Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 2, 185 - 196

Abstract

Project Number

TUBITAK-1001 (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students

References

  • Abd El-Aziz, N., & Awad, H. H. (2010). Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41 (3), 203-209. https://doi.org/10.1016/j.micron.2009.11.001
  • Al-Ani, L. K. T., Yonus, M. I., Mahdii, B. A., Omer, M. A., Taher, J. K., Albaayit, S. F. A., & Al-Khoja, S. B. (2018). First record of use Fusarium proliferatum fungi in direct treatment to control the adult of wheat flour Tribolium confusum, as well as, use the entomopathogenic fungi Beauveria bassiana. Ecology, Environment and Conservation, 24 (3), 29-34.
  • Andrade, F. G., Negreiro, M. C. C., Levy, S. M., Fonseca Inês, C. B., Ashida, M., & Soderhall, K. (1984). The prophenoloxidase 141 activating system in crayfish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 77, 21-26. https://doi.org/10.1016/0305-0491(84)90217-7
  • Avulova, S., & Rosengaus, R. B. (2011). Losing the battle against fungal infection: Suppression of termite immune defenses during mycosis. Journal of Insect Physiology, 57, 966-971. https://10.1016/j.jinsphys.2011.04.009.
  • Black, J. L., Clark, M. K., & Sword, G. A. (2022). Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. PLoS One, 8, 17 (2), e0263620. https://doi.org/10.1371/journal.pone.0263620.
  • Bland, M. L. (2023). Regulating metabolism to shape immune function: Lessons from Drosophila. Seminars in Cell and Developmental Biology, 138, 128-141, https://doi.org/10.1016/j.semcdb.2022.04.002.
  • Bogus, M. I., Wieloch, W., & Zuber, M. L. (2017). Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes. Bulletin of Entomological Research, 107, 66-76. https://doi.org/10.1017/S0007485316000638
  • Chen, W., Xie, W., Cai, W., Thaochan, N., & Hu, Q. (2021). Entomopathogenic Fungi Biodiversity in the Soil of Three Provinces Located in Southwest China and First Approach to Evaluate Their Biocontrol Potential. Journal of Fungi, 7, 984. https://doi.org/10.3390/jof7110984.
  • Chouvenc, T., Su, N. Y., & Robert, A. (2009). Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 101, 234-241. https://doi.org/10.1016/j.jip.2009.05.008
  • El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science & Emerging Technologies, 69, 102645. https://doi.org/10.1016/j.ifset.2021.102645
  • Er, A., Uçkan, F., Rivers, D. B., Ergin, E., & Sak, O. (2010). Effects of parasitization and envenomation by the endoparasitic wasp Pimpla turionellae (Hymenoptera: ichneumonidae) on hemo cyte numbers, morphology, and viability of its host Galleria mellonella (Lepidoptera: pyralidae). Annals of the Entomological Society of America, 103 (2), 273-282. https://doi.org/10.1603/AN09065
  • Er, A. (2011). Endoparazitoit Pimpla turionellae (L.) (Hymenoptera; Ichneumonidae) Zehiri ve Parazitlemesinin Konak Hemositlerine Etkileri. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Fancelli, M., Dias, A. B., Delalibera, I. J., Cerqueira de Jesus, S., Souza do Nascimento, A., & Oliveira e Silva, S. (2013). Beauveria bassiana Strains for Biological Control of Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae) in Plantain. BioMed Research International, 184756. https://doi.org/10.1155/2013/184756
  • Güner, P., Aşkun, T., & Er, A. (2023). Evaluation of antibacterial activity Induced by Penicillium mallochii in the hemolymph of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). International Journal of Nature and Life Sciences, 7 (2), 79-88. https://doi.org/10.47947/ijnls.1362362
  • Güner, P. (2024). Penicillium mallochii’nin DNA barkodlaması ve sürdürülebilir biyolojik mücadelede parazitoit Venturia canescens ile etkileşimleri. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Haine, E. R., Moret, Y., Siva-Jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. Science, 322, 1257-1259. https://doi.org/10.1126/science.1165265
  • Kim, G. S., & Kim, Y. (2010). Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-128 hydroxytryptamine via Rac1 signal in Spodoptera exigua. Journal of Insect Physiology, 56, 559-566. https://doi.org/10.1016/j.jinsphys.2009.11.022
  • Korner, P., & Schmid-Hempel, P. (2004). In vivo dynamics of an immune response in the bumble bee Bombus terrestris. Journal of Invertebrate Pathology, 87, 59-66. https://doi.org/10.1016/j.jip.2004.07.004
  • Laughton, A. M., Garcia, J. R., Altincicek, B., Strand, M. R., & Gerardo, N. M. (2011). Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 57, 830-839. https://doi.org/10.1016/j.jinsphys.2011.03.015
  • Lavine, M. D., & Strand, M. R. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32, 1295-1309. https://doi.org/10.1016/s0965-1748(02)00092-9
  • Le, N. T., Asgari, S., Amaya, K., Tan, F. F., & Beckage, N. E. (2003). Persistence and expression of Cotesia congregata polydnavirus in host larvae of the tobacco hornworm, Manduca sexta. Journal of Insect Physiology, 49, 533-543. https://doi.org/10.1016/S0022-1910(03)00052-0
  • Leger, R. J. S., Goettel, M., Roberts, D. W. & Staples, R. C. (1991). Prepenetration events during infection of host cuticle by Metarhizium anisopliae, Journal of Invertebrate Pathology, 58, 168-179.
  • Lionakis, M. S., Fischer, B. G., Lim, J. K., Swamydas, M., Wan, W., Richard Lee, C. C., Cohen, J. I., Scheinberg, P., Gao, J. L., & Murphy, P. M. (2012). Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathogens, 8 (8), e1002865. https://doi.org/10.1371/journal.ppat.1002865
  • Marshall, S. H., & Arenas, G. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 6, 271-284.
  • Mishra, S., Kumar, P., & Malik, A. (2015). The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. Environmental Science and Pollution Research, 22, 15171-15178. https://doi.org/10.1007/s11356-015-5105-3
  • Mowlds, P., Barron, A., & Kavanagh, K. (2008). Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes and Infection, 10, 628-634. https://doi.org/0.1016/j.micinf.2008.02.011
  • Radwan, M. H., Alaidaroos, B. A., Jastaniah, S. D., Abu El-Naga, M. N., El-Gohary, E. E., Barakat, E. M. S., El Shafie, A. M., Abdou, M. A., Mostafa, N. G., El-Saadony, M. T., & Momen, S. A. A. (2022). Evaluation of antibacterial activity induced by Staphylococcus aureus and Ent A in the hemolymph of Spodoptera littoralis. Saudi Journal of Biological Sciences, 29 (4), 2892-2903. https://doi.org/10.1016/j.sjbs.2022.01.025
  • Rajitha, K., Savithri, G., & Sujathamma, P. (2013). Heamocyte population dynamics in fifth instar silkworm Bombyx mori L. inoculated with Beauveria bassiana (Bals) Vuill. International Journal of Agricultural Science and Research, 3, 265-276.
  • Rivers, D. B., Ruggiero, L., & Hayes, M. (2002). The ectoparatisitic wasp Nosonia vitripennis (Walker) (Hymenoptera: Pteromalydae) differentially affects cells mediating the immune response of its flesh fly host, Sacophaga bullata Parker (Diptera: Sarcophagidae). Journal of Insect Physiology, 48, 1053-1064. https://doi.org/10.1016/s0022-1910(02)00193-2
  • Saad, A. M., El-Saadony, M. T., Mohamed, A. S., Ahmed, A. I., & Sitohy, M. Z. (2021). Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. International Journal of Food Science & Technology, 56 (7), 3255-3268. https://doi.org/10.1111/ijfs.14970
  • Sak, O. (2004). Cypermethrinin Pimpla turionellae L. (Hym.: Ichneumonidae), Toplam Protein, Lipit ve Karbohidrat Miktarı ile Hemositlerine Etkisi. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Sapna, M., Peeyush, K., & Anushree, M. (2015). The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. Environmental Science and Pollution Research, 22 (19), 15171-15178. https://doi.org/10.1007/s11356-015-5105-3
  • Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529-551. https://doi.org/10.1146/annurev.ento.50.071803.130420
  • Schmidt, O., Theopold, U., & Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays, 23 (4), 344-351. https://doi.org/10.1002/bies.1049
  • Scieuzo, C., Giglio, F., Rinaldi, R., Lekka, M. E., Cozzolino, F., Monaco, V., Monti, M., Salvia, R., & Falabella, P. (2023). In vitro evaluation of the antibacterial activity of the peptide fractions extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects, 14 (5), 464. https://doi.org/10.3390/insects14050464
  • Sewify, G. H., & Hashem, M. Y. (2001). Effect of the en tomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin on cellular defence response and oxygen uptake of the wax moth Galleria mellonella L. (Lep., Pyralidae). Journal of Applied Entomology, 125, 533-536. https://doi.org/10.1016/s0022-1910(97)00066-8
  • Stanley, D., & Kim, Y. (2014). Eicosanoid signaling in insects: From discovery to plant protection. Critical Reviews in Plant Sciences, 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
  • Teetor-Barsch, G. H., & Roberts, D. W. (1983). Entomogenous Fusarium species. Mycopathologia, 84(1), 3-16. https://doi.org/10.1007/BF00436991
  • Tosi, L., Beccari, G., Rondoni, G., Covarelli, L., & Ricci, C. (2015). Natural occurrence of Fusarium proliferatum on chestnut in Italy and its potential entomopathogenicity against the Asian chestnut gall wasp Dryocosmus kuriphilus. Journal of Pest Science, 88, 369-381. https://doi.org/10.1007/s10340-014-0624-0
  • Trevijano-Contador, N., & Zaragoza, O. (2019). Immune response of Galleria mellonella against human fungal pathogens. Journal of Fungi, 5 (1), 3. https://doi.org/10.3390/jof5010003
  • Tsai, C. J. Y., Loh, J.M. S., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7 (3), 214-229. https://doi.org/10.1080/21505594.2015.1135289
  • Uvell, H., & Engström, Y. (2007). A multilayered defense against infection: combinatorial control of insect immune genes. Trends in Genetics, 23, 342-349. https://doi.org/10.1016/j.tig.2007.05.003
  • Vannini, A., Vettrainoa, A., Martignonia, D., Morales Rodriguezc, C., Contarini, M., Caccia, R., Paparatti, B., & Speranza, S. (2017). Does Gnomoniopsis castanea contribute to the natural biological control of chestnut gall wasp?. Fungal Biology, 121, 44 -52.
  • Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12, 705343. https://doi.org/10.3389/fmicb.2021.705343
  • Yakovlev, A. Y., Alexander, P. N., Simonenko, N. P., Natalia, A. G., Dmitriy, V. T., Anastasia, A. K., & Sergey, I. C. (2017). Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In Vitro Cellular & Developmental Biology - Animal, 53, 33-42. https://doi.org/10.1007/s11626-016-0078-1
  • Yakovlev, A. Y. (2011). Induction of antimicrobial peptide synthesis by the fat body cells of maggots of Calliphora vicina R.-D. (Diptera, Calliphoridae). Journal of Evolutionary Biochemistry and Physiology, 47, 543–551. https://doi.org/10.1134/S0022093011060056
  • Yamashita, M., & Iwabuchi, K. (2001). Bombyx mori prohemocyte division and differentiation in individual microcultures. Journal of Insect Physiology, 47, 325-331. https://doi.org/10.1016/s0022-1910(00)00144-x
  • Ye, Y. H., Chenoweth, S. F., & McGraw. E. (2009) Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster. PLoS Pathogens, 5 (4), e1000385. https://doi:10.1371/journal.ppat.1000385.
  • Yu, Y., Cao, Y., Xia, Y., & Liu, F. (2016). Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. Journal of Invertebrate Pathology, 139, 19-24. https://doi.org/10.1016/j.jip.2016.06.009
  • Zahirnia, A., Seifi-Kar, M., & Nasirian, H. (2023). Evaluation of antifungal activity of hemolymph of American cockroaches against three human invasive fungal species: Aspergillus niger, Candida albicans and Penicillium oxalicum. International Journal of Tropical Insect Science, 43, 1485-1495. https://doi.org/10.1007/s42690-023-01056-w
  • Zhang, Z. M., Wu, W. W., & Li, G. K. (2009). Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GC-MS. Journal of Chromatographic Science, 47, 291-295. https://doi.org/10.1093/chromsci/47.4.291
  • Zibaee, A., Bandani, A. R., Talaei-Hassanlouei, R., & Malagoli, D. (2011). Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. Journal of Insect Science, 11, 138. https://doi.org/10.1673/031.011.13801

Determination of Antimicrobial activity and Total Hemocyte Count in the Larval Hemolymph of Galleria mellonella (L.) (Lepidoptera: Pyralidae) Following Application with Fusarium proliferatum

Year 2024, Volume: 8 Issue: 2, 185 - 196

Abstract

The impact of entomopathogenic viruses, bacteria, fungi and nematodes on the immune responses of insects has been extensively examined in model and medically important insects. However, the single time point selected in these studies presents a challenge in comprehensively understanding immune responses throughout infection in pest species. The objective of this study was to gain insight into the cellular and humoral immune responses of Galleria mellonella larvae, a model organism, to infection with the entomopathogenic fungus Fusarium proliferatum at two different time points (24h and 48h). In the antimicrobial activity tests conducted as part of the humoral immunity studies, hemolymph was induced by varying concentrations of conidial doses. After conidial dose applications, the largest zone diameters were observed against Klebsiella pneumonia, Saccharomyces cerevisiae, Salmonella typhimurium (15 mm/24h), Proteus vulgaris (16 mm/24h), and Escherichia coli (18 mm/48h). Topical application of fungal conidia to G. mellonella larvae in the later stages reduced the total hemocyte count in the larval hemolymph 24h and 48h after treatment. Our findings show that the immune system of G. mellonella responds differently to F. proliferatum depending on the infection timeline. Further studies on fungal regulation of the immune system could provide new pest control methods in agriculture.

Ethical Statement

Not applicable.

Supporting Institution

TUBITAK

Project Number

TUBITAK-1001 (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students

Thanks

We would like to thank TUBITAK 2209-A Research Project Support Program for Undergraduate Students and TUBITAK-1001 The Scientific and Technological Research Projects Funding Program (122O398).

References

  • Abd El-Aziz, N., & Awad, H. H. (2010). Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. Micron, 41 (3), 203-209. https://doi.org/10.1016/j.micron.2009.11.001
  • Al-Ani, L. K. T., Yonus, M. I., Mahdii, B. A., Omer, M. A., Taher, J. K., Albaayit, S. F. A., & Al-Khoja, S. B. (2018). First record of use Fusarium proliferatum fungi in direct treatment to control the adult of wheat flour Tribolium confusum, as well as, use the entomopathogenic fungi Beauveria bassiana. Ecology, Environment and Conservation, 24 (3), 29-34.
  • Andrade, F. G., Negreiro, M. C. C., Levy, S. M., Fonseca Inês, C. B., Ashida, M., & Soderhall, K. (1984). The prophenoloxidase 141 activating system in crayfish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 77, 21-26. https://doi.org/10.1016/0305-0491(84)90217-7
  • Avulova, S., & Rosengaus, R. B. (2011). Losing the battle against fungal infection: Suppression of termite immune defenses during mycosis. Journal of Insect Physiology, 57, 966-971. https://10.1016/j.jinsphys.2011.04.009.
  • Black, J. L., Clark, M. K., & Sword, G. A. (2022). Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. PLoS One, 8, 17 (2), e0263620. https://doi.org/10.1371/journal.pone.0263620.
  • Bland, M. L. (2023). Regulating metabolism to shape immune function: Lessons from Drosophila. Seminars in Cell and Developmental Biology, 138, 128-141, https://doi.org/10.1016/j.semcdb.2022.04.002.
  • Bogus, M. I., Wieloch, W., & Zuber, M. L. (2017). Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes. Bulletin of Entomological Research, 107, 66-76. https://doi.org/10.1017/S0007485316000638
  • Chen, W., Xie, W., Cai, W., Thaochan, N., & Hu, Q. (2021). Entomopathogenic Fungi Biodiversity in the Soil of Three Provinces Located in Southwest China and First Approach to Evaluate Their Biocontrol Potential. Journal of Fungi, 7, 984. https://doi.org/10.3390/jof7110984.
  • Chouvenc, T., Su, N. Y., & Robert, A. (2009). Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology, 101, 234-241. https://doi.org/10.1016/j.jip.2009.05.008
  • El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science & Emerging Technologies, 69, 102645. https://doi.org/10.1016/j.ifset.2021.102645
  • Er, A., Uçkan, F., Rivers, D. B., Ergin, E., & Sak, O. (2010). Effects of parasitization and envenomation by the endoparasitic wasp Pimpla turionellae (Hymenoptera: ichneumonidae) on hemo cyte numbers, morphology, and viability of its host Galleria mellonella (Lepidoptera: pyralidae). Annals of the Entomological Society of America, 103 (2), 273-282. https://doi.org/10.1603/AN09065
  • Er, A. (2011). Endoparazitoit Pimpla turionellae (L.) (Hymenoptera; Ichneumonidae) Zehiri ve Parazitlemesinin Konak Hemositlerine Etkileri. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Fancelli, M., Dias, A. B., Delalibera, I. J., Cerqueira de Jesus, S., Souza do Nascimento, A., & Oliveira e Silva, S. (2013). Beauveria bassiana Strains for Biological Control of Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae) in Plantain. BioMed Research International, 184756. https://doi.org/10.1155/2013/184756
  • Güner, P., Aşkun, T., & Er, A. (2023). Evaluation of antibacterial activity Induced by Penicillium mallochii in the hemolymph of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). International Journal of Nature and Life Sciences, 7 (2), 79-88. https://doi.org/10.47947/ijnls.1362362
  • Güner, P. (2024). Penicillium mallochii’nin DNA barkodlaması ve sürdürülebilir biyolojik mücadelede parazitoit Venturia canescens ile etkileşimleri. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Haine, E. R., Moret, Y., Siva-Jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. Science, 322, 1257-1259. https://doi.org/10.1126/science.1165265
  • Kim, G. S., & Kim, Y. (2010). Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-128 hydroxytryptamine via Rac1 signal in Spodoptera exigua. Journal of Insect Physiology, 56, 559-566. https://doi.org/10.1016/j.jinsphys.2009.11.022
  • Korner, P., & Schmid-Hempel, P. (2004). In vivo dynamics of an immune response in the bumble bee Bombus terrestris. Journal of Invertebrate Pathology, 87, 59-66. https://doi.org/10.1016/j.jip.2004.07.004
  • Laughton, A. M., Garcia, J. R., Altincicek, B., Strand, M. R., & Gerardo, N. M. (2011). Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 57, 830-839. https://doi.org/10.1016/j.jinsphys.2011.03.015
  • Lavine, M. D., & Strand, M. R. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32, 1295-1309. https://doi.org/10.1016/s0965-1748(02)00092-9
  • Le, N. T., Asgari, S., Amaya, K., Tan, F. F., & Beckage, N. E. (2003). Persistence and expression of Cotesia congregata polydnavirus in host larvae of the tobacco hornworm, Manduca sexta. Journal of Insect Physiology, 49, 533-543. https://doi.org/10.1016/S0022-1910(03)00052-0
  • Leger, R. J. S., Goettel, M., Roberts, D. W. & Staples, R. C. (1991). Prepenetration events during infection of host cuticle by Metarhizium anisopliae, Journal of Invertebrate Pathology, 58, 168-179.
  • Lionakis, M. S., Fischer, B. G., Lim, J. K., Swamydas, M., Wan, W., Richard Lee, C. C., Cohen, J. I., Scheinberg, P., Gao, J. L., & Murphy, P. M. (2012). Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathogens, 8 (8), e1002865. https://doi.org/10.1371/journal.ppat.1002865
  • Marshall, S. H., & Arenas, G. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 6, 271-284.
  • Mishra, S., Kumar, P., & Malik, A. (2015). The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. Environmental Science and Pollution Research, 22, 15171-15178. https://doi.org/10.1007/s11356-015-5105-3
  • Mowlds, P., Barron, A., & Kavanagh, K. (2008). Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes and Infection, 10, 628-634. https://doi.org/0.1016/j.micinf.2008.02.011
  • Radwan, M. H., Alaidaroos, B. A., Jastaniah, S. D., Abu El-Naga, M. N., El-Gohary, E. E., Barakat, E. M. S., El Shafie, A. M., Abdou, M. A., Mostafa, N. G., El-Saadony, M. T., & Momen, S. A. A. (2022). Evaluation of antibacterial activity induced by Staphylococcus aureus and Ent A in the hemolymph of Spodoptera littoralis. Saudi Journal of Biological Sciences, 29 (4), 2892-2903. https://doi.org/10.1016/j.sjbs.2022.01.025
  • Rajitha, K., Savithri, G., & Sujathamma, P. (2013). Heamocyte population dynamics in fifth instar silkworm Bombyx mori L. inoculated with Beauveria bassiana (Bals) Vuill. International Journal of Agricultural Science and Research, 3, 265-276.
  • Rivers, D. B., Ruggiero, L., & Hayes, M. (2002). The ectoparatisitic wasp Nosonia vitripennis (Walker) (Hymenoptera: Pteromalydae) differentially affects cells mediating the immune response of its flesh fly host, Sacophaga bullata Parker (Diptera: Sarcophagidae). Journal of Insect Physiology, 48, 1053-1064. https://doi.org/10.1016/s0022-1910(02)00193-2
  • Saad, A. M., El-Saadony, M. T., Mohamed, A. S., Ahmed, A. I., & Sitohy, M. Z. (2021). Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. International Journal of Food Science & Technology, 56 (7), 3255-3268. https://doi.org/10.1111/ijfs.14970
  • Sak, O. (2004). Cypermethrinin Pimpla turionellae L. (Hym.: Ichneumonidae), Toplam Protein, Lipit ve Karbohidrat Miktarı ile Hemositlerine Etkisi. Yayınlanmamış Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Sapna, M., Peeyush, K., & Anushree, M. (2015). The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. Environmental Science and Pollution Research, 22 (19), 15171-15178. https://doi.org/10.1007/s11356-015-5105-3
  • Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529-551. https://doi.org/10.1146/annurev.ento.50.071803.130420
  • Schmidt, O., Theopold, U., & Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays, 23 (4), 344-351. https://doi.org/10.1002/bies.1049
  • Scieuzo, C., Giglio, F., Rinaldi, R., Lekka, M. E., Cozzolino, F., Monaco, V., Monti, M., Salvia, R., & Falabella, P. (2023). In vitro evaluation of the antibacterial activity of the peptide fractions extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects, 14 (5), 464. https://doi.org/10.3390/insects14050464
  • Sewify, G. H., & Hashem, M. Y. (2001). Effect of the en tomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin on cellular defence response and oxygen uptake of the wax moth Galleria mellonella L. (Lep., Pyralidae). Journal of Applied Entomology, 125, 533-536. https://doi.org/10.1016/s0022-1910(97)00066-8
  • Stanley, D., & Kim, Y. (2014). Eicosanoid signaling in insects: From discovery to plant protection. Critical Reviews in Plant Sciences, 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
  • Teetor-Barsch, G. H., & Roberts, D. W. (1983). Entomogenous Fusarium species. Mycopathologia, 84(1), 3-16. https://doi.org/10.1007/BF00436991
  • Tosi, L., Beccari, G., Rondoni, G., Covarelli, L., & Ricci, C. (2015). Natural occurrence of Fusarium proliferatum on chestnut in Italy and its potential entomopathogenicity against the Asian chestnut gall wasp Dryocosmus kuriphilus. Journal of Pest Science, 88, 369-381. https://doi.org/10.1007/s10340-014-0624-0
  • Trevijano-Contador, N., & Zaragoza, O. (2019). Immune response of Galleria mellonella against human fungal pathogens. Journal of Fungi, 5 (1), 3. https://doi.org/10.3390/jof5010003
  • Tsai, C. J. Y., Loh, J.M. S., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7 (3), 214-229. https://doi.org/10.1080/21505594.2015.1135289
  • Uvell, H., & Engström, Y. (2007). A multilayered defense against infection: combinatorial control of insect immune genes. Trends in Genetics, 23, 342-349. https://doi.org/10.1016/j.tig.2007.05.003
  • Vannini, A., Vettrainoa, A., Martignonia, D., Morales Rodriguezc, C., Contarini, M., Caccia, R., Paparatti, B., & Speranza, S. (2017). Does Gnomoniopsis castanea contribute to the natural biological control of chestnut gall wasp?. Fungal Biology, 121, 44 -52.
  • Wang, H., Peng, H., Li, W., Cheng, P., & Gong, M. (2021). The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12, 705343. https://doi.org/10.3389/fmicb.2021.705343
  • Yakovlev, A. Y., Alexander, P. N., Simonenko, N. P., Natalia, A. G., Dmitriy, V. T., Anastasia, A. K., & Sergey, I. C. (2017). Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In Vitro Cellular & Developmental Biology - Animal, 53, 33-42. https://doi.org/10.1007/s11626-016-0078-1
  • Yakovlev, A. Y. (2011). Induction of antimicrobial peptide synthesis by the fat body cells of maggots of Calliphora vicina R.-D. (Diptera, Calliphoridae). Journal of Evolutionary Biochemistry and Physiology, 47, 543–551. https://doi.org/10.1134/S0022093011060056
  • Yamashita, M., & Iwabuchi, K. (2001). Bombyx mori prohemocyte division and differentiation in individual microcultures. Journal of Insect Physiology, 47, 325-331. https://doi.org/10.1016/s0022-1910(00)00144-x
  • Ye, Y. H., Chenoweth, S. F., & McGraw. E. (2009) Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster. PLoS Pathogens, 5 (4), e1000385. https://doi:10.1371/journal.ppat.1000385.
  • Yu, Y., Cao, Y., Xia, Y., & Liu, F. (2016). Wright-Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. Journal of Invertebrate Pathology, 139, 19-24. https://doi.org/10.1016/j.jip.2016.06.009
  • Zahirnia, A., Seifi-Kar, M., & Nasirian, H. (2023). Evaluation of antifungal activity of hemolymph of American cockroaches against three human invasive fungal species: Aspergillus niger, Candida albicans and Penicillium oxalicum. International Journal of Tropical Insect Science, 43, 1485-1495. https://doi.org/10.1007/s42690-023-01056-w
  • Zhang, Z. M., Wu, W. W., & Li, G. K. (2009). Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GC-MS. Journal of Chromatographic Science, 47, 291-295. https://doi.org/10.1093/chromsci/47.4.291
  • Zibaee, A., Bandani, A. R., Talaei-Hassanlouei, R., & Malagoli, D. (2011). Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. Journal of Insect Science, 11, 138. https://doi.org/10.1673/031.011.13801
There are 52 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Research articles
Authors

Aylin Er 0000-0002-8108-8950

Tülin Aşkun 0000-0002-2700-1965

Pınar Güner 0000-0001-6922-7009

Selin Meryem Şengül 0009-0002-1842-4525

Project Number TUBITAK-1001 (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students
Early Pub Date November 26, 2024
Publication Date
Submission Date November 17, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Er, A., Aşkun, T., Güner, P., Şengül, S. M. (2024). Determination of Antimicrobial activity and Total Hemocyte Count in the Larval Hemolymph of Galleria mellonella (L.) (Lepidoptera: Pyralidae) Following Application with Fusarium proliferatum. International Journal of Nature and Life Sciences, 8(2), 185-196.