Araştırma Makalesi
BibTex RIS Kaynak Göster

Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi

Yıl 2021, , 419 - 428, 31.12.2021
https://doi.org/10.29132/ijpas.931021

Öz

Fotovoltaik panellerin ve güneş kolektörlerinin ayrı ayrı kullanılması hem maliyeti hem de kapladıkları alanı artırmaktadır. Bu yüzden araştırmacıları bir sistemden hem ısı hem de elektrik üretmeye yönlendirmiştir. Bu deneysel çalışmada, yeni tip kanatçıklı hava ısıtmalı fotovoltaik/termal (PV/T) kolektör tasarlanmış ve karşılaştırılmalı olarak test edilmiştir. Deneylerde, kanatçıklı ve kanatçıksız PV/T kolektörlere doğal taşınım (DT) ve zorlanmış taşınım (m_1=0.01 kg/s ve m_2=0.015 kg/s) uygulanmıştır. Tüm sistemlerin termodinamik analizi ve ekserji veriminin bir fonksiyonu olan sürdürülebilirlik indeksi (SI) incelenmiştir. Elde edilen sonuçlara göre kütlesel debinin artması ve kanatçık entegre edilmesi PV/T sisteminin çıkış gücüne, elektriksel enerjisine ve ekserjisine pozitif etki etmiştir. Sistemdeki en düşük çıkış gücü kanatçıksız ve doğal taşınımda (M1) 26.84W, en yüksek çıkış gücü kanatçıklı ve zorlanmış taşınımda (M6) 37.40W’tır. Tüm PV/T kolektörleri karşılaştırıldığında en yüksek genel ekserji verimi %20.48 ile doğal taşınımlı ve kanatçıklı M4 kolektörü olmuştur. Ekserji veriminin bir fonksiyonu olan sürdürülebilirlik indeks (SI) değerleri kanatçıklı sistemlerde daha yüksektir.

Kaynakça

  • Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., and Sachit, F. A. 2019. “Numerical Analysis of Solar Hybrid Photovoltaic Thermal Air Collector Simulation by ANSYS.” CFD Letters 11(2):1–11.
  • Agrawal, S., and Tiwari, G. N. 2011. “Energy and Exergy Analysis of Hybrid Micro-Channel Photovoltaic Thermal Module.” Solar Energy 85(2):356–70. doi: 10.1016/j.solener.2010.11.013.
  • Arslan, E., Aktaş, M., and Can, Ö. F. 2020. “Experimental and Numerical Investigation of a Novel Photovoltaic Thermal (PV/T) Collector with the Energy and Exergy Analysis.” Journal of Cleaner Production 276:123255. doi: 10.1016/j.jclepro.2020.123255.
  • Bayrak, F., Oztop, H. F., and Hepbasli, A. 2013. “Energy and Exergy Analyses of Porous Baffles Inserted Solar Air Heaters for Building Applications.” Energy and Buildings 57. doi: 10.1016/j.enbuild.2012.10.055.
  • Bayrak, F., Abu-Hamdeh, N., Alnefaie, K. A., and Öztop, H. F. 2017. “A Review on Exergy Analysis of Solar Electricity Production.” Renewable and Sustainable Energy Reviews 74:755–70. doi: 10.1016/j.rser.2017.03.012.
  • Bayrak, F., Ertürk, G., and Oztop, H. F. 2017. “Effects of Partial Shading on Energy and Exergy Efficiencies for Photovoltaic Panels.” Journal of Cleaner Production 164:58–69. doi: 10.1016/j.jclepro.2017.06.108.
  • Bayrak, F., and Oztop, H. F. 2020. “Effects of Static and Dynamic Shading on Thermodynamic and Electrical Performance for Photovoltaic Panels.” Applied Thermal Engineering 169(December 2019):114900. doi: 10.1016/j.applthermaleng.2020.114900.
  • Bayrak, F., Oztop, H. F., and Selimefendigil, F. 2019. “Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection.” Solar Energy 188:484–94. doi: 10.1016/j.solener.2019.06.036.
  • Bayrak, F., Oztop, H. F., and Selimefendigil, F. 2020. “Experimental Study for the Application of Different Cooling Techniques in Photovoltaic (PV) Panels.” Energy Conversion and Management 212(February):112789. doi: 10.1016/j.enconman.2020.112789.
  • Buonomano, A., Calise, F., Dentice d’Accadia, M., and Vanoli, L. 2013. “A Novel Solar Trigeneration System Based on Concentrating Photovoltaic/Thermal Collectors. Part 1: Design and Simulation Model.” Energy 61:59–71. doi: 10.1016/j.energy.2013.02.009.
  • Chow, T. T. 2010. “A Review on Photovoltaic/Thermal Hybrid Solar Technology.” Applied Energy 87(2):365–79. doi: 10.1016/j.apenergy.2009.06.037.
  • Fan, W., Kokogiannakis, G., and Ma, Z. 2018. “A Multi-Objective Design Optimisation Strategy for Hybrid Photovoltaic Thermal Collector (PVT)-Solar Air Heater (SAH) Systems with Fins.” Solar Energy 163(February):315–28. doi: 10.1016/j.solener.2018.02.014.
  • Fudholi, A., Zohri, M., Jin, G. L., Ibrahim, A., Yen, C. H., Othman, M. Y., Ruslan, M. H., and Sopian, K. 2018. “Energy and Exergy Analyses of Photovoltaic Thermal Collector with ∇-Groove.” Solar Energy 159(November 2016):742–50. doi: 10.1016/j.solener.2017.11.056.
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., Mohammad, M., and Sopian, K. 2019. “Exergy and Sustainability Index of Photovoltaic Thermal (PVT) Air Collector: A Theoretical and Experimental Study.” Renewable and Sustainable Energy Reviews 100(July 2018):44–51. doi: 10.1016/j.rser.2018.10.019.
  • Hepbasli, A. 2008. “A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future.” Renewable and Sustainable Energy Reviews 12(3):593–661. doi: 10.1016/j.rser.2006.10.001.
  • Holman, J.P, 1994. Experimental methods for engineers, 6th ed. Singapore: McGraw Hill.
  • Hossain, M. S., Pandey, A. K., Selvaraj, J., Abd Rahim, N., Rivai, A., and Tyagi, V. V. 2019. “Thermal Performance Analysis of Parallel Serpentine Flow Based Photovoltaic/Thermal (PV/T) System under Composite Climate of Malaysia.” Applied Thermal Engineering 153(January):861–71. doi: 10.1016/j.applthermaleng.2019.01.007.
  • Jia, Y., Alva, G., and Fang, G. 2019. “Development and Applications of Photovoltaic–Thermal Systems: A Review.” Renewable and Sustainable Energy Reviews 102(November 2018):249–65. doi: 10.1016/j.rser.2018.12.030.
  • Joe, J., Iniyan, S., and Goic, R. 2015. “Flat Plate Solar Photovoltaic – Thermal ( PV / T ) Systems : A Reference Guide.” Renewable and Sustainable Energy Reviews 51:62–88. doi: 10.1016/j.rser.2015.06.022.
  • Joshi, A. S., and Tiwari, A. 2007. “Energy and Exergy Efficiencies of a Hybrid Photovoltaic–Thermal (PV/T) Air Collector.” Renewable Energy 32(13):2223–41. doi: 10.1016/j.renene.2006.11.013.
  • Kandilli, C. 2019. “A Comparative Study on the Energetic- Exergetic and Economical Performance of a Photovoltaic Thermal System (PVT).” Research on Engineering Structures and Materials (1):75–89. doi: 10.17515/resm2019.90en0117.
  • Mugi, V. R., and Chandramohan, V. P. 2021. “Energy and Exergy Analysis of Forced and Natural Convection Indirect Solar Dryers: Estimation of Exergy Inflow, Outflow, Losses, Exergy Efficiencies and Sustainability Indicators from Drying Experiments.” Journal of Cleaner Production 282:124421. doi: 10.1016/j.jclepro.2020.124421.
  • Nayak, S., and Tiwari, G. N. 2008. “Energy and Exergy Analysis of Photovoltaic/Thermal Integrated with a Solar Greenhouse.” Energy and Buildings 40(11):2015–21. doi: 10.1016/j.enbuild.2008.05.007.
  • Özakin, A. N., and Kaya, F. 2019. “Effect on the Exergy of the PVT System of Fins Added to an Air-Cooled Channel: A Study on Temperature and Air Velocity with ANSYS Fluent.” Solar Energy 184(December 2018):561–69. doi: 10.1016/j.solener.2019.03.100.
  • Özakın, A. N., and Kaya, F. 2020. “Experimental Thermodynamic Analysis of Air-Based PVT System Using Fins in Different Materials: Optimization of Control Parameters by Taguchi Method and ANOVA.” Solar Energy 197(September 2019):199–211. doi: 10.1016/j.solener.2019.12.077.
  • Oztop, H. F., Bayrak, F., and Hepbasli, A. 2013. “Energetic and Exergetic Aspects of Solar Air Heating (Solar Collector) Systems.” Renewable and Sustainable Energy Reviews 21. doi: 10.1016/j.rser.2012.12.019.
  • Petela, R. 2008. “An Approach to the Exergy Analysis of Photosynthesis.” Solar Energy 82(4):311–28. doi: 10.1016/j.solener.2007.09.002.
  • Rajoria, C. S., Agrawal, S., and Tiwari, G. N. 2012. “Overall Thermal Energy and Exergy Analysis of Hybrid Photovoltaic Thermal Array.” Solar Energy 86(5):1531–38. doi: 10.1016/j.solener.2012.02.014.
  • Sarhaddi, F., Farahat, S., Ajam, H., and Behzadmehr, A. 2011. “Exergetic Optimization of a Solar Photovoltaic Thermal (PV/T) Air Collector.” International Journal of Energy Research 35(9):813–27. doi: 10.1002/er.1727.
  • Shukla, A., Khare, M., and Shukla, K. N. 2015. “Experimental Exergetic Performance Evaluation of Solar PV Module.” International Journal of Scientific and Research Publications 5(1):1–9.
  • Sukumaran, S., and Sudhakar, K. 2018. “Performance Analysis of Solar Powered Airport Based on Energy and Exergy Analysis.” Energy 149:1000–1009. doi: 10.1016/j.energy.2018.02.095.

Sustainability Index and Thermodynamic Analysis of Porous Fin Added Air Heated PV/T Collector

Yıl 2021, , 419 - 428, 31.12.2021
https://doi.org/10.29132/ijpas.931021

Öz

As a result of using photovoltaic panels and solar collectors separately, both the installation cost and the usage area increase. Therefore researchers have directed from a single system to produce both heat and electricity. In this experimental study, a new type of fin air heated photovoltaic/thermal (PV/T) collector is designed and tested comparatively. In the experiments, natural and forced convection (m_1=0.01 kg/s and m_2=0.015 kg/s) was applied to PV/T collectors with and without fins. The thermodynamic analysis of all systems and the sustainability index (SI), which is a function of exergy efficiency, were examined. According to the results obtained, the increase in mass flow rate and the integration of the fins had a positive effect on the output power, electrical energy and exergy of the PV / T system. The lowest output power in the system is 26.84W in the natural convection and without fin (M1), and the highest output power is 37.40W in the forced convection and with fin (M6). Comparing all PV/T collectors, the highest overall exergy efficiency is the M4 collector with natural convection and fins with 20.48%. The sustainability index (SI) values, which are a function of exergy efficiency, are higher in finned systems.

Kaynakça

  • Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., and Sachit, F. A. 2019. “Numerical Analysis of Solar Hybrid Photovoltaic Thermal Air Collector Simulation by ANSYS.” CFD Letters 11(2):1–11.
  • Agrawal, S., and Tiwari, G. N. 2011. “Energy and Exergy Analysis of Hybrid Micro-Channel Photovoltaic Thermal Module.” Solar Energy 85(2):356–70. doi: 10.1016/j.solener.2010.11.013.
  • Arslan, E., Aktaş, M., and Can, Ö. F. 2020. “Experimental and Numerical Investigation of a Novel Photovoltaic Thermal (PV/T) Collector with the Energy and Exergy Analysis.” Journal of Cleaner Production 276:123255. doi: 10.1016/j.jclepro.2020.123255.
  • Bayrak, F., Oztop, H. F., and Hepbasli, A. 2013. “Energy and Exergy Analyses of Porous Baffles Inserted Solar Air Heaters for Building Applications.” Energy and Buildings 57. doi: 10.1016/j.enbuild.2012.10.055.
  • Bayrak, F., Abu-Hamdeh, N., Alnefaie, K. A., and Öztop, H. F. 2017. “A Review on Exergy Analysis of Solar Electricity Production.” Renewable and Sustainable Energy Reviews 74:755–70. doi: 10.1016/j.rser.2017.03.012.
  • Bayrak, F., Ertürk, G., and Oztop, H. F. 2017. “Effects of Partial Shading on Energy and Exergy Efficiencies for Photovoltaic Panels.” Journal of Cleaner Production 164:58–69. doi: 10.1016/j.jclepro.2017.06.108.
  • Bayrak, F., and Oztop, H. F. 2020. “Effects of Static and Dynamic Shading on Thermodynamic and Electrical Performance for Photovoltaic Panels.” Applied Thermal Engineering 169(December 2019):114900. doi: 10.1016/j.applthermaleng.2020.114900.
  • Bayrak, F., Oztop, H. F., and Selimefendigil, F. 2019. “Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection.” Solar Energy 188:484–94. doi: 10.1016/j.solener.2019.06.036.
  • Bayrak, F., Oztop, H. F., and Selimefendigil, F. 2020. “Experimental Study for the Application of Different Cooling Techniques in Photovoltaic (PV) Panels.” Energy Conversion and Management 212(February):112789. doi: 10.1016/j.enconman.2020.112789.
  • Buonomano, A., Calise, F., Dentice d’Accadia, M., and Vanoli, L. 2013. “A Novel Solar Trigeneration System Based on Concentrating Photovoltaic/Thermal Collectors. Part 1: Design and Simulation Model.” Energy 61:59–71. doi: 10.1016/j.energy.2013.02.009.
  • Chow, T. T. 2010. “A Review on Photovoltaic/Thermal Hybrid Solar Technology.” Applied Energy 87(2):365–79. doi: 10.1016/j.apenergy.2009.06.037.
  • Fan, W., Kokogiannakis, G., and Ma, Z. 2018. “A Multi-Objective Design Optimisation Strategy for Hybrid Photovoltaic Thermal Collector (PVT)-Solar Air Heater (SAH) Systems with Fins.” Solar Energy 163(February):315–28. doi: 10.1016/j.solener.2018.02.014.
  • Fudholi, A., Zohri, M., Jin, G. L., Ibrahim, A., Yen, C. H., Othman, M. Y., Ruslan, M. H., and Sopian, K. 2018. “Energy and Exergy Analyses of Photovoltaic Thermal Collector with ∇-Groove.” Solar Energy 159(November 2016):742–50. doi: 10.1016/j.solener.2017.11.056.
  • Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., Mohammad, M., and Sopian, K. 2019. “Exergy and Sustainability Index of Photovoltaic Thermal (PVT) Air Collector: A Theoretical and Experimental Study.” Renewable and Sustainable Energy Reviews 100(July 2018):44–51. doi: 10.1016/j.rser.2018.10.019.
  • Hepbasli, A. 2008. “A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future.” Renewable and Sustainable Energy Reviews 12(3):593–661. doi: 10.1016/j.rser.2006.10.001.
  • Holman, J.P, 1994. Experimental methods for engineers, 6th ed. Singapore: McGraw Hill.
  • Hossain, M. S., Pandey, A. K., Selvaraj, J., Abd Rahim, N., Rivai, A., and Tyagi, V. V. 2019. “Thermal Performance Analysis of Parallel Serpentine Flow Based Photovoltaic/Thermal (PV/T) System under Composite Climate of Malaysia.” Applied Thermal Engineering 153(January):861–71. doi: 10.1016/j.applthermaleng.2019.01.007.
  • Jia, Y., Alva, G., and Fang, G. 2019. “Development and Applications of Photovoltaic–Thermal Systems: A Review.” Renewable and Sustainable Energy Reviews 102(November 2018):249–65. doi: 10.1016/j.rser.2018.12.030.
  • Joe, J., Iniyan, S., and Goic, R. 2015. “Flat Plate Solar Photovoltaic – Thermal ( PV / T ) Systems : A Reference Guide.” Renewable and Sustainable Energy Reviews 51:62–88. doi: 10.1016/j.rser.2015.06.022.
  • Joshi, A. S., and Tiwari, A. 2007. “Energy and Exergy Efficiencies of a Hybrid Photovoltaic–Thermal (PV/T) Air Collector.” Renewable Energy 32(13):2223–41. doi: 10.1016/j.renene.2006.11.013.
  • Kandilli, C. 2019. “A Comparative Study on the Energetic- Exergetic and Economical Performance of a Photovoltaic Thermal System (PVT).” Research on Engineering Structures and Materials (1):75–89. doi: 10.17515/resm2019.90en0117.
  • Mugi, V. R., and Chandramohan, V. P. 2021. “Energy and Exergy Analysis of Forced and Natural Convection Indirect Solar Dryers: Estimation of Exergy Inflow, Outflow, Losses, Exergy Efficiencies and Sustainability Indicators from Drying Experiments.” Journal of Cleaner Production 282:124421. doi: 10.1016/j.jclepro.2020.124421.
  • Nayak, S., and Tiwari, G. N. 2008. “Energy and Exergy Analysis of Photovoltaic/Thermal Integrated with a Solar Greenhouse.” Energy and Buildings 40(11):2015–21. doi: 10.1016/j.enbuild.2008.05.007.
  • Özakin, A. N., and Kaya, F. 2019. “Effect on the Exergy of the PVT System of Fins Added to an Air-Cooled Channel: A Study on Temperature and Air Velocity with ANSYS Fluent.” Solar Energy 184(December 2018):561–69. doi: 10.1016/j.solener.2019.03.100.
  • Özakın, A. N., and Kaya, F. 2020. “Experimental Thermodynamic Analysis of Air-Based PVT System Using Fins in Different Materials: Optimization of Control Parameters by Taguchi Method and ANOVA.” Solar Energy 197(September 2019):199–211. doi: 10.1016/j.solener.2019.12.077.
  • Oztop, H. F., Bayrak, F., and Hepbasli, A. 2013. “Energetic and Exergetic Aspects of Solar Air Heating (Solar Collector) Systems.” Renewable and Sustainable Energy Reviews 21. doi: 10.1016/j.rser.2012.12.019.
  • Petela, R. 2008. “An Approach to the Exergy Analysis of Photosynthesis.” Solar Energy 82(4):311–28. doi: 10.1016/j.solener.2007.09.002.
  • Rajoria, C. S., Agrawal, S., and Tiwari, G. N. 2012. “Overall Thermal Energy and Exergy Analysis of Hybrid Photovoltaic Thermal Array.” Solar Energy 86(5):1531–38. doi: 10.1016/j.solener.2012.02.014.
  • Sarhaddi, F., Farahat, S., Ajam, H., and Behzadmehr, A. 2011. “Exergetic Optimization of a Solar Photovoltaic Thermal (PV/T) Air Collector.” International Journal of Energy Research 35(9):813–27. doi: 10.1002/er.1727.
  • Shukla, A., Khare, M., and Shukla, K. N. 2015. “Experimental Exergetic Performance Evaluation of Solar PV Module.” International Journal of Scientific and Research Publications 5(1):1–9.
  • Sukumaran, S., and Sudhakar, K. 2018. “Performance Analysis of Solar Powered Airport Based on Energy and Exergy Analysis.” Energy 149:1000–1009. doi: 10.1016/j.energy.2018.02.095.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Bayrak 0000-0003-3715-6458

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 1 Mayıs 2021
Kabul Tarihi 5 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bayrak, F. (2021). Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi. International Journal of Pure and Applied Sciences, 7(3), 419-428. https://doi.org/10.29132/ijpas.931021
AMA Bayrak F. Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi. International Journal of Pure and Applied Sciences. Aralık 2021;7(3):419-428. doi:10.29132/ijpas.931021
Chicago Bayrak, Fatih. “Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi Ve Termodinamik Analizi”. International Journal of Pure and Applied Sciences 7, sy. 3 (Aralık 2021): 419-28. https://doi.org/10.29132/ijpas.931021.
EndNote Bayrak F (01 Aralık 2021) Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi. International Journal of Pure and Applied Sciences 7 3 419–428.
IEEE F. Bayrak, “Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi”, International Journal of Pure and Applied Sciences, c. 7, sy. 3, ss. 419–428, 2021, doi: 10.29132/ijpas.931021.
ISNAD Bayrak, Fatih. “Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi Ve Termodinamik Analizi”. International Journal of Pure and Applied Sciences 7/3 (Aralık 2021), 419-428. https://doi.org/10.29132/ijpas.931021.
JAMA Bayrak F. Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi. International Journal of Pure and Applied Sciences. 2021;7:419–428.
MLA Bayrak, Fatih. “Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi Ve Termodinamik Analizi”. International Journal of Pure and Applied Sciences, c. 7, sy. 3, 2021, ss. 419-28, doi:10.29132/ijpas.931021.
Vancouver Bayrak F. Poroz Kanatçık İlaveli Hava Isıtmalı PV/T Kolektörünün Sürdürülebilirlik İndeksi ve Termodinamik Analizi. International Journal of Pure and Applied Sciences. 2021;7(3):419-28.

154501544915448154471544615445