Research Article
BibTex RIS Cite

The phenolic content, antioxidant and cytotoxic activities of Origanum sipyleum from Turkey

Year 2018, , 343 - 352, 29.12.2018
https://doi.org/10.21448/ijsm.468418

Abstract

Origanum
sipyleum
is a medicinal plant species belonging to the genus Origanum and traditionally vegetative
parts of this plant have been used as medicinal tea or food additives.
The current study has been designed to examine the
antioxidant, cytotoxic activities and total phenolic, flavonoid and tannin
contents as well as the chemical composition of the ethanol extract of O. sipyleum. The antioxidant capacity of
O. sipyleum was determined using six
complementary methods,
β-carotene/linoleic acid and phosphomolybdenum
test systems
, radical scavenging (ABTS and DPPH), metal chelating and reducing power assays. The
phenolics were identified using HPLC.
A brine shrimp (Artemia salina L.) lethality
test was used for determining
cytotoxic activity. The ethanol
extract exhibited high DPPH free radical scavenging (DPPH, IC50:102.75
µg/mL),
ABTS radical scavenging (ABTS, IC50:88.64
µg/mL), metal chelating (20.68 %) and reducing power capacity (0.51 mg/mL). The
antioxidant activities of the O. sipyleum
with β-carotene/Linoleic acid and phosphomolybdenum were calculated as 85.59 %
and 62.95 µg/mg respectively.
The phenolic contents of the ethanol extract were evaluated
using HPLC and determined
major phenolics:
caffeic acid, epicatechin and 2,5 dihydroxybenzoic. Furthermore, to gether with
cytotoxic activity (LC50, 327.414
µg/mL) O. sipyleum is also rich in total
phenolic, flavonoid and tannin contents were 203.57 ± 4.62 mgGAE/g, 46.98 ±
0.34 mgQE/g and 34.55 ± 0.56 mgCE/g respectively. These results could provide addition information for the
potential use of this medicinal plant as a food ingredient and as a natural
antioxidant in the diet, as well as for the pharmaceutical industry.

References

  • [1] Arouma, O.I. (2010). Free radicals, oxidative stress and antioxidants in human health and diseases. J. Am. Oil Chem. Soc., 75, 199-212.
  • [2] Lee, J., Koo, N., and Min, D.B. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comp. Rev. Food Sci. Food Saf., 3, 21–33.
  • [3] Aktumsek, A., Zengin, G., Guler, G.O., and Cakmak Y.S. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol., 55, 290-296.
  • [4] Barlow, S. and Schlatter, J. (2010). Risk assassment of carcinogens in food. Toxicol. Appl. Pharm., 243, 180-190.
  • [5] Gu, L., Wu, T., and Wang, Z. (2009). TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT Food Sci Technol., 42, 131-136.
  • [6] Nickavar, B. and Esbati, N. (2012). Evaluation of the Antioxidant Capacity and Phenolic Content of three Thymus species. J Acupunct Meridian Stud., 5(3), 119-125.
  • [7] Loziene, K., Venskutonis, P.R., Sipailiene A. and Labokas J. (2007). Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem.,103, 546-549.
  • [8] Nakipoglu, M., Ozturk Urek, R., Ayar Kayali, H., and Tarhan, L. (2007). Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem., 104, 630-635.
  • [9] Ozkan, G., Sagdıç, O., Ekici, L., Ozturk, I., and Özcan, M.M. (2007). Phenolic compounds of Origanum sipyleum L. extract, and its antioxidant and antibacterial activities. J Food Lipid, 14, 157-169.
  • [10] Vazirian, M., Mohammadi, M., Farzaei, M.H.,. Amin, G., and Amanzadeh, Y. (2015) Chemical composition and antioxidant activity of Origanum vulgare subsp. vulgare essential oil from Iran. Research Journal of Pharmacognosy, 2(1), 41-46
  • [11] Coccimiglio, J., Alipour ,M., Jiang, Z.H., Gottardo, C., and Suntres, Z. .(2016). Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents, Oxid Med Cell Longev. http://dx.doi.org/10.1155/2016/1404505.
  • [12] Stanojević, L.P.,. Stanojević, J.S., Cvetković, D.J. and Ilić, D.P. (2016). Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biologica Nyssana, 7(2), 131-139.
  • [13] Taskin, T., Sadikoglu, N., Birteksoz-Tan, S., and Bitis, L. (2017). In vitro screening antioxidant and antimicrobial properties of five commercial Origanum species from Turkey. Indian J. Tradit Knowle., 16(4), 568-575.
  • [14] Karagöz, A., Artun, F.T., Özcan, G., Melikoğlu, G., Anıl, S., Kültür, S., and Sütlüpınar, N. (2015) In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol Biotechnol Equip., 29(6), 1184-1189.
  • [15] Shalaby, E.A. and Shanab S.M.M. (2013) Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J Geo Marine Sci., 42(5), 556-564.
  • [16] Meriga, B., Mopuri, R. and Krishna, T.M. (2012). Insectisal antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med.,. 5(5), 391-395.
  • [17] Amin, I. and Tan S.H. (2002). Antioxidant activity of selected seaweeds. Malays J Nut., 8, 167-177.
  • [18] Prieto, P., Pineda M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem., 269(2), 337–341.
  • [19] Kaska, A., Deniz N, Cicek M. and. Mammadov R. (2018). Evaluation of antioxidant properties, phenolic compounds, anthelmintic, and cytotoxic activities of various extracts isolated from Nepeta cadmea: an endemic plant for Turkey. J Food Sci., 83(6), 1552-1559.
  • [20] Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6), 307-316.
  • [21] Karpagasundari, C. and Kulothungan, S. (2014). Free radical scavenging activity of Physalis minima Linn. leaf extract (PMLE). J Med Plants Stud., 2(4), 59-64.
  • [22] Slinkard, K. and Singleton V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am J Enol Vitic., 28, 49–55.
  • [23] Arvouet-Grand A, Vennat B, Pourrat A, Legret P. (1994). Standardization of a propolis extract and identification of the main constituents. J Pharm de Belg., 49, 462-8.
  • [24] Broadhurst, R.B., and Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. J Sci Fd Agric., 29, 788-794.
  • [25] Caponio, F., Alloggio, V. and Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chem., 64, 203-209.
  • [26] Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen L.B., Nichols, D.E. and McLaughlin., J.L. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Med., 45, 31-34.
  • [27] Du, G.R., Li, M.J., Ma, F.W., and Liang, D. (2009) Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem., 113, 557-562.
  • [28] Zengin, G. and Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci an endemic plant to Turkey. Afr J Tradit Complement Altern Med., 11, 481–488.
  • [29] Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen M. (1999). Antioxidant activity of plant extracts containing phenolic compound. J. Agric. Food Chem., 47, 3954-3962.
  • [30] Maisuthisakul, P., Suttajit M. and Pongsawatmanit R. (2007) Assessment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chem., 100(4), 1409-1418.
  • [31] Roby, M.H.H., Sarhan M.A., Selim K.A.H. and. Khalel K.I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod., 43, 827-831.
  • [32] Lagouri, V., Guldas, M., and Gurbuz, O. (2011). In vitro Antioxidant/Free Radical Scavenging and Antibacterial Properties of Endemic Oregano and Thyme Extracts from Greece. Food Sci. Biotechnol., 20(6), 1487-1493
  • [33] Jayaprakasha, G.K., Selvi, T. and Sakariah, K.K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res.Int., 36 (2), 117-122..
  • [34]Duh, P.D., Tu, Y.Y., and Yen, G.C. (1999) Antioxidant activity of water extract of Harug Jyur (Chrysanthemum morifolium Ramat). Lebensmittel Wissenchaft und Technologie. 32(5), 269-277.
  • [35] Gordon, MH. (1990) The mechanism of antioxidant action in vitro. In B. J. F. Hudson (Ed.), Food antioxidants, 1–18. London/New York: Elsevier.
  • [36] Al-Dabbas, M.M. (2017). Antioxdant activity of different extracts from the aerial part of Moringa peregrina (Forssk.) Fiori, from Jordan. Pak J Pharm Sci., 30(6), 2151-2157.
  • [37] Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945-948.
  • [38] Zengin, G., Uysal, S., Ceylan, R., and Aktumsek, A. (2015). Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phtochemical study. Ind Crop Prod., 70, 1-6.
  • [39] Uysal, S, Zengin, G. and Aktümsek, A. (2016). Antioxidant properties and enzyme inhibitory effects of extracts from Mandragora autumnalis and its fatty acid composition. Marmara Pharm J., 20, 144-151.
  • [40] Rice-Evans, C.A., Miller, N.J., and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2, 152-159.
  • [41] Babbar N., Oberoi H.S., Uppal D.S., and Patil R.T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res Int., 44, 391-396.
  • [42] Magnani, C, Isaac, V. L. B., Correa, M.A., and Salgado, H.R.N. (2014). Caffeic acid: a review of its potential use in medications and cosmetics. Anal. Methods, 6, 3203-3210.
  • [43] Krishnaraju, A.V., Rao, T.V.N., Sundararaju, D., Vanisree, M., Tsay, H.S., and Subbaraju, G.V. (2005). Assessment of bioactivity of Indian medicinal plants using Brine Shrimp (Artemia salina) lethality assay. Int. J App. Sci. Eng., 3(2), 125-134.
  • [44] Svoboda, K.P., and Hampson, J.B. (1999). Bioactivity of essential oils of selected temperate aromatic plants: Antibacterial, Antioxidant, Anti-Inflammatory and other related pharmacological activities, Plant Biology Department, SAC Auchincruive, Ayr, Scotland, UK., KA6 5HW.
  • [45] Hossain, A.M., Ferdous, T., Salehuddin, S.M., and Das, A.K. (2009). In vitro cytotoxicity (LC50) of extracts obtained from the seeds of Zea mays. As. J. Food Ag-Ind., 2(3), 336-34.
  • [46] Canadanovic-Brunet, M.J., Dilas, M.S., Cetkovic, S.G., Tumbas, T.V., Mandic, I.A., and Canadanovic M.V. (2006). Antioxidant activities of different Teucrium montanum L. extracts. Int J Food Sci Technol, 41, 667-673.
  • [47] Aksoy-Sagirli, P., Ozsoy, N., Ecevit-Genc, G., and Melikoglu, G. (2015). In vitro antioxidant activity, cyclooxygenase-2, thioredoxin reductase inhibition and DNA protection properties of Teucrium sandrasicum L. Ind Crops Prod, 74, 545-550.

The phenolic content, antioxidant and cytotoxic activities of Origanum sipyleum from Turkey

Year 2018, , 343 - 352, 29.12.2018
https://doi.org/10.21448/ijsm.468418

Abstract

Origanum sipyleum is a medicinal plant species belonging to the genus Origanum and traditionally vegetative parts of this plant have been used as medicinal tea or food additives. The current study has been designed to examine the antioxidant, cytotoxic activities and total phenolic, flavonoid and tannin contents as well as the chemical composition of the ethanol extract of O. sipyleum. The antioxidant capacity of O. sipyleum was determined using six complementary methods, β-carotene/linoleic acid and phosphomolybdenum test systems, radical scavenging (ABTS and DPPH), metal chelating and reducing power assays. The phenolics were identified using HPLC. A brine shrimp (Artemia salina L.) lethality test was used for determining cytotoxic activity. The ethanol extract exhibited high DPPH free radical scavenging (DPPH, IC50:102.75 µg/mL), ABTS radical scavenging (ABTS, IC50:88.64 µg/mL), metal chelating (20.68 %) and reducing power capacity (0.51 mg/mL). The antioxidant activities of the O. sipyleum with β-carotene/Linoleic acid and phosphomolybdenum were calculated as 85.59 % and 62.95 µg/mg respectively. The phenolic contents of the ethanol extract were evaluated using HPLC and determined major phenolics: caffeic acid, epicatechin and 2,5 dihydroxybenzoic. Furthermore, to gether with cytotoxic activity (LC50, 327.414 µg/mL) O. sipyleum is also rich in total phenolic, flavonoid and tannin contents were 203.57 ± 4.62 mgGAE/g, 46.98 ± 0.34 mgQE/g and 34.55 ± 0.56 mgCE/g respectively. These results could provide addition information for the potential use of this medicinal plant as a food ingredient and as a natural antioxidant in the diet, as well as for the pharmaceutical industry.

References

  • [1] Arouma, O.I. (2010). Free radicals, oxidative stress and antioxidants in human health and diseases. J. Am. Oil Chem. Soc., 75, 199-212.
  • [2] Lee, J., Koo, N., and Min, D.B. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comp. Rev. Food Sci. Food Saf., 3, 21–33.
  • [3] Aktumsek, A., Zengin, G., Guler, G.O., and Cakmak Y.S. (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol., 55, 290-296.
  • [4] Barlow, S. and Schlatter, J. (2010). Risk assassment of carcinogens in food. Toxicol. Appl. Pharm., 243, 180-190.
  • [5] Gu, L., Wu, T., and Wang, Z. (2009). TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT Food Sci Technol., 42, 131-136.
  • [6] Nickavar, B. and Esbati, N. (2012). Evaluation of the Antioxidant Capacity and Phenolic Content of three Thymus species. J Acupunct Meridian Stud., 5(3), 119-125.
  • [7] Loziene, K., Venskutonis, P.R., Sipailiene A. and Labokas J. (2007). Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem.,103, 546-549.
  • [8] Nakipoglu, M., Ozturk Urek, R., Ayar Kayali, H., and Tarhan, L. (2007). Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem., 104, 630-635.
  • [9] Ozkan, G., Sagdıç, O., Ekici, L., Ozturk, I., and Özcan, M.M. (2007). Phenolic compounds of Origanum sipyleum L. extract, and its antioxidant and antibacterial activities. J Food Lipid, 14, 157-169.
  • [10] Vazirian, M., Mohammadi, M., Farzaei, M.H.,. Amin, G., and Amanzadeh, Y. (2015) Chemical composition and antioxidant activity of Origanum vulgare subsp. vulgare essential oil from Iran. Research Journal of Pharmacognosy, 2(1), 41-46
  • [11] Coccimiglio, J., Alipour ,M., Jiang, Z.H., Gottardo, C., and Suntres, Z. .(2016). Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents, Oxid Med Cell Longev. http://dx.doi.org/10.1155/2016/1404505.
  • [12] Stanojević, L.P.,. Stanojević, J.S., Cvetković, D.J. and Ilić, D.P. (2016). Antioxidant activity of oregano essential oil (Origanum vulgare L.). Biologica Nyssana, 7(2), 131-139.
  • [13] Taskin, T., Sadikoglu, N., Birteksoz-Tan, S., and Bitis, L. (2017). In vitro screening antioxidant and antimicrobial properties of five commercial Origanum species from Turkey. Indian J. Tradit Knowle., 16(4), 568-575.
  • [14] Karagöz, A., Artun, F.T., Özcan, G., Melikoğlu, G., Anıl, S., Kültür, S., and Sütlüpınar, N. (2015) In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol Biotechnol Equip., 29(6), 1184-1189.
  • [15] Shalaby, E.A. and Shanab S.M.M. (2013) Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J Geo Marine Sci., 42(5), 556-564.
  • [16] Meriga, B., Mopuri, R. and Krishna, T.M. (2012). Insectisal antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med.,. 5(5), 391-395.
  • [17] Amin, I. and Tan S.H. (2002). Antioxidant activity of selected seaweeds. Malays J Nut., 8, 167-177.
  • [18] Prieto, P., Pineda M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem., 269(2), 337–341.
  • [19] Kaska, A., Deniz N, Cicek M. and. Mammadov R. (2018). Evaluation of antioxidant properties, phenolic compounds, anthelmintic, and cytotoxic activities of various extracts isolated from Nepeta cadmea: an endemic plant for Turkey. J Food Sci., 83(6), 1552-1559.
  • [20] Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6), 307-316.
  • [21] Karpagasundari, C. and Kulothungan, S. (2014). Free radical scavenging activity of Physalis minima Linn. leaf extract (PMLE). J Med Plants Stud., 2(4), 59-64.
  • [22] Slinkard, K. and Singleton V.L. (1977). Total phenol analyses: Automation and comparison with manual methods. Am J Enol Vitic., 28, 49–55.
  • [23] Arvouet-Grand A, Vennat B, Pourrat A, Legret P. (1994). Standardization of a propolis extract and identification of the main constituents. J Pharm de Belg., 49, 462-8.
  • [24] Broadhurst, R.B., and Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. J Sci Fd Agric., 29, 788-794.
  • [25] Caponio, F., Alloggio, V. and Gomes, T. (1999). Phenolic compounds of virgin olive oil: influence of paste preparation techniques. Food Chem., 64, 203-209.
  • [26] Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen L.B., Nichols, D.E. and McLaughlin., J.L. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Med., 45, 31-34.
  • [27] Du, G.R., Li, M.J., Ma, F.W., and Liang, D. (2009) Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem., 113, 557-562.
  • [28] Zengin, G. and Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci an endemic plant to Turkey. Afr J Tradit Complement Altern Med., 11, 481–488.
  • [29] Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen M. (1999). Antioxidant activity of plant extracts containing phenolic compound. J. Agric. Food Chem., 47, 3954-3962.
  • [30] Maisuthisakul, P., Suttajit M. and Pongsawatmanit R. (2007) Assessment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chem., 100(4), 1409-1418.
  • [31] Roby, M.H.H., Sarhan M.A., Selim K.A.H. and. Khalel K.I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod., 43, 827-831.
  • [32] Lagouri, V., Guldas, M., and Gurbuz, O. (2011). In vitro Antioxidant/Free Radical Scavenging and Antibacterial Properties of Endemic Oregano and Thyme Extracts from Greece. Food Sci. Biotechnol., 20(6), 1487-1493
  • [33] Jayaprakasha, G.K., Selvi, T. and Sakariah, K.K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res.Int., 36 (2), 117-122..
  • [34]Duh, P.D., Tu, Y.Y., and Yen, G.C. (1999) Antioxidant activity of water extract of Harug Jyur (Chrysanthemum morifolium Ramat). Lebensmittel Wissenchaft und Technologie. 32(5), 269-277.
  • [35] Gordon, MH. (1990) The mechanism of antioxidant action in vitro. In B. J. F. Hudson (Ed.), Food antioxidants, 1–18. London/New York: Elsevier.
  • [36] Al-Dabbas, M.M. (2017). Antioxdant activity of different extracts from the aerial part of Moringa peregrina (Forssk.) Fiori, from Jordan. Pak J Pharm Sci., 30(6), 2151-2157.
  • [37] Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40, 945-948.
  • [38] Zengin, G., Uysal, S., Ceylan, R., and Aktumsek, A. (2015). Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phtochemical study. Ind Crop Prod., 70, 1-6.
  • [39] Uysal, S, Zengin, G. and Aktümsek, A. (2016). Antioxidant properties and enzyme inhibitory effects of extracts from Mandragora autumnalis and its fatty acid composition. Marmara Pharm J., 20, 144-151.
  • [40] Rice-Evans, C.A., Miller, N.J., and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2, 152-159.
  • [41] Babbar N., Oberoi H.S., Uppal D.S., and Patil R.T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res Int., 44, 391-396.
  • [42] Magnani, C, Isaac, V. L. B., Correa, M.A., and Salgado, H.R.N. (2014). Caffeic acid: a review of its potential use in medications and cosmetics. Anal. Methods, 6, 3203-3210.
  • [43] Krishnaraju, A.V., Rao, T.V.N., Sundararaju, D., Vanisree, M., Tsay, H.S., and Subbaraju, G.V. (2005). Assessment of bioactivity of Indian medicinal plants using Brine Shrimp (Artemia salina) lethality assay. Int. J App. Sci. Eng., 3(2), 125-134.
  • [44] Svoboda, K.P., and Hampson, J.B. (1999). Bioactivity of essential oils of selected temperate aromatic plants: Antibacterial, Antioxidant, Anti-Inflammatory and other related pharmacological activities, Plant Biology Department, SAC Auchincruive, Ayr, Scotland, UK., KA6 5HW.
  • [45] Hossain, A.M., Ferdous, T., Salehuddin, S.M., and Das, A.K. (2009). In vitro cytotoxicity (LC50) of extracts obtained from the seeds of Zea mays. As. J. Food Ag-Ind., 2(3), 336-34.
  • [46] Canadanovic-Brunet, M.J., Dilas, M.S., Cetkovic, S.G., Tumbas, T.V., Mandic, I.A., and Canadanovic M.V. (2006). Antioxidant activities of different Teucrium montanum L. extracts. Int J Food Sci Technol, 41, 667-673.
  • [47] Aksoy-Sagirli, P., Ozsoy, N., Ecevit-Genc, G., and Melikoglu, G. (2015). In vitro antioxidant activity, cyclooxygenase-2, thioredoxin reductase inhibition and DNA protection properties of Teucrium sandrasicum L. Ind Crops Prod, 74, 545-550.
There are 47 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Arzu Kaska 0000-0002-0166-1818

Publication Date December 29, 2018
Submission Date October 8, 2018
Published in Issue Year 2018

Cite

APA Kaska, A. (2018). The phenolic content, antioxidant and cytotoxic activities of Origanum sipyleum from Turkey. International Journal of Secondary Metabolite, 5(4), 343-352. https://doi.org/10.21448/ijsm.468418
International Journal of Secondary Metabolite

e-ISSN: 2148-6905