Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 4 Sayı: 2, 236 - 268, 24.08.2022

Öz

Kaynakça

  • Abdou Razakou, I.B.Y., Mensah, B., Addam, K.S., Akromah, R. 2013. Using morpho–physiological parameters to evaluate cowpea varieties for drought tolerance, International Journal of Agricultural Science Research, 2(5): 153–162.
  • Adusei, G., Aidoo, M.K., Kumar Srivastava, A., Asibuo, J.Y., Gaiser, T. 2021. The variability of grain yield of some cowpea genotypes in response to phosphorus and water stress under field conditions, Agronomy, 11 (28). https://doi.org/10.3390/agronomy11010028
  • Agbicodo, E.M. 2009. Genetic analysis of abiotic and biotic resistance in cowpea [Vigna unguiculata (L.) Walp], PhD Thesis. University of Wageningen, the Netherlands.
  • Agbicodo, E.M., Fatokun, C.A., Muranaka, S., Visser, R.G.F., Linden van der, C.G. 2009. Breeding drought-tolerant cowpea: constraints, accomplishments, and future prospects, Euphytica, 167: 353–370.
  • Ajayi, A.T. 2020. Relationships among drought tolerance indices and yield characters of cowpea [Vigna unguiculata (L.) Walp], International Journal of Scientific Research in Biological Sciences, 7(5): 93–103.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O. 2017b. Correlation and principal component analyses of important traits of cowpea seedlings under drought stress. 41st Genetics Society of Nigeria Conference, 15–19 October, p. 314–321.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O., Nwosu, P.O. 2020. GT biplot analysis of shoot traits indicating drought tolerance in cowpea [Vigna unguiculata ( L.) Walp] accessions at the vegetative stage, International Journal of BioSciences and Technology, 13(2): 18–33. https://doi.org/10.5281/zenodo.4019163
  • Ajayi, A.T., Gbadamosi, A.E., Osekita, O.S., Taiwo, B.H., Fawibe, A. B., Adedeji, I., Omisakin, T. 2022. Genotype × environment interaction and adaptation of cowpea genotypes across six planting seasons, Frontiers in Life Sciences and Related Technologies, 3: 7–15. https://doi.org/10.51753/flsrt.1036051
  • Ajayi, A.T., Olumekun, V.O., Gbadamosi, A.E. 2017a. Estimates of genetic variation among drought-tolerant traits of cowpea at the seedling stage, International Journal of Plant Research, 7(2): 48–57.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O. 2018. Screening for Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp] at the seedling stage under screen house condition, International Journal of BioSciences and Technology, 11(1): 1–19.
  • Alidu, M.S., Asante, I.K., Tongoona, P., Ofori, K., Danquah, A., Padi, F.K. 2019. Development and screening of cowpea recombinant inbred lines for seedling drought tolerance, Journal of Plant Breeding and Crop Science, 11(1): 1–10. https://doi.org/10.5897/jpbcs2018.0768
  • Al-Naggar, A.M.M., Soliman, S.M., Hashimi, M.N. 2011. Tolerance to drought at flowering stage of 28 maize hybrids and populations, Egyptian Journal of Plant Breeding, 15(1): 69–87.
  • Al-Rawi, I.M.D. 2016. Study of drought tolerance indices in some bread and durum wheat cultivars, Jordan Journal of Agricultural Science, 12(4): 1125–1139.
  • Anyia, A.O., Herzog, H. 2004a. Genotypic variability in drought performance and recovery in cowpea under controlled environment, Journal of Agronomy and Crop Science, 190: 151–159.
  • Anyia, A.O., Herzog, H. 2004b. Water-use efficiency, leaf area and leaf gas exchange of cowpea under mid-season drought, European Journal of Agronomy, 20: 327–339.
  • Badu-Apraku, B., Obesesan, O., Abiodun, A., Obeng-bio, E. 2021. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments, Agronomy, 11(831). https://doi.org/10.3390/ agronomy11050831
  • Bibi, A., Sadaqat, H.A., Akram, H.M., Mohammed, M.I. 2010. Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition, International Journal of Agricultural Biology, 12: 451–455.
  • Bibi, A., Sadaqat, H.A., Tahir, H.N., Akram, H.M. 2012. Screening of sorghum (Sorghum bicolor Var. Moench) for drought tolerance at seedling stage in polyethylene glycol, The Journal of Animal and Plant Sciences, 22(3): 671–678.
  • Choudhary, R.S., Biradar, D.P., Katageri, I.S. 2021. Evaluation of sorghum RILs for moisture stress tolerance using drought tolerance indices, The Pharma Innovation Journal, 10(4): 39–45.
  • Cirillo, V., Amelia, V.D., Esposito, M., Amitrano, C., Carillo, P., Carputo, D., Maggio, A. 2021. Anthocyanins are key regulators of drought stress tolerance in tobacco, Biology, 10(139). https:// doi.org/10.3390/biology10020139
  • Ezin, V., Gloria, A., Tosse, C., Chabi, B., Ahanchede, A. 2021. Adaptation of cowpea [Vigna unguiculata (L.) Walp] to water deficit during vegetative and reproductive phases using physiological and agronomic characters, International Journal of Agronomy, 2021(96653122021). https://doi.org/10.1155/2021/9665312
  • Fatokun, C.A., Boukar, O., Muranaka, S. 2012. Evaluation of cowpea [Vigna unguiculata (L.) Walp] germplasm lines for tolerance to drought, Plant Genetic Resources: Characterization and Utilization, 10: 171–176. https://doi.org/10.1017/S1479262112000214
  • Garg, B.K., Burman, U., Kathju, S. 2005. Comparative water relations, photosynthesis and nitrogen metabolism of arid legumes under water stress, Journal of Plant Biology, 32: 83–93.
  • Garrity, D.P., Toole, J.C.O. 1994. Screening rice for drought resistance at the reproductive phase, Field Crops Research, 39: 99–110.
  • Gomes, A.M.F., Rodrigues, A.P., António, C., Rodrigues, A.M., Leitão, A.E., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A.I., Ramalho, J.C. 2020. Drought response of cowpea [Vigna unguiculata (L.) Walp] landraces at leaf physiological and metabolite profile levels, Environmental and Experimental Botany, 175: 104060. https://doi.org/10.1016/j.envexpbot.2020.104060
  • Goufo, P., Moutinho-Pereira, J.M., Jorge, T.F., Correia, C.M., Oliveira, M.R., Rosa, E.A.S., António, C., Trindade, H. 2017. Cowpea [Vigna unguiculata (L.) Walp] metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield, Front. Plant Sci, 8: 586. https//doi.org/10.3389/fpls.2017.00586
  • Hamidou, F., Zombre, G., Braconnier, S. 2007. Physiological and biochemical responses of cowpea genotypes to water stress under glasshouse and field conditions. Journal of Agronomy and Crop Science, 193: 229–237.
  • Hammer, O., Harper, D.A.T., Ryan, P.D. 2001. Paleontological statistical software package for data analysis, Palaeontologia Electronica, 4(1): 9.
  • Harshani, H. K. A., Fernando, K.M.C. 2021. Root system attributes, morphology, and yield of cowpea [Vigna unguiculata (L.) Walp] under moisture stress, Tropical Agricultural Research and Extension, 24(3). https://doi.org/10.4038/tare.v24i3.5512
  • Hefny, M.M. 2013. Use of genetic variability estimates and interrelationships of agronomic and biochemical characters for selection of lupin genotypes under different irrigation regimes, African Crop Science Journal, 21(1): 97–108.
  • Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., Duangpan, S. 2021. Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in Southern Thailand, Plants, 10: 2565. https://doi.org/10.3390/plants10122565
  • Ibitoye, D.O. (2015). Genetic analysis of drought tolerance in cowpea [Vigna unguiculata (L.) Walp]. Ph.D. Thesis. School of Agriculture, University of Ghana, Legon, Ghana. IBPGR. 1983. International board for plant genetic resources cowpea descriptors. Rome, Italy.
  • Khan, S. U., Zheng, Y., Chachar, Z., Zhang, X., Zhou, G., Zong, N. 2021. Dissection of maize drought tolerance at the flowering stage using genome-wide association study, Research Square, https://doi.org/10.21203/rs.3.rs-1187674/v1
  • Khatun, M., Sarkar, S., Era, F.M., Islam, A.K., Anwar, P., Fahad, S., Datta, R., Islam, A.K. 2021. Drought stress in grain legumes: effects, tolerance mechanisms, and management, Agronomy, 11: 2374. https://doi.org/10.3390/ agronomy11122374 1–35
  • Kumar, A., Sharma, K.D., Kumar, D. 2008. Traits for screening and selection of cowpea genotypes for drought tolerance at early stages of breeding, Journal of Agriculture and Rural Development in the Tropics and Subtropics, 109(2): 191–199.
  • Lemma, A.Z., Hailemariam, F.M., Abebe, K.A. 2021. Evaluation of durum wheat (Triticum turgdium var. durum) genotypes for drought tolerance using morpho-agronomic traits, Journal of Plant Breeding and Crop Science, 13: 216–225. https://doi.org/10.5897/JPBCS2021.0956
  • Leng, G., Hall, J. 2019. Science of the total environment crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future, Science of the Total Environment, 654: 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434
  • Li, R., Zeng, Y., Xu, J., Wang, Q., Wu, F., Cao, M. 2015. Genetic variation for maize root architecture in response to drought stress at seedling stage, Breeding Science, 65: 298–307.
  • Mai–kodomi, Y., Singh, B.B., Myers, O., Yopp, J.H., Gibson, P.J., Terao, T. 1999. Two mechanisms of drought tolerance in cowpea. Indian Journal of Genetics, 59(3): 309–316.
  • Mathews, R.B., Azam-Ali, S.N., Peacock, J.M. 1990. Response of four sorghum lines to mid-season drought, Field Crops Responses, 5: 297–308.
  • Matsui, T., Singh, B.B. 2003. Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture, 39: 29–38.
  • Mitchell, J.H., Saimhan, D., Wamala, M.H., Risimeri, J.B., Chinyamakobru, E., Henderson, S.A., Fukai, S. 1998. The use of seedling leaf death score for evaluation of drought resistance in rice, Field Crops Research, 55: 129–139.
  • Moloi, M.J., van der Merwe, R. 2021. Drought tolerance responses in vegetable-type soybean involve a network of biochemical mechanisms at the flowering and pod-filling stages, Plants, 10: 1502. https://doi.org/10.3390/plants10081502
  • Muchero, W., Ehlers, J.D., Roberts, P.A. 2008. Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes, Crop Science, 48: 541–552.
  • Mukeshimana, G. 2013. Dissecting the genetic complexity of drought tolerance mechanisms in common bean (Phaseolus vulgaris L.). PhD Dissertation. Michigan State University, Department of Crop and Soil Sciences, Michigan, United States of America.
  • Mukeshimana, G., Lasley, A.L., Loescher, W.H., Kelly, J.D. 2014. Identification of shoot traits related to drought tolerance in common bean seedlings, Journal of American Society of Horticultural Science, 139(3): 299–309.
  • Naeem, M.K., Ahmed, M.S., Noreen, M.K.N., Iqbal, M.S. 2015. Estimation of genetic components for plant growth and physiological traits of wheat (Triticum aestivum L.) under normal and stress conditions, SAARC Journal of Agriculture, 13(1): 90–98.
  • Nkomo, G.V., Sedibe, M.M., Mofokeng, M.A. 2020. Phenotyping cowpea accessions at the seedling stage for drought tolerance using the pot method, bioRxiv Preprint. https://doi.org/10.1101/2020.07.10.196915.
  • Nkouannessi, M. 2005. The genetic, morphological, and physiological evaluation of African cowpea genotypes. MSc Dissertation. University of Free State, Faculty of Natural and Agricultural Sciences, Bloemfontein, South Africa.
  • Nunes, C., Moreira, R., Pais, I., Semedo, J., Sim, F., Veloso, M.M., Scotti-campos, P. 2022. Cowpea physiological responses to terminal drought–comparison between four landraces and a commercial variety, Plants, 11: 593. https://doi.org/10.3390/ plants110505
  • Ogbaga, C.C., Stepien, P., Johnson, G.N. 2014. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought, Physiologia Plantarum, https://doi.org/10.1111/ppl.12196
  • Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U., Dolferus, R. 2021. Reproductive stage drought tolerance in wheat: the importance of stomatal conductance and plant growth regulators, Genes, 12: 1742. https://doi.org/ 10.3390/genes121117
  • Panda, D., Behera, P.K., Mishra, S., Mishra, B.S. 2021. Differential drought tolerance responses in short-grain aromatic rice germplasms from Koraput valley of Eastern Ghats of India, Plant Physiology Reports. https://doi.org/10.1007/s40502-021-00638-5
  • Pungulani, L.L. M., Miller, J.P., Williams, W.M. 2012. Screening cowpea (Vigna unguiculata) germplasm for canopy maintenance under water stress, Agronomy New Zealand, 42: 23–32.
  • Pungulani, L.M., James, P.M., Warren, M.W., Mackson, B. 2013. Improvement of leaf wilting scoring system in cowpea [Vigna unguiculata (L.) Walp]: from qualitative scale to quantitative index, Australian Journal of Crop Science, 7(9): 1262–1269.
  • Ries, L.L., Purcell, L.C., Carter, T.E., Edwards, J.T., King. C.A. 2012. Physiological traits contributing to differential canopy wilting in soybean under drought, Crop Science, 52: 272–281.
  • Sabiel, S.A.I., Abdumula, A.A., Bashir, E.M.A., Khan, S., Yinying, S., Yank, Y., Baloch, S.U., Bashir, W. 2014. Genetic variation of plant height and stem diameter traits in maize (Zea mays L.) under drought stress at different growth stages, Journal of Natural Sciences Research, 4(23): 116–122.
  • Salami, A.E., Adegoke, S.A.O., Adegbite, O.A. 2007. Genetic variability among maize cultivars grown in Ekiti State, Nigeria, Middle-East Journal of Scientific Research, 2(1): 9–13.
  • Samson, H., Helmut, H. 2007. Drought effect on yield, leaf parameters, and evapotranspiration efficiency of cowpea. Conference of International Agricultural Research for Development, 9–11 October 2007, p. 5.
  • Santos, R., Carvalho, M., Rosa, E., Carnide, V., Castro, I. 2020. Root and agro-morphological traits performance in cowpea under drought stress, Agronomy, 10: 1604. http://dx.doi.org/10.3390/agronomy10101604
  • Shanmugam, S., Boyett, V.A., Id, M.K. 2021. Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene, PlosOne, 16(10): e0258171. https://doi.org/10.1371/journal.pone.0258171
  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., Groot, S. De, Soole, K., Langridge, P. 2017. Early flowering as a drought escape mechanism in plants : how can it aid wheat production, Front. Plant Sci., 8: 1950. https://doi.org/10.3389/fpls.2017.01950
  • Singh, C.M., Singh, P., Tiwari, C., Purwar, S., Kumar, M., Pratap, A., Singh, S., Chugh, V., Mishra, A.K. 2021. Improving drought tolerance in mungbean [Vigna radiata (L.) Wilczek]: morpho-physiological, biochemical, and molecular perspectives, Agronomy, 11: 1534. https://doi.org/10.3390/ agronomy11081534
  • Sivakumar, R., Srividhya, S. 2016. Impact of drought on flowering, yield, and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.), Advances in Horticultural Science, 30(1): 3–12. https://doi.org/10.13128/ahs-18696
  • Souza, R.P., Machado, E.C., Silva, J.A.B., Lagoa, A.M.M.A., SIlveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery, Environmental Experimental Botany, 51: 45–56.
  • Tebeje, A., Bantte, K., Matiwos, T., Borrell, A. 2017. Characterization and association mapping for drought adaptation in Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm, Vegetos, 33: 722–743. https://doi.org/10.1007/s42535-020-00163-0
  • Wang, W., Zhang, C., Zheng, W., Lv, H., Zhou, W., Li, J., Liang, B. 2021. Seed priming with an animal-derived protein hydrolysate improves drought tolerance of tomato seeds by enhancing reserve mobilization, osmotic adjustment, and antioxidant mechanism. Research Square, 1–20. https://doi.org/10.21203/rs.3.rs-939786/v1
  • Wasae, A. 2021. Evaluation of drought stress tolerance based on selection indices in haricot bean varieties exposed to stress at different, International Journal of Agronomy, 2021: 6617874. https://doi.org/10.1155/2021/6617874
  • White, R.H., Engelke, M.C., Morton, S.J., Ruemmele, B.A. 1992. Competitive turgor maintenance in tall fescue, Crop Science, 32: 251–256.
  • Yang, X., Wang, B., Chen, L., Li, P., Cao, C. 2019. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality, Scientific Reports, 9: 3742. https://doi.org/10.1038/s41598-019-40161-0
  • Zdravkovic, J., Jovanovic, Z., Djordjevic, M., Girek, Z., Zdravkovic, M., Stikic, R. 2013. Application of stress susceptibility index for drought tolerance screening of tomato populations, Genetika, 45(3): 679–689.

Screening for drought tolerance in cowpea at the flowering stage

Yıl 2022, Cilt: 4 Sayı: 2, 236 - 268, 24.08.2022

Öz

Drought is one of the major threats to cowpea productivity in tropical countries, and understanding its impacts is germane in ensuring food security in a global context. The present study was established to screen some accessions of cowpea for drought tolerance at the flowering stage in pots under the controlled conditions of a screen house. High significant differences were observed among accessions for wilting and recovery traits, stomatal conductance, relative water content (RWC), terminal leaflet length (TLL) and width (TLW), stem girth, and yield parameters under drought stress. In addition, drought stress caused a significant reduction in morphological traits and RWC between the initial and the final values. Based on cluster and Principal Component Analysis (PCA), accessions were separated into different classes of tolerance. Direct selection for wilting traits, stomatal conductance, morphological traits, and recovery parameters showing high heritability (≥ 60%), GAM (≥ 20%), and PCA (≥ 0.4) will be effective. Hence, four major classes of tolerance were determined: AC03, AC08, and AC10 were highly susceptible. AC01 and AC04 were moderately susceptible. AC06, AC07, and AC09 were moderately tolerant, while AC02 and AC05 were the highly tolerant accessions. The moderately tolerant and the highly tolerant accessions showed a combination of superior resistance to wilting, superior recovery rates, and superior yield attributes. They also showed lower stomatal conductance, higher RWC, and low reduction of RWC, TLW, and stem girth under drought stress compared to the susceptible ones.

Kaynakça

  • Abdou Razakou, I.B.Y., Mensah, B., Addam, K.S., Akromah, R. 2013. Using morpho–physiological parameters to evaluate cowpea varieties for drought tolerance, International Journal of Agricultural Science Research, 2(5): 153–162.
  • Adusei, G., Aidoo, M.K., Kumar Srivastava, A., Asibuo, J.Y., Gaiser, T. 2021. The variability of grain yield of some cowpea genotypes in response to phosphorus and water stress under field conditions, Agronomy, 11 (28). https://doi.org/10.3390/agronomy11010028
  • Agbicodo, E.M. 2009. Genetic analysis of abiotic and biotic resistance in cowpea [Vigna unguiculata (L.) Walp], PhD Thesis. University of Wageningen, the Netherlands.
  • Agbicodo, E.M., Fatokun, C.A., Muranaka, S., Visser, R.G.F., Linden van der, C.G. 2009. Breeding drought-tolerant cowpea: constraints, accomplishments, and future prospects, Euphytica, 167: 353–370.
  • Ajayi, A.T. 2020. Relationships among drought tolerance indices and yield characters of cowpea [Vigna unguiculata (L.) Walp], International Journal of Scientific Research in Biological Sciences, 7(5): 93–103.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O. 2017b. Correlation and principal component analyses of important traits of cowpea seedlings under drought stress. 41st Genetics Society of Nigeria Conference, 15–19 October, p. 314–321.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O., Nwosu, P.O. 2020. GT biplot analysis of shoot traits indicating drought tolerance in cowpea [Vigna unguiculata ( L.) Walp] accessions at the vegetative stage, International Journal of BioSciences and Technology, 13(2): 18–33. https://doi.org/10.5281/zenodo.4019163
  • Ajayi, A.T., Gbadamosi, A.E., Osekita, O.S., Taiwo, B.H., Fawibe, A. B., Adedeji, I., Omisakin, T. 2022. Genotype × environment interaction and adaptation of cowpea genotypes across six planting seasons, Frontiers in Life Sciences and Related Technologies, 3: 7–15. https://doi.org/10.51753/flsrt.1036051
  • Ajayi, A.T., Olumekun, V.O., Gbadamosi, A.E. 2017a. Estimates of genetic variation among drought-tolerant traits of cowpea at the seedling stage, International Journal of Plant Research, 7(2): 48–57.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O. 2018. Screening for Drought Tolerance in Cowpea [Vigna unguiculata (L.) Walp] at the seedling stage under screen house condition, International Journal of BioSciences and Technology, 11(1): 1–19.
  • Alidu, M.S., Asante, I.K., Tongoona, P., Ofori, K., Danquah, A., Padi, F.K. 2019. Development and screening of cowpea recombinant inbred lines for seedling drought tolerance, Journal of Plant Breeding and Crop Science, 11(1): 1–10. https://doi.org/10.5897/jpbcs2018.0768
  • Al-Naggar, A.M.M., Soliman, S.M., Hashimi, M.N. 2011. Tolerance to drought at flowering stage of 28 maize hybrids and populations, Egyptian Journal of Plant Breeding, 15(1): 69–87.
  • Al-Rawi, I.M.D. 2016. Study of drought tolerance indices in some bread and durum wheat cultivars, Jordan Journal of Agricultural Science, 12(4): 1125–1139.
  • Anyia, A.O., Herzog, H. 2004a. Genotypic variability in drought performance and recovery in cowpea under controlled environment, Journal of Agronomy and Crop Science, 190: 151–159.
  • Anyia, A.O., Herzog, H. 2004b. Water-use efficiency, leaf area and leaf gas exchange of cowpea under mid-season drought, European Journal of Agronomy, 20: 327–339.
  • Badu-Apraku, B., Obesesan, O., Abiodun, A., Obeng-bio, E. 2021. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments, Agronomy, 11(831). https://doi.org/10.3390/ agronomy11050831
  • Bibi, A., Sadaqat, H.A., Akram, H.M., Mohammed, M.I. 2010. Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition, International Journal of Agricultural Biology, 12: 451–455.
  • Bibi, A., Sadaqat, H.A., Tahir, H.N., Akram, H.M. 2012. Screening of sorghum (Sorghum bicolor Var. Moench) for drought tolerance at seedling stage in polyethylene glycol, The Journal of Animal and Plant Sciences, 22(3): 671–678.
  • Choudhary, R.S., Biradar, D.P., Katageri, I.S. 2021. Evaluation of sorghum RILs for moisture stress tolerance using drought tolerance indices, The Pharma Innovation Journal, 10(4): 39–45.
  • Cirillo, V., Amelia, V.D., Esposito, M., Amitrano, C., Carillo, P., Carputo, D., Maggio, A. 2021. Anthocyanins are key regulators of drought stress tolerance in tobacco, Biology, 10(139). https:// doi.org/10.3390/biology10020139
  • Ezin, V., Gloria, A., Tosse, C., Chabi, B., Ahanchede, A. 2021. Adaptation of cowpea [Vigna unguiculata (L.) Walp] to water deficit during vegetative and reproductive phases using physiological and agronomic characters, International Journal of Agronomy, 2021(96653122021). https://doi.org/10.1155/2021/9665312
  • Fatokun, C.A., Boukar, O., Muranaka, S. 2012. Evaluation of cowpea [Vigna unguiculata (L.) Walp] germplasm lines for tolerance to drought, Plant Genetic Resources: Characterization and Utilization, 10: 171–176. https://doi.org/10.1017/S1479262112000214
  • Garg, B.K., Burman, U., Kathju, S. 2005. Comparative water relations, photosynthesis and nitrogen metabolism of arid legumes under water stress, Journal of Plant Biology, 32: 83–93.
  • Garrity, D.P., Toole, J.C.O. 1994. Screening rice for drought resistance at the reproductive phase, Field Crops Research, 39: 99–110.
  • Gomes, A.M.F., Rodrigues, A.P., António, C., Rodrigues, A.M., Leitão, A.E., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A.I., Ramalho, J.C. 2020. Drought response of cowpea [Vigna unguiculata (L.) Walp] landraces at leaf physiological and metabolite profile levels, Environmental and Experimental Botany, 175: 104060. https://doi.org/10.1016/j.envexpbot.2020.104060
  • Goufo, P., Moutinho-Pereira, J.M., Jorge, T.F., Correia, C.M., Oliveira, M.R., Rosa, E.A.S., António, C., Trindade, H. 2017. Cowpea [Vigna unguiculata (L.) Walp] metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield, Front. Plant Sci, 8: 586. https//doi.org/10.3389/fpls.2017.00586
  • Hamidou, F., Zombre, G., Braconnier, S. 2007. Physiological and biochemical responses of cowpea genotypes to water stress under glasshouse and field conditions. Journal of Agronomy and Crop Science, 193: 229–237.
  • Hammer, O., Harper, D.A.T., Ryan, P.D. 2001. Paleontological statistical software package for data analysis, Palaeontologia Electronica, 4(1): 9.
  • Harshani, H. K. A., Fernando, K.M.C. 2021. Root system attributes, morphology, and yield of cowpea [Vigna unguiculata (L.) Walp] under moisture stress, Tropical Agricultural Research and Extension, 24(3). https://doi.org/10.4038/tare.v24i3.5512
  • Hefny, M.M. 2013. Use of genetic variability estimates and interrelationships of agronomic and biochemical characters for selection of lupin genotypes under different irrigation regimes, African Crop Science Journal, 21(1): 97–108.
  • Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., Duangpan, S. 2021. Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in Southern Thailand, Plants, 10: 2565. https://doi.org/10.3390/plants10122565
  • Ibitoye, D.O. (2015). Genetic analysis of drought tolerance in cowpea [Vigna unguiculata (L.) Walp]. Ph.D. Thesis. School of Agriculture, University of Ghana, Legon, Ghana. IBPGR. 1983. International board for plant genetic resources cowpea descriptors. Rome, Italy.
  • Khan, S. U., Zheng, Y., Chachar, Z., Zhang, X., Zhou, G., Zong, N. 2021. Dissection of maize drought tolerance at the flowering stage using genome-wide association study, Research Square, https://doi.org/10.21203/rs.3.rs-1187674/v1
  • Khatun, M., Sarkar, S., Era, F.M., Islam, A.K., Anwar, P., Fahad, S., Datta, R., Islam, A.K. 2021. Drought stress in grain legumes: effects, tolerance mechanisms, and management, Agronomy, 11: 2374. https://doi.org/10.3390/ agronomy11122374 1–35
  • Kumar, A., Sharma, K.D., Kumar, D. 2008. Traits for screening and selection of cowpea genotypes for drought tolerance at early stages of breeding, Journal of Agriculture and Rural Development in the Tropics and Subtropics, 109(2): 191–199.
  • Lemma, A.Z., Hailemariam, F.M., Abebe, K.A. 2021. Evaluation of durum wheat (Triticum turgdium var. durum) genotypes for drought tolerance using morpho-agronomic traits, Journal of Plant Breeding and Crop Science, 13: 216–225. https://doi.org/10.5897/JPBCS2021.0956
  • Leng, G., Hall, J. 2019. Science of the total environment crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future, Science of the Total Environment, 654: 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434
  • Li, R., Zeng, Y., Xu, J., Wang, Q., Wu, F., Cao, M. 2015. Genetic variation for maize root architecture in response to drought stress at seedling stage, Breeding Science, 65: 298–307.
  • Mai–kodomi, Y., Singh, B.B., Myers, O., Yopp, J.H., Gibson, P.J., Terao, T. 1999. Two mechanisms of drought tolerance in cowpea. Indian Journal of Genetics, 59(3): 309–316.
  • Mathews, R.B., Azam-Ali, S.N., Peacock, J.M. 1990. Response of four sorghum lines to mid-season drought, Field Crops Responses, 5: 297–308.
  • Matsui, T., Singh, B.B. 2003. Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture, 39: 29–38.
  • Mitchell, J.H., Saimhan, D., Wamala, M.H., Risimeri, J.B., Chinyamakobru, E., Henderson, S.A., Fukai, S. 1998. The use of seedling leaf death score for evaluation of drought resistance in rice, Field Crops Research, 55: 129–139.
  • Moloi, M.J., van der Merwe, R. 2021. Drought tolerance responses in vegetable-type soybean involve a network of biochemical mechanisms at the flowering and pod-filling stages, Plants, 10: 1502. https://doi.org/10.3390/plants10081502
  • Muchero, W., Ehlers, J.D., Roberts, P.A. 2008. Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes, Crop Science, 48: 541–552.
  • Mukeshimana, G. 2013. Dissecting the genetic complexity of drought tolerance mechanisms in common bean (Phaseolus vulgaris L.). PhD Dissertation. Michigan State University, Department of Crop and Soil Sciences, Michigan, United States of America.
  • Mukeshimana, G., Lasley, A.L., Loescher, W.H., Kelly, J.D. 2014. Identification of shoot traits related to drought tolerance in common bean seedlings, Journal of American Society of Horticultural Science, 139(3): 299–309.
  • Naeem, M.K., Ahmed, M.S., Noreen, M.K.N., Iqbal, M.S. 2015. Estimation of genetic components for plant growth and physiological traits of wheat (Triticum aestivum L.) under normal and stress conditions, SAARC Journal of Agriculture, 13(1): 90–98.
  • Nkomo, G.V., Sedibe, M.M., Mofokeng, M.A. 2020. Phenotyping cowpea accessions at the seedling stage for drought tolerance using the pot method, bioRxiv Preprint. https://doi.org/10.1101/2020.07.10.196915.
  • Nkouannessi, M. 2005. The genetic, morphological, and physiological evaluation of African cowpea genotypes. MSc Dissertation. University of Free State, Faculty of Natural and Agricultural Sciences, Bloemfontein, South Africa.
  • Nunes, C., Moreira, R., Pais, I., Semedo, J., Sim, F., Veloso, M.M., Scotti-campos, P. 2022. Cowpea physiological responses to terminal drought–comparison between four landraces and a commercial variety, Plants, 11: 593. https://doi.org/10.3390/ plants110505
  • Ogbaga, C.C., Stepien, P., Johnson, G.N. 2014. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought, Physiologia Plantarum, https://doi.org/10.1111/ppl.12196
  • Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., Roessner, U., Dolferus, R. 2021. Reproductive stage drought tolerance in wheat: the importance of stomatal conductance and plant growth regulators, Genes, 12: 1742. https://doi.org/ 10.3390/genes121117
  • Panda, D., Behera, P.K., Mishra, S., Mishra, B.S. 2021. Differential drought tolerance responses in short-grain aromatic rice germplasms from Koraput valley of Eastern Ghats of India, Plant Physiology Reports. https://doi.org/10.1007/s40502-021-00638-5
  • Pungulani, L.L. M., Miller, J.P., Williams, W.M. 2012. Screening cowpea (Vigna unguiculata) germplasm for canopy maintenance under water stress, Agronomy New Zealand, 42: 23–32.
  • Pungulani, L.M., James, P.M., Warren, M.W., Mackson, B. 2013. Improvement of leaf wilting scoring system in cowpea [Vigna unguiculata (L.) Walp]: from qualitative scale to quantitative index, Australian Journal of Crop Science, 7(9): 1262–1269.
  • Ries, L.L., Purcell, L.C., Carter, T.E., Edwards, J.T., King. C.A. 2012. Physiological traits contributing to differential canopy wilting in soybean under drought, Crop Science, 52: 272–281.
  • Sabiel, S.A.I., Abdumula, A.A., Bashir, E.M.A., Khan, S., Yinying, S., Yank, Y., Baloch, S.U., Bashir, W. 2014. Genetic variation of plant height and stem diameter traits in maize (Zea mays L.) under drought stress at different growth stages, Journal of Natural Sciences Research, 4(23): 116–122.
  • Salami, A.E., Adegoke, S.A.O., Adegbite, O.A. 2007. Genetic variability among maize cultivars grown in Ekiti State, Nigeria, Middle-East Journal of Scientific Research, 2(1): 9–13.
  • Samson, H., Helmut, H. 2007. Drought effect on yield, leaf parameters, and evapotranspiration efficiency of cowpea. Conference of International Agricultural Research for Development, 9–11 October 2007, p. 5.
  • Santos, R., Carvalho, M., Rosa, E., Carnide, V., Castro, I. 2020. Root and agro-morphological traits performance in cowpea under drought stress, Agronomy, 10: 1604. http://dx.doi.org/10.3390/agronomy10101604
  • Shanmugam, S., Boyett, V.A., Id, M.K. 2021. Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene, PlosOne, 16(10): e0258171. https://doi.org/10.1371/journal.pone.0258171
  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., Groot, S. De, Soole, K., Langridge, P. 2017. Early flowering as a drought escape mechanism in plants : how can it aid wheat production, Front. Plant Sci., 8: 1950. https://doi.org/10.3389/fpls.2017.01950
  • Singh, C.M., Singh, P., Tiwari, C., Purwar, S., Kumar, M., Pratap, A., Singh, S., Chugh, V., Mishra, A.K. 2021. Improving drought tolerance in mungbean [Vigna radiata (L.) Wilczek]: morpho-physiological, biochemical, and molecular perspectives, Agronomy, 11: 1534. https://doi.org/10.3390/ agronomy11081534
  • Sivakumar, R., Srividhya, S. 2016. Impact of drought on flowering, yield, and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.), Advances in Horticultural Science, 30(1): 3–12. https://doi.org/10.13128/ahs-18696
  • Souza, R.P., Machado, E.C., Silva, J.A.B., Lagoa, A.M.M.A., SIlveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery, Environmental Experimental Botany, 51: 45–56.
  • Tebeje, A., Bantte, K., Matiwos, T., Borrell, A. 2017. Characterization and association mapping for drought adaptation in Ethiopian sorghum [Sorghum bicolor (L.) Moench] germplasm, Vegetos, 33: 722–743. https://doi.org/10.1007/s42535-020-00163-0
  • Wang, W., Zhang, C., Zheng, W., Lv, H., Zhou, W., Li, J., Liang, B. 2021. Seed priming with an animal-derived protein hydrolysate improves drought tolerance of tomato seeds by enhancing reserve mobilization, osmotic adjustment, and antioxidant mechanism. Research Square, 1–20. https://doi.org/10.21203/rs.3.rs-939786/v1
  • Wasae, A. 2021. Evaluation of drought stress tolerance based on selection indices in haricot bean varieties exposed to stress at different, International Journal of Agronomy, 2021: 6617874. https://doi.org/10.1155/2021/6617874
  • White, R.H., Engelke, M.C., Morton, S.J., Ruemmele, B.A. 1992. Competitive turgor maintenance in tall fescue, Crop Science, 32: 251–256.
  • Yang, X., Wang, B., Chen, L., Li, P., Cao, C. 2019. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality, Scientific Reports, 9: 3742. https://doi.org/10.1038/s41598-019-40161-0
  • Zdravkovic, J., Jovanovic, Z., Djordjevic, M., Girek, Z., Zdravkovic, M., Stikic, R. 2013. Application of stress susceptibility index for drought tolerance screening of tomato populations, Genetika, 45(3): 679–689.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Abiola Toyin Ajayi Bu kişi benim

Yayımlanma Tarihi 24 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ajayi, A. T. (2022). Screening for drought tolerance in cowpea at the flowering stage. International Journal of Science Letters, 4(2), 236-268.
AMA Ajayi AT. Screening for drought tolerance in cowpea at the flowering stage. IJSL. Ağustos 2022;4(2):236-268.
Chicago Ajayi, Abiola Toyin. “Screening for Drought Tolerance in Cowpea at the Flowering Stage”. International Journal of Science Letters 4, sy. 2 (Ağustos 2022): 236-68.
EndNote Ajayi AT (01 Ağustos 2022) Screening for drought tolerance in cowpea at the flowering stage. International Journal of Science Letters 4 2 236–268.
IEEE A. T. Ajayi, “Screening for drought tolerance in cowpea at the flowering stage”, IJSL, c. 4, sy. 2, ss. 236–268, 2022.
ISNAD Ajayi, Abiola Toyin. “Screening for Drought Tolerance in Cowpea at the Flowering Stage”. International Journal of Science Letters 4/2 (Ağustos 2022), 236-268.
JAMA Ajayi AT. Screening for drought tolerance in cowpea at the flowering stage. IJSL. 2022;4:236–268.
MLA Ajayi, Abiola Toyin. “Screening for Drought Tolerance in Cowpea at the Flowering Stage”. International Journal of Science Letters, c. 4, sy. 2, 2022, ss. 236-68.
Vancouver Ajayi AT. Screening for drought tolerance in cowpea at the flowering stage. IJSL. 2022;4(2):236-68.