Effects of Invasive Plants(Xanthium spinosum, Xanthium strumarium and Phragmites australis) on Rhizobacteria Density
Yıl 2025,
Cilt: 11 Sayı: 1, 209 - 218, 30.06.2025
Şeyma Çankaya Kılıç
,
İdris Bektaş
,
Dudu Duygu Kılıç
,
Burak Sürmen
Öz
This study investigated whether certain invasive plant species affect the densities of soil bacteria essential for plant growth in agricultural regions. In this study, the densities of nitrogen-fixing (NF), phosphate-solubilizing (PS), and sidero-phore-producing bacteria (SPB) were assessed in the rhizospheres of the invasive plants Xanthium spinosum, Xanthium strumarium, and Phragmites australis in wheat cultivation areas of Çorum, Turkey. The microbial densities in the rhizo-spheres of these invasive plants were then compared to those found in the rhizo-spheres of wheat. The research findings indicated that the rhizosphere microbial density of invasive plants varied according to plant type and localit, with these variations between the wheat rhizosphere soil and those of other plant types at the same location showing statistical significance(p≤0.05). However, when comparing the biochemical properties of invasive plants and wheat rhizosphere soil, no sta-tistically significant difference was observed. The results suggest that invasive plants such as X. spinosum, X. strumarium, and P. australis reduce the microbial density of NFB, PSB, and SPB in environments with similar soil properties. Nonetheless, further research is necessary to deepen the analysis of the relation-ship between plant species and soil structures to better understand the mechanisms behind the decline in bacterial density
Etik Beyan
The authors declare that this study complies with research and publication ethics.
Destekleyen Kurum
This study was supported by TUBITAK
Teşekkür
We express our sincere gratitude to TUBITAK for their support throughout the course of this research project.
Kaynakça
-
Stefanowicz, A. M., Stanek, M., Nobis, M., and Zubek, S. (2017). Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Science of the Total Environment, 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120
-
Zubek, S., Majewska, M. L., Błaszkowski, J., Stefanowicz, A. M., Nobis, M., and Kapusta, P. (2016). Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 52(6), 879–893. https://doi.org/10.1007/s00374-016-1127-3
-
Burke, D. J., Carrino-Kyker, S. R., Hoke, A., Cassidy, S., Bialic-Murphy, L., and Kalisz, S. (2019). Deer and invasive plant removal alters mycorrhizal fungal communities and soil chemistry: Evidence from a long-term field experiment. Soil Biology and Biochemistry, 128, 13–21. https://doi.org/10.1016/j.soilbio.2018.09.031
-
Tharayil, N., Alpert, P., Bhowmik, P., and Gerard, P. (2013). Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: A case study with Polygonum cuspidatum. Soil Biology and Biochemistry, 57, 858–867. https://doi.org/10.1016/j.soilbio.2012.09.016
-
Kour, D., Rana, K. L., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V.,and Saxena, A. K. (2020). Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and agricultural Biotechnology, 23, 101501.
-
Callaway, R. M., & Ridenour, W. M. (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2(8), 436-443.
-
Bardon, C., Piola, F., Haichar, F. el Z., Meiffren, G., Comte, G., Missery, B., Balby, M., and Poly, F. (2016). Identification of B-type procyanidins in Fallopia spp. involved in biological denitrification inhibition. Environmental Microbiology, 18(2), 644–655. https://doi.org/10.1111/1462-2920.13062
-
Wang, C., Jiang, K., Zhou, J., and Wu, B. (2018). Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China. Science of the Total Environment, 631–632, 702–713. https://doi.org/10.1016/j.scitotenv.2018.03.061
-
Yuan, Z., Zheng, X., Zhao, Y., Liu, Y., Zhou, S., Wei, C., Hu, Y., and Shao, H. (2018). Phytotoxic compounds isolated from leaves of the invasive weed Xanthium spinosum. Molecules, 23(11). https://doi.org/10.3390/molecules23112840
-
Nibret, E., Youns, M., Krauth-Siegel, R. L., and Wink, M. (2011). Biological activities of xanthatin from Xanthium strumarium leaves. Phytotherapy Research, 25(12), 1883–1890. https://doi.org/10.1002/ptr.3651
-
Chen, Y., Li, L., Jiang, L. R., Tan, J. Y., Guo, L. N., Wang, X. L., Dong, W., Wang, W. B., Sun, J. K., and Song, B. (2022). Alkaloids constituents from the roots of Phragmites australis (Cav.) Trin. ex Steud. with their cytotoxic activities. Natural Product Research, 36(6), 1454–1459. https://doi.org/10.1080/14786419.2021.1888291
-
Fan, W., Fan, L., Peng, C., Zhang, Q., Wang, L., Li, L.,& Wu, C. (2019). Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review. Molecules, 24(2), 359.
-
Pyšek, P., Skálová, H., Čuda, J., Guo, W. Y., Doležal, J., Kauzál, O., Lambertini, C., Pyšková, K., Brix, H., and Meyerson, L. A. (2019). Physiology of a plant invasion: Biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia, 91(1), 51–75. https://doi.org/10.23855/preslia.2019.051
-
Rodríguez-Caballero, G., Caravaca, F., Alguacil, M. M., Fernández-López, M., Fernández-González, A. J., and Roldán, A. (2017). Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biology and Biochemistry, 109, 176–187. https://doi.org/10.1016/j.soilbio.2017.02.012
-
Al-Dhabaan, F. A. M., and Bakhali, A. H. (2017). Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi Journal of Biological Sciences, 24(4), 901–906. https://doi.org/10.1016/j.sjbs.2016.01.043
-
Milagres, A. M., Machuca, A., and Napoleao, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6.
-
Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. (2008). Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native europe. Ecology, 89(4), 1043–1055. https://doi.org/10.1890/07-0370.1
-
Marco, J. A., Sanz-Cervera, J. F., Corral, J., Carda, M., and Jakupovic, J. (1993). Xanthanolides from Xanthium: absolute configuration of xanthanol, isoxanthanol and their C-4 epimers. Phytochemistry, 34(6), 1569-1576.
-
Zhang, J., Zhao, R., Jin, L., Pan, L., and Lei, D. (2022). Xanthanolides in Xanthium L.: structures, synthesis and bioactivity. Molecules, 27(23), 8136.https://doi.org/10.3390/molecules27238136
-
Saha, D., Kumar, R., Ghosh, S., Kumari, M., and Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial Crops and Products, 37(1), 376–382. https://doi.org/10.1016/j.indcrop.2011
Bazı İstilacı Bitkilerin (Xanthium spinosum, Xanthium strumarium ve Phragmites australis) Kök Bakterileri Yoğunlukları Üzerine Etkileri
Yıl 2025,
Cilt: 11 Sayı: 1, 209 - 218, 30.06.2025
Şeyma Çankaya Kılıç
,
İdris Bektaş
,
Dudu Duygu Kılıç
,
Burak Sürmen
Öz
Bu çalışmanın amacı, bazı istilacı bitki türlerinin tarımsal bölgelerde bitki bü-yümesi için gerekli olan belirli toprak bakterilerinin yoğunluklarını etkileyip et-kilemediğini araştırmaktır. Bu araştırmada, Türkiye'de Çorum ilinde, buğday ekim alanlarında görülen istilacı bitkiler Xanthium spinosum, Xanthium strumarium ve Phragmites australis 'in rizosfer toprağında azot bağlayıcı (NF), fosfor çözücü (PS) ve siderofor üreten bakterilerin (SPB) yoğunlukları belirlenmiştir. Bu istilacı bit-kilerin rizosferindeki mikrobiyal yoğunluklar daha sonra buğday bitkisinin ri-zosfer toprağındaki aynı özellikteki bakteri yoğunluğu ile karşılaştırılmıştır. Araştırma bulguları, istilacı bitkilerin rizosfer mikrobiyal yoğunluğunun bitki tü-rüne ve lokaliteye göre değiştiğini ve bu mikrobiyal yoğunluğun buğday rizosfer toprağı arasında aynı lokasyon içinde istatistiksel olarak anlamlı olduğunu gös-termiştir (p≤0.05). Bununla birlikte, istilacı bitkiler ile buğday rizosfer toprağının biyokimyasal özellikleri karşılaştırıldığında, istatistiksel olarak anlamlı bir fark gözlenmemiştir. Çalışma sonucunda, X. spinosum, X. strumarium ve P. australis gibi istilacı bitkilerin benzer toprak özelliklerine sahip ortamlarda bitki gelişimi için önemli olan NFB, PSB ve SPB'nin mikrobiyal yoğunluğunu azaltabileceğini göstermiştir. Bununla birlikte, bakteri yoğunluğundaki düşüşün arkasındaki me-kanizmaları daha iyi anlamak için bitki türlerinin ve toprak yapılarının analizini derinleştirmek için daha fazla araştırma yapılması gerekmektedir.
Kaynakça
-
Stefanowicz, A. M., Stanek, M., Nobis, M., and Zubek, S. (2017). Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Science of the Total Environment, 574, 938–946. https://doi.org/10.1016/j.scitotenv.2016.09.120
-
Zubek, S., Majewska, M. L., Błaszkowski, J., Stefanowicz, A. M., Nobis, M., and Kapusta, P. (2016). Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 52(6), 879–893. https://doi.org/10.1007/s00374-016-1127-3
-
Burke, D. J., Carrino-Kyker, S. R., Hoke, A., Cassidy, S., Bialic-Murphy, L., and Kalisz, S. (2019). Deer and invasive plant removal alters mycorrhizal fungal communities and soil chemistry: Evidence from a long-term field experiment. Soil Biology and Biochemistry, 128, 13–21. https://doi.org/10.1016/j.soilbio.2018.09.031
-
Tharayil, N., Alpert, P., Bhowmik, P., and Gerard, P. (2013). Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: A case study with Polygonum cuspidatum. Soil Biology and Biochemistry, 57, 858–867. https://doi.org/10.1016/j.soilbio.2012.09.016
-
Kour, D., Rana, K. L., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V.,and Saxena, A. K. (2020). Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and agricultural Biotechnology, 23, 101501.
-
Callaway, R. M., & Ridenour, W. M. (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2(8), 436-443.
-
Bardon, C., Piola, F., Haichar, F. el Z., Meiffren, G., Comte, G., Missery, B., Balby, M., and Poly, F. (2016). Identification of B-type procyanidins in Fallopia spp. involved in biological denitrification inhibition. Environmental Microbiology, 18(2), 644–655. https://doi.org/10.1111/1462-2920.13062
-
Wang, C., Jiang, K., Zhou, J., and Wu, B. (2018). Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China. Science of the Total Environment, 631–632, 702–713. https://doi.org/10.1016/j.scitotenv.2018.03.061
-
Yuan, Z., Zheng, X., Zhao, Y., Liu, Y., Zhou, S., Wei, C., Hu, Y., and Shao, H. (2018). Phytotoxic compounds isolated from leaves of the invasive weed Xanthium spinosum. Molecules, 23(11). https://doi.org/10.3390/molecules23112840
-
Nibret, E., Youns, M., Krauth-Siegel, R. L., and Wink, M. (2011). Biological activities of xanthatin from Xanthium strumarium leaves. Phytotherapy Research, 25(12), 1883–1890. https://doi.org/10.1002/ptr.3651
-
Chen, Y., Li, L., Jiang, L. R., Tan, J. Y., Guo, L. N., Wang, X. L., Dong, W., Wang, W. B., Sun, J. K., and Song, B. (2022). Alkaloids constituents from the roots of Phragmites australis (Cav.) Trin. ex Steud. with their cytotoxic activities. Natural Product Research, 36(6), 1454–1459. https://doi.org/10.1080/14786419.2021.1888291
-
Fan, W., Fan, L., Peng, C., Zhang, Q., Wang, L., Li, L.,& Wu, C. (2019). Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review. Molecules, 24(2), 359.
-
Pyšek, P., Skálová, H., Čuda, J., Guo, W. Y., Doležal, J., Kauzál, O., Lambertini, C., Pyšková, K., Brix, H., and Meyerson, L. A. (2019). Physiology of a plant invasion: Biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia, 91(1), 51–75. https://doi.org/10.23855/preslia.2019.051
-
Rodríguez-Caballero, G., Caravaca, F., Alguacil, M. M., Fernández-López, M., Fernández-González, A. J., and Roldán, A. (2017). Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biology and Biochemistry, 109, 176–187. https://doi.org/10.1016/j.soilbio.2017.02.012
-
Al-Dhabaan, F. A. M., and Bakhali, A. H. (2017). Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi Journal of Biological Sciences, 24(4), 901–906. https://doi.org/10.1016/j.sjbs.2016.01.043
-
Milagres, A. M., Machuca, A., and Napoleao, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6.
-
Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. (2008). Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native europe. Ecology, 89(4), 1043–1055. https://doi.org/10.1890/07-0370.1
-
Marco, J. A., Sanz-Cervera, J. F., Corral, J., Carda, M., and Jakupovic, J. (1993). Xanthanolides from Xanthium: absolute configuration of xanthanol, isoxanthanol and their C-4 epimers. Phytochemistry, 34(6), 1569-1576.
-
Zhang, J., Zhao, R., Jin, L., Pan, L., and Lei, D. (2022). Xanthanolides in Xanthium L.: structures, synthesis and bioactivity. Molecules, 27(23), 8136.https://doi.org/10.3390/molecules27238136
-
Saha, D., Kumar, R., Ghosh, S., Kumari, M., and Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial Crops and Products, 37(1), 376–382. https://doi.org/10.1016/j.indcrop.2011