Research Article
BibTex RIS Cite

Effect of Rhus coriaria L. against CRAB infection

Year 2025, Volume: 12 Issue: 4, 847 - 860, 05.12.2025
https://doi.org/10.21448/ijsm.1617867
https://izlik.org/JA78SD87NL

Abstract

Spread of carbapenem-resistant Acinetobacter baumannii (CRAB) threatens the public health. Alternative antibiotic agents with fewer side effects are urgently needed due to the increased resistance to colistin, one of the last resort treatments worldwide. This study examines the antibacterial and potential anti-inflammatory effects of Rhus coriaria L. aqueous extract in a mouse model. Five groups of Balb/c mice were used in this study. Group I served as negative control. Group II was given the Rhus coriaria extract at 800 mg/kg only. Group III was intraperitoneally infected with 2 x 109 CFU/mL CRAB. Group IV was similarly infected with CRAB and treated with the extract at 800 mg/kg. Group V was treated with 5 mg/kg colistin. Treatment was administered intraperitoneally over 7 days. Hematological and biochemical analysis including complete blood count, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), analyses included C-reactive protein and creatinine concentration measurements, complemented by histological examinations of hepatic and renal tissue. Systemic CRAB infection included significant biochemical, hematological and histopathological abnormalities. While, colistin effectively eradicated the CRAB infection, it concurrently elicited nephrotoxic effects. Compared to the infected group, Rhus coriaria was effective in treating the infection with no toxicity, where the GOT, GPT, and Creatinine levels in the treated groups decreased by 42.94% (p-value 0.001), 28.20% (p-value 0.006), and 22.03% (p-value 0.03), respectively. Our results demonstrated the safety and effectiveness of the Rhus coriaria extract in treating systemic CRAB infections, offering a safe substitute for the nephrotoxic colistin.

References

  • Agnello, L., Giglio, R.V., Bivona, G., Scazzone, C., Gambino, C.M., Iacona, A., Ciaccio, A. M., Lo Sasso, B., & Ciaccio, M. (2021). The value of a complete blood count (CBC) for sepsis diagnosis and prognosis. Diagnostics, 11(10), 1881.
  • AIN, Q.U., Naeem, S., & Naim, A. (2022). Antibacterial activity of ethanolic plant extracts on multidrug-resistant acinetobacter baumannii clinical isolates. Pak. J. Bot., 54(5), 1977–1980.
  • Akrayi, H.F.S., & Abdullrahman, Z.F.A. (2013). Screening in vitro and in vivo the antibacterial activity of Rhus coriaria extract against S. aureus. IJRRAS, 15(3), 390–397.
  • Aksoy, G., Ozyazici-Ozkan, S., Tezel, G., Dayar, G., Köşker, M., & Doğan, C. (2020). Assessment of colistin related side effects in premature neonates. Turkish Journal of Pediatrics, 62(5).
  • Ali, O., Adamu, L., Abdullah, F., Abba, Y., & Hamzah, H. (2015). Haematological and histopathological vicissitudes following oral inoculation of graded doses of Pasteurella multocida type B: 2 and its lipopolysaccharide in mice. J. Veterinar. Sci. Technol., 6, 220.
  • Allemailem, K.S. (2023). Enhanced activity of Ellagic acid in lipid nanoparticles (EA-liposomes) against Acinetobacter baumannii in immunosuppressed mice. Saudi Journal of Biological Sciences, 30(8), 103707.
  • Allemailem, K.S., Almatroudi, A., Alrumaihi, F., Aljaghwani, A., Alnuqaydan, A.M., Khalilullah, H., Younus, H., El-Kady, A.M., Aldakheel, F.M., & Khan, A.A. (2021). Antimicrobial, Immunomodulatory and Anti-Inflammatory Potential of Liposomal Thymoquinone: Implications in the Treatment of Bacterial Pneumonia in Immunocompromised Mice. Biomedicines, 9(11), 1673.
  • Alotaibi, F.M., Alshehail, B.M., Al Jamea, Z.A., Joseph, R., Alanazi, A.H., Alhamed, N.A., & Alqarni, R.S. (2022). Incidence and risk factors of colistin-induced nephrotoxicity associated with the international consensus guidelines for the optimal use of the polymyxins: A retrospective study in a tertiary Care Hospital, Saudi Arabia. Antibiotics, 11(11), 1569.
  • Amaral, S.C., Pruski, B.B., de Freitas, S.B., Allend, S.O., Ferreira, M.R.A., Moreira, C., Pereira, D.I.B., Junior, A.S.V., & Hartwig, D.D. (2020). Origanum vulgare essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant Acinetobacter baumannii. Molecular Biology Reports, 47, 9615–9625.
  • Atta, S., Waseem, D., Fatima, H., Naz, I., Rasheed, F., & Kanwal, N. (2023). Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi Journal of Biological Sciences, 30(3), 103576.
  • Balkhair, A., Al-Muharrmi, Z., Al’Adawi, B., Al Busaidi, I., Taher, H., Al-Siyabi, T., Al Amin, M., & Hassan, K. (2019). Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. International Journal of Infectious Diseases, 85, 10–15.
  • Ballouz, T., Aridi, J., Afif, C., Irani, J., Lakis, C., Nasreddine, R., & Azar, E. (2017). Risk factors, clinical presentation, and outcome of Acinetobacter baumannii bacteremia. Frontiers in Cellular and Infection Microbiology, 7, 156.
  • Bintang, M.A.K.M., Nopparat, J., & Srichana, T. (2023). In vivo evaluation of nephrotoxicity and neurotoxicity of colistin formulated with sodium deoxycholate sulfate in a mice model. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(11), 3243–3252.
  • Dai, C., Li, J., Tang, S., Li, J., & Xiao, X. (2014). Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrobial Agents and Chemotherapy, 58(7), 4075–4085.
  • Dai, C., Tang, S., Li, J., Wang, J., & Xiao, X. (2014). Effects of Colistin on the Sensory Nerve Conduction Velocity and F‐wave in Mice. Basic & Clinical Pharmacology & Toxicology, 115(6), 577–580.
  • Dong, F., Wang, B., Zhang, L., Tang, H., Li, J., & Wang, Y. (2012). Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS One, 7(11), e51060.
  • El-Elimat, T., Al-Tal, B.K., Al-Sawalha, N.A., Alsaggar, M., Nusair, S.D., Al‐Qiam, R., Al Sharie, A.H., El Hajji, F., & Hamadneh, L. (2023). Sumc (Rhus coriaria L.) fruit ameliorates paracetamol-induced hepatotoxicity. Food Bioscience, 52, 102488.
  • Freire, M.P., Pierrotti, L.C., Oshiro, I.C.V.S., Bonazzi, P.R., Oliveira, L.M. de, Machado, A.S., Van Der Heijden, I.M., Rossi, F., Costa, S.F., & D’Albuquerque, L.A.C. (2016). Carbapenem‐resistant A cinetobacter baumannii acquired before liver transplantation: Impact on recipient outcomes. Liver Transplantation, 22(5), 615–626.
  • Ghane, M., Babaeekhou, L., & Shams, M. (2022). Antimicrobial activity of Rhus Coriaria L. and Salvia Urmiensis bunge against some food-borne pathogens and identification of active components using molecular networking and docking analyses. Food Science and Technology, 42, e08221.
  • Granata, G., Taglietti, F., & Petrosillo, N. (2023). Tackling Acinetobacter baumannii. Journal of Clinical Medicine, 12(16), 5168.
  • Itani, R., Khojah, H.M., Karout, S., Rahme, D., Hammoud, L., Awad, R., Abu-Farha, R., Mukattash, T.L., Raychouni, H., & El-Lakany, A. (2023). Acinetobacter baumannii: Assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrobial Resistance & Infection Control, 12(1), 136.
  • Lee, H., Krishnan, M., Kim, M., Yoon, Y.K., & Kim, Y. (2022). Rhamnetin, a natural flavonoid, ameliorates organ damage in a mouse model of carbapenem-resistant Acinetobacter baumannii-induced sepsis. International Journal of Molecular Sciences, 23(21), 12895.
  • Lo Vecchio, G., Cicero, N., Nava, V., Macrì, A., Gervasi, C., Capparucci, F., Sciortino, M., Avellone, G., Benameur, Q., & Santini, A. (2022). Chemical Characterization, Antibacterial Activity, and Embryo Acute Toxicity of Rhus coriaria L. Genotype from Sicily (Italy). Foods, 11(4), 538.
  • Nguyen, M., & Joshi, S. (2021). Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: A scientific review. Journal of Applied Microbiology, 131(6), 2715–2738.
  • Onyishi, G.C., Nwosu, G.C., & Eyo, J.E. (2020). In vivo studies on the biochemical indices of Plasmodium berghei infected mice treated with Alstonia boonei leaf and root extracts. African Health Sciences, 20(4), 1698–1709.
  • Oweis, A.O., Zeyad, H.N., Alshelleh, S.A., & Alzoubi, K.H. (2022). Acute kidney injury among patients with multi-drug resistant infection: A study from Jordan. Journal of Multidisciplinary Healthcare, 2759–2766.
  • Park, S.Y., Choo, J.W., Kwon, S.H., Yu, S.N., Lee, E.J., Kim, T.H., Choo, E.J., & Jeon, M.H. (2013). Risk factors for mortality in patients with Acinetobacter baumannii bacteremia. Infection & Chemotherapy, 45(3), 325.
  • Rafei, R., Pailhoriès, H., Hamze, M., Eveillard, M., Mallat, H., Dabboussi, F., Joly-Guillou, M.-L., & Kempf, M. (2015). Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using bla OXA-51-like sequence based typing. BMC Microbiology, 15, 1–7.
  • Rossi, I., Royer, S., Ferreira, M.L., Campos, P.A., Fuga, B., Melo, G.N., Machado, L.G., Resende, D.S., Batistão, D., & Urzedo, J.E. (2019). Incidence of infections caused by carbapenem-resistant Acinetobacter baumannii. American Journal of Infection Control, 47(12), 1431–1435.
  • Shah, A., Tauseef, I., Yameen, M.A., Ali, M.B., Haq, S., Elmnasri, K., Al-Harbi, M.S., Haleem, S.K., Hedfi, A., & Ben-Attia, M. (2023). Histopathological and hematological investigations of mice model inoculated with nickel oxide nanoparticles and bacterial pathogens: In-vitro and in-vivo antibacterial studies. Journal of King Saud University-Science, 35(1), 102456.
  • Silva-Santana, G., Bax, J., Fernandes, D., Bacellar, D., Hooper, C., Dias, A., Silva, C., de Souza, A., Ramos, S., & Santos, R. (2020). Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus. Animal Models and Experimental Medicine, 3 (4), 304–315.
  • Teixido-Trujillo, S., Luis-Lima, S., López-Martínez, M., Navarro-Díaz, M., Díaz-Martín, L., Escasany-Martínez, E., Gaspari, F., & Rodríguez-Rodríguez, A.E. (2023). Measured GFR in murine animal models: Review on methods, techniques, and procedures. Pflügers Archiv-European Journal of Physiology, 475(11), 1241–1250.
  • Vahid-Dastjerdi, E., Sarmast, Z., Abdolazimi, Z., Mahboubi, A., Amdjadi, P., & Kamalinejad, M. (2014). Effect of Rhus coriaria L. water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iranian Journal of Microbiology, 6(4), 269.
  • Vasconcelos, N.G., Vaz, M.S.M., Radai, J.A.S., Kassuya, C.A.L., Formagio, A.S.N., Graciani, F.S., Leal, M.L., Oliveira, R.J., da Silva, K.E., & Croda, J. (2020). Antimicrobial activity of plant extracts against carbapenem-producing Klebsiella pneumoniae and in vivo toxicological assessment. Journal of Toxicology and Environmental Health, Part A, 83(23–24), 719–729.
  • Wang, X., Jiang, J., Wei, C., Yang, W., Chen, J., Dong, X., Wan, H., & Yu, D. (2023). Utility of sTREM-1 biomarker and hcp Gene for Identification of Acinetobacter baumannii Colonization and Infection in Lung. Shock, 60(3), 354–361.
  • Xie, C., Wang, P., Wu, H., Hu, X., Nie, T., Li, X., Pang, P., Li, G., Lu, Y., & Yang, X. (2023). Protective effect of the novel cyclic peptide ASK0912 on mice with sepsis induced by Acinetobacter baumannii. Biomedicine & Pharmacotherapy, 164, 114965.
  • Yan, Q., Hao, S., Shi, F., Zou, Y., Song, X., Li, L., Li, Y., Guo, H., He, R., & Zhao, L. (2021). Epigallocatechin-3-gallate reduces liver and immune system damage in Acinetobacter baumannii-loaded mice with restraint stress. International Immunopharmacology, 92, 107346.
  • Zaidat, S.A.E., Mouhouche, F., Babaali, D., Abdessemed, N., De Cara, M., & Hammache, M. (2020). Nematicidal activity of aqueous and organic extracts of local plants against Meloidogyne incognita (Kofoid and White) Chitwood in Algeria under laboratory and greenhouse conditions. Egyptian Journal of Biological Pest Control, 30(1), 1–8.
There are 38 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Microbiology (Other)
Journal Section Research Article
Authors

Israa Assaf This is me 0009-0000-1187-7164

Miriam Al Battal This is me 0000-0001-7979-7507

Jamilah Borjac 0000-0002-7722-5617

Submission Date January 11, 2025
Acceptance Date April 22, 2025
Early Pub Date September 1, 2025
Publication Date December 5, 2025
DOI https://doi.org/10.21448/ijsm.1617867
IZ https://izlik.org/JA78SD87NL
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Assaf, I., Al Battal, M., & Borjac, J. (2025). Effect of Rhus coriaria L. against CRAB infection. International Journal of Secondary Metabolite, 12(4), 847-860. https://doi.org/10.21448/ijsm.1617867
International Journal of Secondary Metabolite

e-ISSN: 2148-6905