Pettman, I. (1988). Natural Environmental Research Cuncil Culture Collection of Algae and Protozoa: Catalogue of Strains. Freshwater Biology Association, Ambleside, p. 164.
  • Yamamoto, M., Fujishita, M., Hirata, A., & Kawano, S. (2004). Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). Journal of Plant Research, 117, 257–264.
  • Yamamoto, M., Kurihara, I., & Kawano, S. (2005). Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, 221, 766–775.
  • Yew, G. Y., Puahb, B. K., Chewc, K. W., Tengd, S. Y., & Show, P. S. (2020). Chlorella vulgaris FSP-E cultivation in waste molasses: Photo-to-property estimation by artificial intelligence. Chemical Engineering Journal, 402, 126230.
  • Yeh, K. L, & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP31. Bioresource Technology, 105, 120-127.
Year 2022, Volume: 6 Issue: 1, 41 - 47, 01.06.2022
https://doi.org/10.47947/ijnls.1092216

Abstract

References

  • Arora, N., Patel, A., & Pruthi, A. P. (2016). Sinergistic Dynamics of nitrogen and phosphorus influences lipid productivity in Chlorella minutussima for biodiesel production. Biosource Technology, 213, 79-87.
  • Badar, S. N., Mohammad, M., Emdadi, Z., & Yaakob Z. (2018). Algae and Their Growth Requirement for bioenergy: a review. Biofuels, 3, 307-325.
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25, 207-210.
  • Blight, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and prufication. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
  • El-Sheekh, M. M., Bedaiwy, M. Y., Osman, M. E., & Ismail, M. M. (2014). Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. Journal of Agricultural Engineering and Biotechnology, 2, 20-28.
  • Gaurav, K., Srivastava, R., Sharma, J. G., & Singh, R. V. (2016). Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. International Journal of Green Energy, 13(3), 320-327.
  • Gautam, K., Pareek, A., & Sharma, D. K. (2013). Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering, 116(5), 624-627.
  • Gonzáles-Garcinuno, A., Antonio, T., Sánchez-Álvarez, J. M., Martin del Valle, E. M., & Galán, M. A. (2014). Effect of nitrogen sources on growth and lipid accumilation in Scenedesmus abundans and Chlorella ellipsoidea. Biosource Technology, 173, 334-341.
  • Ilavarasi, D., Mukarakali, D., Preveenkumar, R., Baldev, E., & Thajuddin, N. (2011). Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology, 10(6), 540-545.
  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631–635.
  • Jalilian, N., Najafpour, G. D. (2020). Khajouei M. Macro and micro algae in pollution control and biofuel production–a review. ChemBioEng Reviews, 7(1), 18–33.
  • Kumar, S., & Saramma, A. V. (2018). Optimization and effect of culture medium and concentration on the growth and biochemıcal composition of marine microalga - Nannochloropsis salina. International Journal of Current Research in Life Sciences, 7(5), 2013-2019.
  • Leesing, R., & Kookkhunthod, S. (2011). Heterotrophic Growth of Chlorella sp. KKU-S2 for Lipid Production using Molasses as a Carbon Substrate. International Conference on Food Engineering and Biotechnology IPCBEE Vol.9, IACSIT Press, Singapoore.
  • Lino, O. F. S., Basso. T. O., (2018). Sommer MOA. A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels, 11: 221.
  • Liu, J., Huang, J., Jiang, Y., & Chen, F. (2012). Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technology, 17(107), 393-398. Lowry, O. H, Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal Biological Chemistry, 193, 265-275.
  • Ma, C., Wen, H., Xing, D., Pei, X., Zhu, J., Ren, N., & Liu, B. (2017). Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnology and Biofuels, 10, 111.
  • Mondal, M., Ghosh, A., Tiwari, O. N., Gayen, K., Das, P., Mandal, M. K., & Halder, G. Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energy Conversion and Management, 145, 247-254.
  • Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., & Formigoni, A. (2021). A Review Regarding the Use of Molasses in Animal Nutrition. Animals, 11, 115.
  • Mustafa, S., Bahatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009.
  • Niccolaia, A., Zittelli, G. C., Rodolfi, L., Biondi, N., & Tredici, R. M. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42, 101617.
  • Ruangsomboon S. (2015). Effect of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodisel properties based on fatty composition. Bioresource Technology, 191, 377-384.
  • Sangapillai, K., & Marimuthu, T. (2019). Isolation and selection of growth medium for freshwater microalgae Asterarcys quadricellulare for maximum biomass production. Water Science & Technology, 80(11), 2027-2036.
  • Thompson, A. S., Rhodes, J. C., & Pettman, I. (1988). Natural Environmental Research Cuncil Culture Collection of Algae and Protozoa: Catalogue of Strains. Freshwater Biology Association, Ambleside, p. 164.
  • Yamamoto, M., Fujishita, M., Hirata, A., & Kawano, S. (2004). Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). Journal of Plant Research, 117, 257–264.
  • Yamamoto, M., Kurihara, I., & Kawano, S. (2005). Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, 221, 766–775.
  • Yew, G. Y., Puahb, B. K., Chewc, K. W., Tengd, S. Y., & Show, P. S. (2020). Chlorella vulgaris FSP-E cultivation in waste molasses: Photo-to-property estimation by artificial intelligence. Chemical Engineering Journal, 402, 126230.
  • Yeh, K. L, & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP31. Bioresource Technology, 105, 120-127.
There are 27 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research articles
Authors

Gökçe Kendirlioğlu Şimşek 0000-0001-8896-2893

Ahmet Kadri Cetin 0000-0002-8687-2912

Early Pub Date January 16, 2022
Publication Date June 1, 2022
Submission Date March 23, 2022
Acceptance Date May 9, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Kendirlioğlu Şimşek, G., & Cetin, A. K. (2022). The Effect of Waste Molasses on the Growth and the Amount of Lipid and Protein of Chlorella vulgaris. International Journal of Nature and Life Sciences, 6(1), 41-47. https://doi.org/10.47947/ijnls.1092216