Thyme species produce a wide variety of phenolic compounds including tannins, phenolic acids, and flavonoids. Thymus atlanticus (T. atlanticus) and Thymus willdenowii (T. willdenowii) are important thyme species in the southeast of Morocco, with numerous biological properties. The polyphenolic extracts of these two thyme species were obtained using ethanol through Soxhlet apparatus. Antioxidant (DPPH, FRAP, and TAC methods), antihemolytic (2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) induced hemolysis test), hypolipidemic (3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity inhibition test), and anti-inflammatory (protein denaturation inhibition) effects of extracts were carried out using in vitro methods. The results showed that the polyphenolic extracts of these two species revealed important amounts of phenolic compounds. The contents of flavonoids were significant in the two species, while the contents of tannins and anthocyanin were very low. T. atlanticus showed an important antioxidant activity and a considerable antihemolytic effect in AAPH-induced hemolysis test (IC50 = 0.29 mg/mL), while T. willdenowii showed an important anti-inflammatory activity in heat-induced protein denaturation test (IC50 = 1.61 mg/mL). Moreover, both extracts at a dose of 20 µg/mL showed an important in vitro hypolipidemic activity by inhibiting HMG-CoA reductase activity (T. willdenowii: 51.16 %; T. atlanticus: 62.83 %). In conclusion, T. willdenowii and T. atlanticus extracts have considerable antioxidant, antihemolytic, hypolipidemic, and anti-inflammatory effects. The richness of these species in polyphenols gives them a large specter of biological properties, making them a valuable source of natural bioactive compounds that could prevent or treat various diseases.
CNRST
Thyme species produce a wide variety of phenolic compounds including tannins, phenolic acids, and flavonoids. Thymus atlanticus (T. atlanticus) and Thymus willdenowii (T. willdenowii) are important thyme species in the southeast of Morocco, with numerous biological properties. The polyphenolic extracts of these two thyme species were obtained using ethanol through Soxhlet apparatus. Antioxidant (DPPH, FRAP, and TAC methods), antihemolytic (2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) induced hemolysis test), hypolipidemic (3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity inhibition test), and anti-inflammatory (protein denaturation inhibition) effects of extracts were carried out using in vitro methods. The results showed that the polyphenolic extracts of these two species revealed important amounts of phenolic compounds. The contents of flavonoids were significant in the two species, while the contents of tannins and anthocyanin were very low. T. atlanticus showed an important antioxidant activity and a considerable antihemolytic effect in AAPH-induced hemolysis test (IC50 = 0.29 mg/mL), while T. willdenowii showed an important anti-inflammatory activity in heat-induced protein denaturation test (IC50 = 1.61 mg/mL). Moreover, both extracts at a dose of 20 µg/mL showed an important in vitro hypolipidemic activity by inhibiting HMG-CoA reductase activity (T. willdenowii: 51.16 %; T. atlanticus: 62.83 %). In conclusion, T. willdenowii and T. atlanticus extracts have considerable antioxidant, antihemolytic, hypolipidemic, and anti-inflammatory effects. The richness of these species in polyphenols gives them a large specter of biological properties, making them a valuable source of natural bioactive compounds that could prevent or treat various diseases.
Primary Language | English |
---|---|
Subjects | Pharmacology and Pharmaceutical Sciences |
Journal Section | Articles |
Authors | |
Publication Date | March 26, 2023 |
Submission Date | April 29, 2022 |
Published in Issue | Year 2023 Volume: 10 Issue: 1 |