Review
BibTex RIS Cite

Tarımsal Üretimde Yararlanılan Trichoderma Ürünleri ve Metabolitleri

Year 2017, Volume: 4 Issue: 2, 123 - 136, 01.07.2017
https://doi.org/10.21448/ijsm.265981

Abstract

Fitopatojenik
ajanların sebep olduğu bitki hastalıklarıyla, önemli ölçüde ürün kayıpları
meydana gelmektedir. Dünya üzerindeki birçok ülkede,  tarımda pestisit uygulamalarını ve
bağımlılığını azaltacak, tüketici ve çevre güvenliğini arttıracak yasal
yaptırımlar uygulanmaya başlamıştır. Yönetmelikler ile integre zararlı
düzenlemesinin uygulamaya konulmasını teşvik edecek gerekli şartların oluşumuna
ve aynı zamanda ticari ürünlerin güvenliğinin sağlanmasına da çalışılmaktadır. Trichoderma spp. mikrobiyal biyokontrol
ajanı olarak en yaygın kullanılan ve çalışılan funguslar arasındadır. Trichoderma ürünleri, biyopestisit,
biyofungusit, biyoinokulant, biyo-stimulant, biyodekompoze edici, biyofertilize
edici ve bitki büyüme teşvikleyicileri olarak kullanılmaktadır. Yararlı
etkileri için bitkilerle muamele edilmelerinin altında yatan başlıca
mekanizmalar;  mikoparazitizm veya
hiperparazitizm, antibiyozis, kompetisyon, hücre duvarlı litik enzim
aktivitesi, bitki büyümesinin arttırılması, toprakta bulunan besin
elementlerinin kazanımı ve bitki savunma cevaplarının indüklenmesi olarak
sayılabilir. Bu derlemede, tarımsal üretimde yararlanılan Trichoderma türleri ve başlıca
sekonder metabolitleri ile fungal patojenler veya bitkiler ile arasındaki
interaksiyonlar üzerine odaklanılmıştır.

References

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014). Trichoderma-based products and their widespread use in agriculture. Open Mycol J, 8 (Suppl.-1, M4): 71-126.
  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Roberta M, Lombardi N, Manginello G, Pascale A. Woo SL, Lorito W (2016). Cremenolide, a new antifungal, 10 member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res.
  • Canik F, Yürekli Yüksel N (2012). Gıda güvenliği ve pestisitler. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü TEPGE Bakış, 14: 1-4.
  • Harman GE (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84: 377-393.
  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004). Trichoderma species- oppurtunistic, avirulent plant symbionts. Nat Rev Microbiol, 2: 43-56.
  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti M.J, Li H, Woo SL, Lorito M (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol, 72: 80-86.
  • Szekeres A, Leigteb B, Kredics L, Antal Z, Hatvan L, Manczinger L, Vagvolgyi C (2005). Peptaibols and related peptaibiotics of Trichoderma. Review. Acta Microbiol Immunol Hung, 52: 137-168.
  • Harman GE (2011). Trichoderma- not just for biocontrol anymore. Phytoparasitica, 39: 103-108.
  • Blaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jedryczka M (2014). Trichoderma spp.- application and prospects for use in organic farming and industry. J of Plant Prot Res, 54: 310-317.
  • Shi M, Chn L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ [2012]. Antimicrobial peptaibols from Trichoderma pseudokoningii induce cell death in fungal pathogens. Microbiol, 158: 166-175.
  • Kubicek CP, Herrera-estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestal life style of Trichoderma. Genome Biol., 12 [4]: R40.
  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003). Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotech., 41: 37-42.
  • Poosapati S, Ravupalli PD, Tippirishetty N, Viswanathaswamy DK, Chunduri S (2014). Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus, 3: 641-652.
  • Hermosa R, Viterbo A, Chet I, Monte E (2012). Plant beneficial effects of Trichoderma and of its genes. Microbiol, 158: 17-25.
  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, RuoccoM, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrá D, Fogliano V, Scala F, Lorito M (2006). Study of the three-way interacton between Trichoderma atroviride, plant fungal pathogens by using a proteomic approach. Curr Genet 50: 307-321.
  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrá D, Woo SL, Lorito M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the, Laz interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22: 291-301.
  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996). Mycoparasitic interacton relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 [endochitinae encoding] gene in Trichoderma harzianum. Proc Natl Acad Sci USA 93: 14868-14872.
  • Mukherjee PK, Horwitz BA, Kenerley CM (2012). Secondary metabolism in Trichoderma- a genomic perspective. Microbiology + 158: 35-45.
  • Van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM (2006). Cladosporium fulvum Avr4 protects fungal cell wall against hydrolysis by plant chitinases accumulatin during infection. MPMI 19: 1420-1430.
  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007). The 18 mer peptaibols from Trichoderma virens elicit plant defense repsonses. Mol Plant Pathol 8: 737-746.
  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cotes C, Kenerley C, Herrega-Estrella A (2003). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965-15970.
  • Benitez T, Rincon A, Limon M, Codon AC (2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7: 249-260.
  • Daniel JF, Filho ER (2007). Peptaibols of Trichoderma. Nat Prod Rep 24: 1128-1141.
  • Lorito M, Woo SL, Harman GE, Monte E (2010). Translational research on Trichoderma: from ‘omics to field. Annu Rev Pytopathol 48: 395-417.
  • De Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953-955.
  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigor M (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8 (suppl-1): 127-139.
  • Herbert RB (1989). The biosynthesis of secondary metabolites. 2nd Ed. London: Chapman & Hall.
  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during interaction with different plant pathogens. Lett Appl Microbiol 48: 705-711.
  • Foroutan A (2013). Evaluation of Trichoderma isolates for biological control of wheat Fusarium foot and root rot. Rom Agr Res 30: 35-44.
  • Ajith PS, Lakshmidevi N (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science 8 [9]:265-269.
  • Stoppacher N, Neumann NK, Burgstaller L, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R [2013]. The comprehensive peptaibiotics database. Chem Biodivers 10: 734-743.
  • Kredics L, Szekeres A, Czifra D, Vagvölgyi C, Leitgeb B (2013). Recent results in Alamethicin research. Chem & Biodiv 10: 744-771.
  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286: 4544-4554.
  • Degenkolb T, Brückner H (2008). Peptaibiomics: Towards a myriad of bioactive peptides containing C-Dialkylamino Acids. Chemistry &Biodiversity 5: 1817-1842.
  • Khosla C (2009). Structures and mechanisms of polyketide synthases. J Org Chem 74: 6416-642.
  • Mukherjee PK, Kenerley CM (2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76: 2345-2352.
  • Tijerino A, Cardoza, RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado I, Gutierrez S, Monte E, Hermosa R (2011). Overexpression of the Trichodiene Synthase gene tri5 Increases Trichodermin Production and Antimicrobial Activity in Trichoderma brevicompactum. Fungal Genet Biol 48: 285-296.
  • Wallner A, Blatzer M, Schrett M, Sarg B, Linder H, Haas H (2009). Ferricrocin, a siderophore involved in intra and transcellular iron dstribution in Aspergillus fumigatus. Appl Environ Microbiol 75: 4194-4196.
  • Schuhmacher R, Lehner S, Zeilinger S, Stoppacher N, Krska R (2010). Determination of Extracellular Siderophores of Trichoderma atroviride by High Resolution Liquid Chromatography- Mass Sepectrometry. In: ‘Trichoderma molecular mechanisms and applications of biocontrol in agriculture’, Symposium; 12-15.10. Technion, Haifa, Israel.
  • Tjamos EC, Papavizas GC, Cook RJ (1992). Biological control of plant diseases. Progress and challenges for the future. Plenum Press, New York.
  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016). Secondary metabolism in Trichoderma- Chemistry meets genomics. Fun Biol Rew 30: 74-90.
  • Monte E (2001). Understanding Trichoderma, between biotechnology and microbial ecology. Int Microbiol 4:1-4.
  • Dubey SC, Suresh M, Singh B (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118-127.

Trichoderma–based Products and Metabolites Used in Agricultural Production

Year 2017, Volume: 4 Issue: 2, 123 - 136, 01.07.2017
https://doi.org/10.21448/ijsm.265981

Abstract

Phytopathogenic
agents cause considerable crop losses incurred by plant diseases worldwide. The
most goverments in World, have started to implement legislative mandates in
order to reduce the pesticide applications and dependency in agriculture and
increase the environmental and consumers safety. By implementing integrated
pest management [IPM], it is aimed to establish the necessary conditions to
employ these practices. Trichoderma
is among the best known and widely used fungal genera as biocontrol agent. Products
of Trichoderma and itself, are
promoted as bio-pesticide, bio-fungicide, bio-inoculant, bio-stimulant,
bio-decomposer, bio-fertilizer, plant growth stimulator. Main mechanisms
underlying its beneficial properties are; mycoparasitism, hyperparasitism,
antibiosis, competition, cell wall lytic enzymes, enhancement of plant growth,
acquisiton of soil nutrients, induction of plant defense responses.
In this review, we focused on the Trichoderma and its secondary
metabolites that are used in agriculture and their interactions between
phytopathogens and plants.

References

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014). Trichoderma-based products and their widespread use in agriculture. Open Mycol J, 8 (Suppl.-1, M4): 71-126.
  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Roberta M, Lombardi N, Manginello G, Pascale A. Woo SL, Lorito W (2016). Cremenolide, a new antifungal, 10 member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res.
  • Canik F, Yürekli Yüksel N (2012). Gıda güvenliği ve pestisitler. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü TEPGE Bakış, 14: 1-4.
  • Harman GE (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84: 377-393.
  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004). Trichoderma species- oppurtunistic, avirulent plant symbionts. Nat Rev Microbiol, 2: 43-56.
  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti M.J, Li H, Woo SL, Lorito M (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol, 72: 80-86.
  • Szekeres A, Leigteb B, Kredics L, Antal Z, Hatvan L, Manczinger L, Vagvolgyi C (2005). Peptaibols and related peptaibiotics of Trichoderma. Review. Acta Microbiol Immunol Hung, 52: 137-168.
  • Harman GE (2011). Trichoderma- not just for biocontrol anymore. Phytoparasitica, 39: 103-108.
  • Blaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jedryczka M (2014). Trichoderma spp.- application and prospects for use in organic farming and industry. J of Plant Prot Res, 54: 310-317.
  • Shi M, Chn L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ [2012]. Antimicrobial peptaibols from Trichoderma pseudokoningii induce cell death in fungal pathogens. Microbiol, 158: 166-175.
  • Kubicek CP, Herrera-estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestal life style of Trichoderma. Genome Biol., 12 [4]: R40.
  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003). Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotech., 41: 37-42.
  • Poosapati S, Ravupalli PD, Tippirishetty N, Viswanathaswamy DK, Chunduri S (2014). Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus, 3: 641-652.
  • Hermosa R, Viterbo A, Chet I, Monte E (2012). Plant beneficial effects of Trichoderma and of its genes. Microbiol, 158: 17-25.
  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, RuoccoM, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrá D, Fogliano V, Scala F, Lorito M (2006). Study of the three-way interacton between Trichoderma atroviride, plant fungal pathogens by using a proteomic approach. Curr Genet 50: 307-321.
  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrá D, Woo SL, Lorito M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the, Laz interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22: 291-301.
  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996). Mycoparasitic interacton relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 [endochitinae encoding] gene in Trichoderma harzianum. Proc Natl Acad Sci USA 93: 14868-14872.
  • Mukherjee PK, Horwitz BA, Kenerley CM (2012). Secondary metabolism in Trichoderma- a genomic perspective. Microbiology + 158: 35-45.
  • Van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM (2006). Cladosporium fulvum Avr4 protects fungal cell wall against hydrolysis by plant chitinases accumulatin during infection. MPMI 19: 1420-1430.
  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007). The 18 mer peptaibols from Trichoderma virens elicit plant defense repsonses. Mol Plant Pathol 8: 737-746.
  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cotes C, Kenerley C, Herrega-Estrella A (2003). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965-15970.
  • Benitez T, Rincon A, Limon M, Codon AC (2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7: 249-260.
  • Daniel JF, Filho ER (2007). Peptaibols of Trichoderma. Nat Prod Rep 24: 1128-1141.
  • Lorito M, Woo SL, Harman GE, Monte E (2010). Translational research on Trichoderma: from ‘omics to field. Annu Rev Pytopathol 48: 395-417.
  • De Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953-955.
  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigor M (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8 (suppl-1): 127-139.
  • Herbert RB (1989). The biosynthesis of secondary metabolites. 2nd Ed. London: Chapman & Hall.
  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during interaction with different plant pathogens. Lett Appl Microbiol 48: 705-711.
  • Foroutan A (2013). Evaluation of Trichoderma isolates for biological control of wheat Fusarium foot and root rot. Rom Agr Res 30: 35-44.
  • Ajith PS, Lakshmidevi N (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science 8 [9]:265-269.
  • Stoppacher N, Neumann NK, Burgstaller L, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R [2013]. The comprehensive peptaibiotics database. Chem Biodivers 10: 734-743.
  • Kredics L, Szekeres A, Czifra D, Vagvölgyi C, Leitgeb B (2013). Recent results in Alamethicin research. Chem & Biodiv 10: 744-771.
  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286: 4544-4554.
  • Degenkolb T, Brückner H (2008). Peptaibiomics: Towards a myriad of bioactive peptides containing C-Dialkylamino Acids. Chemistry &Biodiversity 5: 1817-1842.
  • Khosla C (2009). Structures and mechanisms of polyketide synthases. J Org Chem 74: 6416-642.
  • Mukherjee PK, Kenerley CM (2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76: 2345-2352.
  • Tijerino A, Cardoza, RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado I, Gutierrez S, Monte E, Hermosa R (2011). Overexpression of the Trichodiene Synthase gene tri5 Increases Trichodermin Production and Antimicrobial Activity in Trichoderma brevicompactum. Fungal Genet Biol 48: 285-296.
  • Wallner A, Blatzer M, Schrett M, Sarg B, Linder H, Haas H (2009). Ferricrocin, a siderophore involved in intra and transcellular iron dstribution in Aspergillus fumigatus. Appl Environ Microbiol 75: 4194-4196.
  • Schuhmacher R, Lehner S, Zeilinger S, Stoppacher N, Krska R (2010). Determination of Extracellular Siderophores of Trichoderma atroviride by High Resolution Liquid Chromatography- Mass Sepectrometry. In: ‘Trichoderma molecular mechanisms and applications of biocontrol in agriculture’, Symposium; 12-15.10. Technion, Haifa, Israel.
  • Tjamos EC, Papavizas GC, Cook RJ (1992). Biological control of plant diseases. Progress and challenges for the future. Plenum Press, New York.
  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016). Secondary metabolism in Trichoderma- Chemistry meets genomics. Fun Biol Rew 30: 74-90.
  • Monte E (2001). Understanding Trichoderma, between biotechnology and microbial ecology. Int Microbiol 4:1-4.
  • Dubey SC, Suresh M, Singh B (2007). Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118-127.
There are 43 citations in total.

Details

Subjects Structural Biology
Journal Section Articles
Authors

Evrim Özkale

Publication Date July 1, 2017
Submission Date November 14, 2016
Published in Issue Year 2017 Volume: 4 Issue: 2

Cite

APA Özkale, E. (2017). Trichoderma–based Products and Metabolites Used in Agricultural Production. International Journal of Secondary Metabolite, 4(2), 123-136. https://doi.org/10.21448/ijsm.265981
International Journal of Secondary Metabolite

e-ISSN: 2148-6905