Research Article
BibTex RIS Cite

Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants

Year 2022, Volume: 9 Issue: 1, 27 - 42, 10.03.2022
https://doi.org/10.21448/ijsm.1032863

Abstract

This study aimed to analyse the inhibition of different extracts of Rosmarinus officinalis, Pistacia terebinthus and Sideritis dichotoma on acetylcholinesterase enzyme of Drosophila melanogaster. Additionally, the biological features including antioxidant activity, phenolic contents, antibacterial effects and in vivo toxicities were identified using radical scavenging, Folin-Ciocalteu, disc diffusion methods, and larval (eclosion) assay using Drosophila, respectively. Also, GC-MS was used to determine of the terpene-derivative compositions of the plants. IC50 values on acetylcholinesterase were determined between 0.57±0.02-2.54±0.11µg µL-1 for ethanol, 0.86±0.05-2.19±0.15µg µL-1 for methanol and 1.98±0.13-4.76±0.24µg µL-1 for water extracts. Inhibition types of Rosmarinus, Pistacia and Sideritis were uncompetitive, competitive and competitive, respectively. The antioxidant activities of the extracts were between 77.87±1.72-96.94±1.84% against DPPH and 90.57±2.18-98.18±2.36% against ABTS+ radicals. GC/MS results showed that carvacrol and thymol were the major monoterpenes of Pistacia and Sideritis, while limonene and borneol were the main monoterpenes of Rosmarinus. The strongest antibacterial activities were observed with Rosmarinus and Sideritis against Staphylococcus aureus and Escherichia coli, respectively with an inhibition zone larger than 15 mm. According to the in vivo toxicity study, all extracts were found non-toxic to Drosophila, and they ameliorated H2O2 induced decrease of puparation, survival rate and eclosion values.

References

  • Adewusi, E.A., Moodley, N., & Steenkamp, V. (2011). Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot., 77(3), 638-644. https://doi.org/10.1016/j.sajb.2010.12.009
  • Angelucci, F., Cechova, K., Amlerova, J., & Hort, J. (2019). Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation, 16(1), 108. https://doi.org/10.1186/s12974-019-1494-4
  • Assis, C.R.D., Linhares, A.G., Oliveira, V.M., França, R.C.P., Carvalho, E.V.M.M., Bezerra, R.S., & De Carvalho, L.B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci. Total Environ., 441, 141 150. https://doi.org/10.1016/j.scitotenv.2012.09.058
  • Bahadori, M.B., Dinparast, L., Valizadeh, H., Farimani, M.M., & Ebrahimi, S.N. (2016). Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot., 106, 1 4. https://doi.org/10.1016/j.sajb.2015.12.003
  • Bastianetto, S., Ramassamy, C., Dore, S., Christen, Y., Poirier, J., & Quirion, R. (2000). The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur. J Neurosci., 12(6), 1882-1890. https://doi.org/10.1046/j.1460-9568.2000.00069.x
  • Blois, M.S., (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J. Agric. Food Chem., 55(19), 7879 7885. https://doi.org/10.1021/jf0715323
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C.T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J. Enzyme Inhib. Med. Chem., 34(1), 429-437. https://doi.org/10.1080/14756366.2018.1543288
  • Chang, D., Liu, J., Bilinski, K., Xu, L., Steiner, G.Z., Seto, S.W., & Bensoussan, A. (2016). Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-based Complementary and Alternative Medi., 2016, 1-15. https://doi.org/10.1155/2016/7293626
  • Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., & Daborn, P.J. (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci., 106(14), 5731-5736. https://doi.org/10.1073/pnas.0812141106
  • Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., & Vasic, V.M. (2013). Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharm., 11(3), 315-335. https://doi.org/10.2174/1570159x11311030006
  • Dave, K. R., Syal, A. R., & Katyare, S. S. (2000). Tissue Cholinesterases. A Comparative Study of Their Kinetic Properties. Z Naturforsch. C, 55(1-2), 100-108. https://doi.org/10.1515/znc-2000-1-219
  • Depetris-Chauvin, A., Galagovsky, D., Chevalier, C., Maniere, G., & Grosjean, Y. (2017). Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci. Rep., 7(1). https://doi.org/10.1038/s41598-017-14589-1
  • Dhifi, W., Mnif, W., Ouerhani, B., & Ghrissi, K. (2012). Chemical Composition and Antibacterial Activity of Essential Oil from the Seeds of Pistacia terebinthus Grown in Tunisia. J. Essent. Oil Beari. Plants, 15(4), 582 588. https://doi.org/10.1080/0972060x.2012.10644092
  • Dogan, S., Diken, M. E., & Dogan, M. (2010). Antioxidant, phenolic and protein contents of some medicinal plants. J. Med. Plant Res., 4(23), 2566 2572. https://doi.org/10.5897/jmpr10.626
  • Doğan, S., Diken, M.E., Turhan, Y., Alan, Ü., Doğan, M., Alkan, M. (2011). Characterization and inhibition of Rosmarinus officinalis L. polyphenoloxidase. Eur. Food Res.Technol., 233, 293–301.
  • Durak, M.Z., & Uçak, G., (2015). Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk J Agric For., 39, 10-19. https://doi.org/10.3906/tar-1403-63
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. pharmacol., 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Feng, Y., & Wang, X. (2012). Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev, 2012, 472932. https://doi.org/10.1155/2012/472932
  • Fernández-López, J., Zhi, N., Aleson-Carbonell, L., Pérez-Alvarez, J.A., & Kuri, V. (2005). Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci., 69(3), 371-380. https://doi.org/10.1016/j.meatsci.2004.08.004
  • Fu, A.L., Li, Q., Dong, Z.H., Huang, S.J., Wang, Y.X., & Sun, M.J. (2004). Alternative therapy of Alzheimer's disease via supplementation with choline acetyltransferase. Neurosci. Lett., 368(3), 258-262. https://doi.org/10.1016/j.neulet.2004.05.116
  • Gonzalez-Burgos, E., & Gomez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem., 19(31), 5319-5341. https://doi.org/10.2174/092986712803833335
  • Johari, M.A., & Khong, H.Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Adv. Pharmacol. Sci., 2019, 7428593. https://doi.org/10.1155/2019/7428593
  • Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 4, 27-30.
  • Kilic, T., Yildiz, Y.K., Goren, A.C., Tumen, G., & Topcu, G. (2003). Phytochemical Analysis of Some Sideritis Species of Turkey. Chem. Nat. Compd., 39(5), 453-456. https://doi.org/10.1023/b:conc.0000011119.53554.9c
  • Liu, Q.F., Lee, J.H., Kim, Y.-M., Lee, S., Hong, Y.K., Hwang, S., . . . Cho, K.S. (2015). In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol. Pharm. Bull., 38(12), 1891-1901. https://doi.org/10.1248/bpb.b15-00459
  • Macedo, G.E., Gomes, K.K., Rodrigues, N.R., Martins, I.K., Wallau, G.D.L., Carvalho, N.R. D., . . . Posser, T. (2017). Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster.Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 198, 45-57. https://doi.org/10.1016/j.cbpc.2017.05.004
  • Orhan E.I., Senol, F.S., Gulpinar, A.R., Sekeroglu, N., Kartal, M., & Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food chem., 130(4), 882-888. https://doi.org/10.1016/j.foodchem.2011.07.119
  • Orhan, I., Aslan, S., Kartal, M., Şener, B., & Hüsnü Can Başer, K. (2008). Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food chem., 108(2), 663-668. https://doi.org/10.1016/j.foodchem.2007.11.023
  • Ozarowski, M., Mikolajczak, P.L., Bogacz, A., Gryszczynska, A., Kujawska, M., Jodynis-Liebert, J., . . . Mrozikiewicz, P.M. (2013). Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia, 91, 261-271. https://doi.org/10.1016/j.fitote.2013.09.012
  • Ozarowski, M., Mikolajczak, P.L., Piasecka, A., Kujawski, R., Bartkowiak-Wieczorek, J., Bogacz, A., . . . Seremak- Mrozikiewicz, A. (2017). Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats. Physiol. Behav., 173, 223 230. https://doi.org/10.1016/j.physbeh.2017.02.019
  • Perry, N.S.L., Houghton, P.J., Theobald, A., Jenner, P., & Perry, E.K. (2000). In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulae folia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol., 52(7), 895 902. https://doi.org/10.1211/0022357001774598
  • Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol., 545(1), 51-64. https://doi.org/10.1016/j.ejphar.2006.06.025
  • Rand, M.D., Montgomery, S.L., Prince, L., & Vorojeikina, D. (2014). Developmental toxicity assays using the Drosophila model. Curr. Protoc. Toxicol., 59(1). https://doi.org/10.1002/0471140856.tx0112s59
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Riaz, B., Zahoor, M.K., Zahoor, M.A., Majeed, H.N., Javed, I., Ahmad, A., . . . Sultana, K. (2018). Toxicity, phytochemical vomposition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evid Based Complement Alternat Med, 2018, 2325659. https://doi.org/10.1155/2018/2325659
  • Şenol, F.S., Orhan, I., Celep, F., Kahraman, A., Doğan, M., Yilmaz, G., & Şener, B. (2010). Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food chem., 120(1), 34-43. https://doi.org/10.1016/j.foodchem.2009.09.066
  • Wang, R., Yan, H., & Tang, X.C. (2006). Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin., 27(1), 1-26. https://doi.org/10.1111/j.1745-7254.2006.00255.x
  • Yakovleva, E.U., Naimark, E.B., & Markov, A.V. (2016). Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity. Biochem. (Moscow), 81(12), 1445-1460. https://doi.org/10.1134/s0006297916120063
  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. https://doi.org/10.1016/j.foodcont.2015.05.032
  • Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid. Med. Cell. Longev., 2013, 316523. https://doi.org/10.1155/2013/316523

Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants

Year 2022, Volume: 9 Issue: 1, 27 - 42, 10.03.2022
https://doi.org/10.21448/ijsm.1032863

Abstract

This study aimed to analyse the inhibition of different extracts of Rosmarinus officinalis, Pistacia terebinthus and Sideritis dichotoma on acetylcholinesterase enzyme of Drosophila melanogaster. Additionally, the biological features including antioxidant activity, phenolic contents, antibacterial effects and in vivo toxicities were identified using radical scavenging, Folin-Ciocalteu, disc diffusion methods, and larval (eclosion) assay using Drosophila, respectively. Also, GC-MS was used to determine of the terpene-derivative compositions of the plants. IC50 values on acetylcholinesterase were determined between 0.57±0.02-2.54±0.11µg µL-1 for ethanol, 0.86±0.05-2.19±0.15µg µL-1 for methanol and 1.98±0.13-4.76±0.24µg µL-1 for water extracts. Inhibition types of Rosmarinus, Pistacia and Sideritis were uncompetitive, competitive and competitive, respectively. The antioxidant activities of the extracts were between 77.87±1.72-96.94±1.84% against DPPH and 90.57±2.18-98.18±2.36% against ABTS+ radicals. GC/MS results showed that carvacrol and thymol were the major monoterpenes of Pistacia and Sideritis, while limonene and borneol were the main monoterpenes of Rosmarinus. The strongest antibacterial activities were observed with Rosmarinus and Sideritis against Staphylococcus aureus and Escherichia coli, respectively with an inhibition zone larger than 15 mm. According to the in vivo toxicity study, all extracts were found non-toxic to Drosophila, and they ameliorated H2O2 induced decrease of puparation, survival rate and eclosion values.

References

  • Adewusi, E.A., Moodley, N., & Steenkamp, V. (2011). Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot., 77(3), 638-644. https://doi.org/10.1016/j.sajb.2010.12.009
  • Angelucci, F., Cechova, K., Amlerova, J., & Hort, J. (2019). Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation, 16(1), 108. https://doi.org/10.1186/s12974-019-1494-4
  • Assis, C.R.D., Linhares, A.G., Oliveira, V.M., França, R.C.P., Carvalho, E.V.M.M., Bezerra, R.S., & De Carvalho, L.B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci. Total Environ., 441, 141 150. https://doi.org/10.1016/j.scitotenv.2012.09.058
  • Bahadori, M.B., Dinparast, L., Valizadeh, H., Farimani, M.M., & Ebrahimi, S.N. (2016). Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot., 106, 1 4. https://doi.org/10.1016/j.sajb.2015.12.003
  • Bastianetto, S., Ramassamy, C., Dore, S., Christen, Y., Poirier, J., & Quirion, R. (2000). The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur. J Neurosci., 12(6), 1882-1890. https://doi.org/10.1046/j.1460-9568.2000.00069.x
  • Blois, M.S., (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J. Agric. Food Chem., 55(19), 7879 7885. https://doi.org/10.1021/jf0715323
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C.T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J. Enzyme Inhib. Med. Chem., 34(1), 429-437. https://doi.org/10.1080/14756366.2018.1543288
  • Chang, D., Liu, J., Bilinski, K., Xu, L., Steiner, G.Z., Seto, S.W., & Bensoussan, A. (2016). Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-based Complementary and Alternative Medi., 2016, 1-15. https://doi.org/10.1155/2016/7293626
  • Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., & Daborn, P.J. (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci., 106(14), 5731-5736. https://doi.org/10.1073/pnas.0812141106
  • Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., & Vasic, V.M. (2013). Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharm., 11(3), 315-335. https://doi.org/10.2174/1570159x11311030006
  • Dave, K. R., Syal, A. R., & Katyare, S. S. (2000). Tissue Cholinesterases. A Comparative Study of Their Kinetic Properties. Z Naturforsch. C, 55(1-2), 100-108. https://doi.org/10.1515/znc-2000-1-219
  • Depetris-Chauvin, A., Galagovsky, D., Chevalier, C., Maniere, G., & Grosjean, Y. (2017). Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci. Rep., 7(1). https://doi.org/10.1038/s41598-017-14589-1
  • Dhifi, W., Mnif, W., Ouerhani, B., & Ghrissi, K. (2012). Chemical Composition and Antibacterial Activity of Essential Oil from the Seeds of Pistacia terebinthus Grown in Tunisia. J. Essent. Oil Beari. Plants, 15(4), 582 588. https://doi.org/10.1080/0972060x.2012.10644092
  • Dogan, S., Diken, M. E., & Dogan, M. (2010). Antioxidant, phenolic and protein contents of some medicinal plants. J. Med. Plant Res., 4(23), 2566 2572. https://doi.org/10.5897/jmpr10.626
  • Doğan, S., Diken, M.E., Turhan, Y., Alan, Ü., Doğan, M., Alkan, M. (2011). Characterization and inhibition of Rosmarinus officinalis L. polyphenoloxidase. Eur. Food Res.Technol., 233, 293–301.
  • Durak, M.Z., & Uçak, G., (2015). Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk J Agric For., 39, 10-19. https://doi.org/10.3906/tar-1403-63
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. pharmacol., 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Feng, Y., & Wang, X. (2012). Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev, 2012, 472932. https://doi.org/10.1155/2012/472932
  • Fernández-López, J., Zhi, N., Aleson-Carbonell, L., Pérez-Alvarez, J.A., & Kuri, V. (2005). Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci., 69(3), 371-380. https://doi.org/10.1016/j.meatsci.2004.08.004
  • Fu, A.L., Li, Q., Dong, Z.H., Huang, S.J., Wang, Y.X., & Sun, M.J. (2004). Alternative therapy of Alzheimer's disease via supplementation with choline acetyltransferase. Neurosci. Lett., 368(3), 258-262. https://doi.org/10.1016/j.neulet.2004.05.116
  • Gonzalez-Burgos, E., & Gomez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem., 19(31), 5319-5341. https://doi.org/10.2174/092986712803833335
  • Johari, M.A., & Khong, H.Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Adv. Pharmacol. Sci., 2019, 7428593. https://doi.org/10.1155/2019/7428593
  • Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 4, 27-30.
  • Kilic, T., Yildiz, Y.K., Goren, A.C., Tumen, G., & Topcu, G. (2003). Phytochemical Analysis of Some Sideritis Species of Turkey. Chem. Nat. Compd., 39(5), 453-456. https://doi.org/10.1023/b:conc.0000011119.53554.9c
  • Liu, Q.F., Lee, J.H., Kim, Y.-M., Lee, S., Hong, Y.K., Hwang, S., . . . Cho, K.S. (2015). In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol. Pharm. Bull., 38(12), 1891-1901. https://doi.org/10.1248/bpb.b15-00459
  • Macedo, G.E., Gomes, K.K., Rodrigues, N.R., Martins, I.K., Wallau, G.D.L., Carvalho, N.R. D., . . . Posser, T. (2017). Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster.Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 198, 45-57. https://doi.org/10.1016/j.cbpc.2017.05.004
  • Orhan E.I., Senol, F.S., Gulpinar, A.R., Sekeroglu, N., Kartal, M., & Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food chem., 130(4), 882-888. https://doi.org/10.1016/j.foodchem.2011.07.119
  • Orhan, I., Aslan, S., Kartal, M., Şener, B., & Hüsnü Can Başer, K. (2008). Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food chem., 108(2), 663-668. https://doi.org/10.1016/j.foodchem.2007.11.023
  • Ozarowski, M., Mikolajczak, P.L., Bogacz, A., Gryszczynska, A., Kujawska, M., Jodynis-Liebert, J., . . . Mrozikiewicz, P.M. (2013). Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia, 91, 261-271. https://doi.org/10.1016/j.fitote.2013.09.012
  • Ozarowski, M., Mikolajczak, P.L., Piasecka, A., Kujawski, R., Bartkowiak-Wieczorek, J., Bogacz, A., . . . Seremak- Mrozikiewicz, A. (2017). Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats. Physiol. Behav., 173, 223 230. https://doi.org/10.1016/j.physbeh.2017.02.019
  • Perry, N.S.L., Houghton, P.J., Theobald, A., Jenner, P., & Perry, E.K. (2000). In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulae folia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol., 52(7), 895 902. https://doi.org/10.1211/0022357001774598
  • Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol., 545(1), 51-64. https://doi.org/10.1016/j.ejphar.2006.06.025
  • Rand, M.D., Montgomery, S.L., Prince, L., & Vorojeikina, D. (2014). Developmental toxicity assays using the Drosophila model. Curr. Protoc. Toxicol., 59(1). https://doi.org/10.1002/0471140856.tx0112s59
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Riaz, B., Zahoor, M.K., Zahoor, M.A., Majeed, H.N., Javed, I., Ahmad, A., . . . Sultana, K. (2018). Toxicity, phytochemical vomposition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evid Based Complement Alternat Med, 2018, 2325659. https://doi.org/10.1155/2018/2325659
  • Şenol, F.S., Orhan, I., Celep, F., Kahraman, A., Doğan, M., Yilmaz, G., & Şener, B. (2010). Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food chem., 120(1), 34-43. https://doi.org/10.1016/j.foodchem.2009.09.066
  • Wang, R., Yan, H., & Tang, X.C. (2006). Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin., 27(1), 1-26. https://doi.org/10.1111/j.1745-7254.2006.00255.x
  • Yakovleva, E.U., Naimark, E.B., & Markov, A.V. (2016). Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity. Biochem. (Moscow), 81(12), 1445-1460. https://doi.org/10.1134/s0006297916120063
  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. https://doi.org/10.1016/j.foodcont.2015.05.032
  • Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid. Med. Cell. Longev., 2013, 316523. https://doi.org/10.1155/2013/316523
There are 41 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Mehmet Emin Diken 0000-0003-3349-939X

Begümhan Yılmaz 0000-0002-8446-1116

Publication Date March 10, 2022
Submission Date December 5, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Diken, M. E., & Yılmaz, B. (2022). Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants. International Journal of Secondary Metabolite, 9(1), 27-42. https://doi.org/10.21448/ijsm.1032863
International Journal of Secondary Metabolite

e-ISSN: 2148-6905