Research Article
BibTex RIS Cite

Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate

Year 2021, Volume: 8 Issue: 4, 414 - 424, 26.12.2021
https://doi.org/10.21448/ijsm.954992

Abstract

Quercetin and its metal complexes have anti-oxidation, anti-bacterial, anti-tumor, and kinds of enzymatic activities. Studies in recent years, these activities are very important for health and pharmaceutics. The purpose of this manuscript is to determine the structure-activity relations and antioxidant properties of the Quercetin and Quercetin-Co2+ chelate from a theoretical view and to be used these compounds in the treatment of the diseases. We found that Quercetin is more stable than Quercetin-Co2+ chelate but Quercetin-Co2+ chelate is more conductive and the O22-H bond of the Quercetin molecule has the highest antioxidant activity. The remarkable electron delocalization occurred between the donor (C17-C19) anti bond and acceptor (C13-C15) anti bond with 319.62 kcal/mol stabilization energy in Quercetin.

Supporting Institution

Pamukkale Üniversitesi_BAP

Project Number

2018FEBE002

Thanks

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources)

References

  • Afanas’eva, I.B., Ostrakhovitch, E.A., Mikhal’chik, E.V., Ibragimova, G.A., & Korkina, L.G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem. Pharmacol., 61, 677–684. https://doi.org/10.1016/s0006-2952(01)00526-3
  • Bravo, A., & Anacona, J.R. (2001). Metal complexes of the flavonoid quercetin: Antibacterial properties. Transit. Metal Chem., 26, 20–23. https://doi.org/10.3390/molecules20058583
  • Chen, W.J., Sun, S.F., Cao, W., Liang, Y., & Song, J.R. (2009). The antioxidant property of quercetin Cr (III) complex: The role of Cr(III) ion. J. Mol. Struct., 918, 194–197. https://doi.org/10.15171/bi.2019.15
  • Cornard, J.P., & Merlin, J.C. (2002). Spectroscopic and structural study of complexes of quercetin with Al (III). J. Inorg. Biochem., 92, 19–27. https://doi.org/10.1016/s0162-0134(02)00469-5
  • Dehghan, G., Dolatabadi, J.E.N., Jouyban, A., Zeynali, K.A., Ahmadi, S.M., & Kashanian, S. (2011). Spectroscopic Studies on the Interaction of Quercetin-Terbium(III) Complex with Calf Thymus DNA. DNA Cell Biol., 30, 195–201. https://doi.org/10.1089/dna.2010.1063
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6, Copyright Semichem, Inc.
  • Dolatabadi, J.E.N. (2011). Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int. J. Biol. Macromol., 48, 227 233. https://doi.org/10.1016/j.ijbiomac.2010.11.012
  • El Hajji, H., Nkhili, E., Tomao, V., Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radic. Res., 40, 303–320. https://doi.org/10.1080/10715760500484351
  • Frisch, M. J., et al., (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.
  • Grazul, M., & Budzisz, E. (2009). Biological activity of metal ions complexes of chromones, coumarins, and flavones. Coord. Chem. Rev., 253, 2588 2598. https://doi.org/10.1016/j.ccr.2009.06015
  • Joseph, L., Sajan, D., Chaitanya K., Suthan T., Rajesh, N.P., & Isaac J. (2014). Molecular structure, NBO analysis, electronic absorption, and vibrational spectral analysis of 2 Hydroxy 4 Methoxybenzophenone: Reassignment of fundamental modes. Spectrochim Acta A: Mol Biomol Spectrosc., 120, 216. https://doi.org/10.1016/j.saa.2013.09.128
  • Jurasekova, Z., Torreggiani, A., Tamba, M., Sanchez Cortes, S., & Garcia Ramos, J.V. (2009). Raman and surface enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles. J. Mol. Struct., 918, 129 137. https://doi.org/10.1016/j.molstruc.2008.07.025
  • Kasprzak, M. M., Erxlebenb, A., & Ochock, J. (2015). Properties and applications of flavonoid metal complexes. RSC Advances, 5, 45853- 45877. https://doi.org/10.1039/C5RA05069C
  • Kiraz, A. Ö., & Kaya, S. (2017). Structural and electrical properties of the Ca(PO 4)2 compound. Physical Sciences (NWSAPS) 12(1),8 21. https://doi.org/10.12739/NWSA.2017.12.2.3A0079
  • Kiraz, A. Ö. (2019). Temperature Effect of the Theobromine’s electronic and antioxidant properties. Int. J. Sec. Metabolite, 6(1), 90-97. https://doi.org/10.21448/ijsm.504474
  • Kiraz, Aslı Öztürk, (2020). Theoretical insight into the antioxidant, electronic and anticancer behavior of simmondsin. IJBB, 57, 530-538.
  • Leopoldini, M., Russo, N., Chiodo, S., & Toscano, M. (2006). Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem., 54, 6343 6351. https://doi.org/10.1021/jf060986h
  • Leopoldini, M., Russo, N., & Toscano M. (2011). The molecular basis of the working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125, 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
  • Malesev, D., & Kuntic, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 72, 921–939. https://doi.org/10.2298/JSC0710921M
  • Mendoza, E.E. & Burd, R. (2011). Quercetin as a Systemic Chemopreventative Agent: Structural and Functional Mechanisms. Mini-Rev. Med. Chem., 11, 1216–1221. https://doi.org/10.2174/13895575111091216
  • Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florencio, M.H., & Jennings, K.R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 36, 1199–208. https://doi.org/10.1080/1071576021000016463.
  • Pai, C.L., Liu C.L., Chen, W.C., & Jenekhe, S. A. (2006). Electronic structure and properties of alternating donor-acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer, 47, 699 – 708. https://doi.org/10.1016/j.polymer.2005.11.083
  • Snehalatha, M., Ravikumar, C., Joe, I., Sekar, N., & Jayajumar, V.S. (2009). Spectroscopic analysis and DFT calculations of a food additive carmoisine. Spectrochim Acta A: Mol Biomol Spectrosc., 72, 654–662. https://doi.org/10.1016/j.saa.2008.11.017
  • Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci., 76 (1), 35-41.
  • Tachibana M., Tanaka, S., Yamashita, Y., & Yoshizawa, K. (2002). Small Band-Gap Polymers Involving Tricyclic Nonclassical Thiophene as a Building Block. J. Phys. Chem. B, 106, (14), 3549–3556. https://doi.org/10.1021/jp0115906
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem. Rev., 105(8), 2999−3094. https://doi.org/10.1021/cr9904009
  • Torreggiani, A., Tamba, M., Trinchero, A., Bonora, S. (2005). Copper(II) quercetin complexes in aqueous solutions: Spectroscopic and kinetic properties. J. Mol. Struct., 744, 759 766. https://doi.org/10.1016/j.molstruc.2004.11.081.
  • Urbaniak, A., Molski, M., & Szeląg, M. (2012). Quantum-chemical Calculations of the Antioxidant Properties of trans-p-coumaric Acid and trans-sinapinic Acid. CMST, 18(2) 117-128. https://doi.org/10.12921/cmst.2012.18.02.117-128
  • Xu, G.R., In, Y.M., Yuan, Y., Lee, J.J., & Kim, S. (2007). In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions. Bull. Korean Chem. Soc., 28, 889–892. https://doi.org/10.5012/bkcs.2007.28.5.889
  • Yalçın, F. (2019). [Theoretical Investigation of the Interactions Between Some Flavonoid Molecules and Metal Ions]. [Master Thesis, Pamukkale University].
  • Yamashita, N., Tanemura, H., & Kawanishi, S. (1999). Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu (II). Mutat. Res., 425, 107–115. https://doi.org/ 10.1016/s0027-5107(99)00029-9
  • Zade, S.S., & Bendikov, M. (2006). From Oligomers to Polymer: Convergence in the HOMO−LUMO Gaps of Conjugated Oligomers. Org. Lett., 8, 5243 5246. https://doi.org/10.1021/ol062030y
  • Zhang, Y.P., Shi, S.Y., Sun, X.R., Xiong, X., & Peng, M.J. (2011). The effect of Cu2+ on the interaction between flavonoids with different C-ring substituents and bovine serum albumin: Structure-affinity relationship aspect. J. Inorg. Biochem., 105, 1529–1537. https://doi.org/10.1016/j.jinorgbio.2011.08.007
  • Zhou, J., Wang, L.F., Wang, J.Y., & Tang, N. (2001). Antioxidative and anti-tumor activities of solid quercetin metal (II) complexes. Transit. Metal Chem., 26, 57–63. https://doi.org/ 10.1016/S0162-0134(00)00128-8

Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate

Year 2021, Volume: 8 Issue: 4, 414 - 424, 26.12.2021
https://doi.org/10.21448/ijsm.954992

Abstract

Quercetin and its metal complexes have anti-oxidation, anti-bacterial, anti-tumor, and kinds of enzymatic activities. Studies in recent years, these activities are very important for health and pharmaceutics. The purpose of this manuscript is to determine the structure-activity relations and antioxidant properties of the Quercetin and Quercetin-Co2+ chelate from a theoretical view and to be used these compounds in the treatment of the diseases. We found that Quercetin is more stable than Quercetin-Co2+ chelate but Quercetin-Co2+ chelate is more conductive and the O22-H bond of the Quercetin molecule has the highest antioxidant activity. The remarkable electron delocalization occurred between the donor (C17-C19) anti bond and acceptor (C13-C15) anti bond with 319.62 kcal/mol stabilization energy in Quercetin.

Project Number

2018FEBE002

References

  • Afanas’eva, I.B., Ostrakhovitch, E.A., Mikhal’chik, E.V., Ibragimova, G.A., & Korkina, L.G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem. Pharmacol., 61, 677–684. https://doi.org/10.1016/s0006-2952(01)00526-3
  • Bravo, A., & Anacona, J.R. (2001). Metal complexes of the flavonoid quercetin: Antibacterial properties. Transit. Metal Chem., 26, 20–23. https://doi.org/10.3390/molecules20058583
  • Chen, W.J., Sun, S.F., Cao, W., Liang, Y., & Song, J.R. (2009). The antioxidant property of quercetin Cr (III) complex: The role of Cr(III) ion. J. Mol. Struct., 918, 194–197. https://doi.org/10.15171/bi.2019.15
  • Cornard, J.P., & Merlin, J.C. (2002). Spectroscopic and structural study of complexes of quercetin with Al (III). J. Inorg. Biochem., 92, 19–27. https://doi.org/10.1016/s0162-0134(02)00469-5
  • Dehghan, G., Dolatabadi, J.E.N., Jouyban, A., Zeynali, K.A., Ahmadi, S.M., & Kashanian, S. (2011). Spectroscopic Studies on the Interaction of Quercetin-Terbium(III) Complex with Calf Thymus DNA. DNA Cell Biol., 30, 195–201. https://doi.org/10.1089/dna.2010.1063
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6, Copyright Semichem, Inc.
  • Dolatabadi, J.E.N. (2011). Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int. J. Biol. Macromol., 48, 227 233. https://doi.org/10.1016/j.ijbiomac.2010.11.012
  • El Hajji, H., Nkhili, E., Tomao, V., Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radic. Res., 40, 303–320. https://doi.org/10.1080/10715760500484351
  • Frisch, M. J., et al., (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT.
  • Grazul, M., & Budzisz, E. (2009). Biological activity of metal ions complexes of chromones, coumarins, and flavones. Coord. Chem. Rev., 253, 2588 2598. https://doi.org/10.1016/j.ccr.2009.06015
  • Joseph, L., Sajan, D., Chaitanya K., Suthan T., Rajesh, N.P., & Isaac J. (2014). Molecular structure, NBO analysis, electronic absorption, and vibrational spectral analysis of 2 Hydroxy 4 Methoxybenzophenone: Reassignment of fundamental modes. Spectrochim Acta A: Mol Biomol Spectrosc., 120, 216. https://doi.org/10.1016/j.saa.2013.09.128
  • Jurasekova, Z., Torreggiani, A., Tamba, M., Sanchez Cortes, S., & Garcia Ramos, J.V. (2009). Raman and surface enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles. J. Mol. Struct., 918, 129 137. https://doi.org/10.1016/j.molstruc.2008.07.025
  • Kasprzak, M. M., Erxlebenb, A., & Ochock, J. (2015). Properties and applications of flavonoid metal complexes. RSC Advances, 5, 45853- 45877. https://doi.org/10.1039/C5RA05069C
  • Kiraz, A. Ö., & Kaya, S. (2017). Structural and electrical properties of the Ca(PO 4)2 compound. Physical Sciences (NWSAPS) 12(1),8 21. https://doi.org/10.12739/NWSA.2017.12.2.3A0079
  • Kiraz, A. Ö. (2019). Temperature Effect of the Theobromine’s electronic and antioxidant properties. Int. J. Sec. Metabolite, 6(1), 90-97. https://doi.org/10.21448/ijsm.504474
  • Kiraz, Aslı Öztürk, (2020). Theoretical insight into the antioxidant, electronic and anticancer behavior of simmondsin. IJBB, 57, 530-538.
  • Leopoldini, M., Russo, N., Chiodo, S., & Toscano, M. (2006). Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem., 54, 6343 6351. https://doi.org/10.1021/jf060986h
  • Leopoldini, M., Russo, N., & Toscano M. (2011). The molecular basis of the working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125, 288–306. https://doi.org/10.1016/j.foodchem.2010.08.012
  • Malesev, D., & Kuntic, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc., 72, 921–939. https://doi.org/10.2298/JSC0710921M
  • Mendoza, E.E. & Burd, R. (2011). Quercetin as a Systemic Chemopreventative Agent: Structural and Functional Mechanisms. Mini-Rev. Med. Chem., 11, 1216–1221. https://doi.org/10.2174/13895575111091216
  • Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florencio, M.H., & Jennings, K.R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res., 36, 1199–208. https://doi.org/10.1080/1071576021000016463.
  • Pai, C.L., Liu C.L., Chen, W.C., & Jenekhe, S. A. (2006). Electronic structure and properties of alternating donor-acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer, 47, 699 – 708. https://doi.org/10.1016/j.polymer.2005.11.083
  • Snehalatha, M., Ravikumar, C., Joe, I., Sekar, N., & Jayajumar, V.S. (2009). Spectroscopic analysis and DFT calculations of a food additive carmoisine. Spectrochim Acta A: Mol Biomol Spectrosc., 72, 654–662. https://doi.org/10.1016/j.saa.2008.11.017
  • Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnol Food Sci., 76 (1), 35-41.
  • Tachibana M., Tanaka, S., Yamashita, Y., & Yoshizawa, K. (2002). Small Band-Gap Polymers Involving Tricyclic Nonclassical Thiophene as a Building Block. J. Phys. Chem. B, 106, (14), 3549–3556. https://doi.org/10.1021/jp0115906
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chem. Rev., 105(8), 2999−3094. https://doi.org/10.1021/cr9904009
  • Torreggiani, A., Tamba, M., Trinchero, A., Bonora, S. (2005). Copper(II) quercetin complexes in aqueous solutions: Spectroscopic and kinetic properties. J. Mol. Struct., 744, 759 766. https://doi.org/10.1016/j.molstruc.2004.11.081.
  • Urbaniak, A., Molski, M., & Szeląg, M. (2012). Quantum-chemical Calculations of the Antioxidant Properties of trans-p-coumaric Acid and trans-sinapinic Acid. CMST, 18(2) 117-128. https://doi.org/10.12921/cmst.2012.18.02.117-128
  • Xu, G.R., In, Y.M., Yuan, Y., Lee, J.J., & Kim, S. (2007). In situ spectroelectrochemical study of quercetin oxidation and complexation with metal ions in acidic solutions. Bull. Korean Chem. Soc., 28, 889–892. https://doi.org/10.5012/bkcs.2007.28.5.889
  • Yalçın, F. (2019). [Theoretical Investigation of the Interactions Between Some Flavonoid Molecules and Metal Ions]. [Master Thesis, Pamukkale University].
  • Yamashita, N., Tanemura, H., & Kawanishi, S. (1999). Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu (II). Mutat. Res., 425, 107–115. https://doi.org/ 10.1016/s0027-5107(99)00029-9
  • Zade, S.S., & Bendikov, M. (2006). From Oligomers to Polymer: Convergence in the HOMO−LUMO Gaps of Conjugated Oligomers. Org. Lett., 8, 5243 5246. https://doi.org/10.1021/ol062030y
  • Zhang, Y.P., Shi, S.Y., Sun, X.R., Xiong, X., & Peng, M.J. (2011). The effect of Cu2+ on the interaction between flavonoids with different C-ring substituents and bovine serum albumin: Structure-affinity relationship aspect. J. Inorg. Biochem., 105, 1529–1537. https://doi.org/10.1016/j.jinorgbio.2011.08.007
  • Zhou, J., Wang, L.F., Wang, J.Y., & Tang, N. (2001). Antioxidative and anti-tumor activities of solid quercetin metal (II) complexes. Transit. Metal Chem., 26, 57–63. https://doi.org/ 10.1016/S0162-0134(00)00128-8
There are 34 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Aslı Öztürk Kiraz 0000-0001-9837-0779

Fatih Yalçın This is me 0000-0002-8239-989X

Project Number 2018FEBE002
Publication Date December 26, 2021
Submission Date June 29, 2021
Published in Issue Year 2021 Volume: 8 Issue: 4

Cite

APA Öztürk Kiraz, A., & Yalçın, F. (2021). Structure-Activity and Antioxidant Properties of Quercetin and Its Co2+ Chelate. International Journal of Secondary Metabolite, 8(4), 414-424. https://doi.org/10.21448/ijsm.954992
International Journal of Secondary Metabolite

e-ISSN: 2148-6905