Antibacterial compound of Bacillus Amyloliquefaciens and Bacillus Siamensis: screening, characterization, and evaluation
Year 2023,
Volume: 10 Issue: 2, 175 - 189, 16.06.2023
Rajendrabhai Vasaıt
,
Shital Bhamare
Sayali Jamdhade
Yogita Savkar
Abstract
This study was aimed at isolating potential antimicrobial compound (AMC) producing bacteria. AMC produced by a Bacillus species was evaluated further for its antimicrobial potential. Antimicrobial compound-producing bacteria were isolated from the soil of crop fields from the local region of Satana, Nashik (India), and tested against clinical isolates. Both isolates exhibited remarkable antibacterial potential against Gram-positive and Gram-negative clinical isolates. The AMCs of both SYS 1 and SYS 2 exhibited excellent antibacterial activity against Salmonella paratyphi B and Staphylococcus aureus. Both AMC-producing isolates were characterized and identified. Bacillus species SYS 1 and SYS 2 were identified as Bacillus amyloliquefaciens SYS 1 and Bacillus siamensis SYS 2, respectively. The highest antimicrobial activity of AMC produced by Bacillus amyloliquefaciens SYS 1 was exhibited against Salmonella paratyphi B (28 mm), followed by Staphylococcus aureus (26 mm). Bacillus siamensis SYS 2 AMC extracted by the solvent ethyl acetate exerted the highest antimicrobial activity against Salmonella paratyphi B (18 mm), followed by Staphylococcus aureus (16 mm). A partial characterization of the AMC was conducted and evaluated to contain amino acids and proteins. A higher total protein content of 17.9 μg/mL was estimated in the partially purified AMC of Bacillus amyloliquefaciens SYS 1. A detailed evaluation of the structural characteristics of AMC could prove its importance in commercial applications.
Thanks
The authors are thankful to the Principal and Head of the Department of Microbiology, K.A.A.N.M. Sonawane ASC College, Satana, for providing laboratory facilities to carry out the research work and their inspiring help.
References
- Abriouel, H., Franz, C.M., Ben Omar, N., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201 232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Aunpad, R., & Na-Bangchang, K. (2007). Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Current Microbiology, 55(4), 308–313. https://doi.org/10.1007/s00284-006-0632-2
- Bergey, D.H., & Holt, J.G. (2000). Bergey’s manual of determinative bacteriology (9th ed). Lippincott Williams & Wilkins.
- Bizani, D., Dominguez, A.P.M., & Brandelli, A. (2005). Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Letters in Applied Microbiology, 41(3), 269–273. https://doi.org/10.1111/j.1472-765X.2005.01748.x
- Brogden, N.K., & Brogden, K.A. (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 38(3), 217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004
- Cladera-Olivera, F., Caron, G.R., & Brandelli, A. (2004). Bacteriocin-like substance production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38(4), 251–256. https://doi.org/10.1111/j.1472-765X.2004.01478.x, PubMed: 15214721
- Cherif, A., Chehimi, S., Limem, F., Hansen, B.M., Hendriksen, N.B., Daffonchio, D., & Boudabous, A. (2003). Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95(5), 990 1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Cotter, P.D., Ross, R.P., & Hill, C. (2013). Study on bacteriocins a viable alternative to antibiotics? Nature Reviews in Microbiology, 11, 95–105.
- Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. & Mahillon, J. (2019). Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology. 10:302. https://doi.org/10.3389/fmicb.2019.00302
- Donadio, S., Maffioli, S., Monciardini, P., Sosio, M., & Jabes, D. (2010). Antibiotic discovery in the twenty-first century: Current trends and future perspectives. Journal of Antibiotics, 63(8), 423–430. https://doi.org/10.1038/ja.2010.62
- Elmaidomy, A.H., Shady, N.H., Abdeljawad, K.M., Elzamkan, M.B., Helmy, H.H., Tarshan, E.A., Adly, A.N., Hussien, Y.H., Sayed, N.G., Zayed, A., & Abdelmohsen, U.R. (2022). Antimicrobial potentials of natural products against multidrug resistance pathogens: 2022a comprehensive review. RSC Advances, 12(45), 29078 29102. https://doi.org/10.1039/d2ra04884a
- Geraldi, A., Famunghui, M., Abigail, M., Siona Saragih, C.F., Febitania, D., Elmarthenez, H., Putri, C.A., Putri Merdekawati, U.A.S., Sadila, A.Y., & Wijaya, N.H. (2022). Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia. BIO Integration, 3(3), 132–137. https://doi.org/10.15212/bioi-2022-0005
- Gholam, H.E., Zahra, K.H., & Shah, A.A. (2014). Study on isolation partial purification and characterization of an antimicrobial compound produced by Bacllus atrophaeus, Jundishpur. Journal of Microbiology, 7, e11802.
- Hammami, R., Fernandez, B., Lacroix, C., & Fliss, I. (2013). Anti-infective properties of bacteriocins: An update. Cellular and Molecular Life Sciences, 70(16), 2947–2967. https://doi.org/10.1007/s00018-012-1202-3
- Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779
- Jayaraman, J. (2007). Study on laboratory manual in biochemistry (1st ed), New Age International Private Limited Publish.
- Jenssen, H., Hamill, P., & Hancock, R.E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491–511. https://doi.org/10.1128/CMR.00056-05
- Jeyakumar, J.M.J., & Zhang, M. (2022). Bacillus amyloliquefaciens (RO) the source of antimicrobial compounds of sugarcane pathogen. Himalayan Journal of Agriculture. https://doi.org/10.47310/Hja.2022.v03i01.002
- Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110, PubMed: 31287310
- Lawton, E.M., Paul, D., Cotter, C.H., & Ross, P.R. (2006). Study on identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiology Letters, 2, 64–71.
- Lin, C., Tsai, C.H., Chen, P.Y., Wu, C.Y., Chang, Y.L., Yang, Y.L., & Chen, Y.L. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLOS ONE, 13(4), e0196520. https://doi.org/10.1371/journal.pone.0196520
- Makkar, R.S., & Cameotra, S.S. (2002). An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 58(4), 428–434. https://doi.org/10.1007/s00253-001-0924-1
- Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moosazadeh Moghaddam, M., & Mirnejad, R. (2018). Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance, 24(6), 747–767. https://doi.org/10.1089/mdr.2017.0392
- Moldes, A.B., Rodríguez-López, L., Rincón-Fontán, M., López-Prieto, A., Vecino, X., Cruz, J.M., & Cruz, J.M. (2021). Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview. International Journal of Molecular Sciences, 22(5), 2371, 33673442. https://doi.org/10.3390/ijms22052371
- Oscariz, J.C., Lasa, I., & Pissabarro, A.G. (1999). Study on detection and characterization of cerien 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. Microbiology Letters, 1, 337–341.
- Pálffy, R., Gardlík, R., Behuliak, M., Kadasi, L., Turna, J., & Celec, P. (2009). On the physiology and pathophysiology of antimicrobial peptides. Molecular Medicine, 15(1–2), 51–59. https://doi.org/10.2119/molmed.2008.00087
- Parish, M. E., & Davidson, P. M. (1993). Methods for evaluation. In Antimicrobials in foods (2nd ed) (pp. 597–615). Marcel Dekker, Inc.
- Pattnaik, P., Glover, S., & Batish, V.K. (2005). Study on effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiology Research, 160, 213–218.
- Peláez, F. (2006). The historical delivery of antibiotics from microbial natural products-Can history repeat? Biochemistry and Pharmacology, 30, 981 990. https://doi.org/10.1016/j.bcp.2005.10.010
- Piddock, L.J. (1990). Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. Antimicrobial agents research group. Journal of Applied Bacteriology, 68(4), 307–318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
- Raheem, N., & Straus, S.K. (2019). Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Frontiers in Microbiology, 10, 2866. https://doi.org/10.3389/fmicb.2019.02866
- Riley, M.A., & Wertz, J.E. (2002). Study on bacteriocins: Evolution ecology and application. Annual Reviews in Microbiology, 56, 117–137.
- Rotem, S., & Mor, A. (2009). Antimicrobial peptide mimics for improved therapeutic properties. Biochimica et Biophysica Acta, 1788(8), 1582 1592. https://doi.org/10.1016/j.bbamem.2008.10.020
- Sang, Y., & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Animal Health Research Reviews, 9(2), 227–235. https://doi.org/10.1017/S1466252308001497
- Sharma, G., Dang, S., Gupta, S. & Gabrani, R. (2018). Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical principles and Practice, 27, 186-192. https://doi.org/10.1159/000487306
- Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Stoica, R.M., Moscovici, M., Tomulescu, C., Cășărică, A., Băbeanu, N., Popa, O., & Kahraman, H.A. (2019). Antimicrobial compounds of the genus Bacillus: A review. Romanian Biotechnological Letters, 24(6), 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
- Sumi, C.D., Yang, B.W., Yeo, In-Cheol, & Hahm, Y.T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 2015, 93-103. https://dx.doi.org/10.1139/cjm-2014-0613
- Vijayalakshmi, K., Premalatha, A., & Suseela, R. (2011). Study on production and antimicrobial potential of a broad spectrum antimicrobial protein from A new strain of Bacillus amyloliquefaciens MBL 27. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 243–249.
- Von, D.H. (1995). Peptides Study on In Genetics and Biochemistry of antibiotic production. I C. Vining & C. Stuttard (Eds.) (pp. 129–171). Butterworth-Heinemann.
- Wang, Y., Zhu, X., Bie, X., Lu, F., Zhang, C., Yao, S., & Lu, Z. (2014). Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying. LWT–Food Science and Technology, 56(2), 502–507. https://doi.org/10.1016/j.lwt.2013.11.041
- Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J., & Yang, L. (2015). Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23(4), 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
- Xie, J., Zhang, R., Shang, C., & Guo, Y. (2009). Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. African Journal of Biotechnology, 8, 5611–5619.
- Xie, Y.D., Peng Q. J., Ji, Y.Y., Xie, A.L., Yang, L., Mu, S.Z., Li, Z., He, T.X., Xiao, Y., Zhao, J.Y. & Zhang, Q.Y. (2021). Isolation and Identification of Antibacterial Bioactive Compounds from Bacillus megaterium L2. Frontiers in Microbiology, 12, 645484. https://doi.org/10.3389/fmicb.2021.645484
Antibacterial compound of Bacillus Amyloliquefaciens and Bacillus Siamensis: screening, characterization, and evaluation
Year 2023,
Volume: 10 Issue: 2, 175 - 189, 16.06.2023
Rajendrabhai Vasaıt
,
Shital Bhamare
Sayali Jamdhade
Yogita Savkar
Abstract
This study was aimed at isolating potential antimicrobial compound (AMC) producing bacteria. AMC produced by a Bacillus species was evaluated further for its antimicrobial potential. Antimicrobial compound-producing bacteria were isolated from the soil of crop fields from the local region of Satana, Nashik (India), and tested against clinical isolates. Both isolates exhibited remarkable antibacterial potential against Gram-positive and Gram-negative clinical isolates. The AMCs of both SYS 1 and SYS 2 exhibited excellent antibacterial activity against Salmonella paratyphi B and Staphylococcus aureus. Both AMC-producing isolates were characterized and identified. Bacillus species SYS 1 and SYS 2 were identified as Bacillus amyloliquefaciens SYS 1 and Bacillus siamensis SYS 2, respectively. The highest antimicrobial activity of AMC produced by Bacillus amyloliquefaciens SYS 1 was exhibited against Salmonella paratyphi B (28 mm), followed by Staphylococcus aureus (26 mm). Bacillus siamensis SYS 2 AMC extracted by the solvent ethyl acetate exerted the highest antimicrobial activity against Salmonella paratyphi B (18 mm), followed by Staphylococcus aureus (16 mm). A partial characterization of the AMC was conducted and evaluated to contain amino acids and proteins. A higher total protein content of 17.9 μg/mL was estimated in the partially purified AMC of Bacillus amyloliquefaciens SYS 1. A detailed evaluation of the structural characteristics of AMC could prove its importance in commercial applications.
References
- Abriouel, H., Franz, C.M., Ben Omar, N., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201 232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Aunpad, R., & Na-Bangchang, K. (2007). Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Current Microbiology, 55(4), 308–313. https://doi.org/10.1007/s00284-006-0632-2
- Bergey, D.H., & Holt, J.G. (2000). Bergey’s manual of determinative bacteriology (9th ed). Lippincott Williams & Wilkins.
- Bizani, D., Dominguez, A.P.M., & Brandelli, A. (2005). Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Letters in Applied Microbiology, 41(3), 269–273. https://doi.org/10.1111/j.1472-765X.2005.01748.x
- Brogden, N.K., & Brogden, K.A. (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 38(3), 217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004
- Cladera-Olivera, F., Caron, G.R., & Brandelli, A. (2004). Bacteriocin-like substance production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38(4), 251–256. https://doi.org/10.1111/j.1472-765X.2004.01478.x, PubMed: 15214721
- Cherif, A., Chehimi, S., Limem, F., Hansen, B.M., Hendriksen, N.B., Daffonchio, D., & Boudabous, A. (2003). Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95(5), 990 1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Cotter, P.D., Ross, R.P., & Hill, C. (2013). Study on bacteriocins a viable alternative to antibiotics? Nature Reviews in Microbiology, 11, 95–105.
- Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. & Mahillon, J. (2019). Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology. 10:302. https://doi.org/10.3389/fmicb.2019.00302
- Donadio, S., Maffioli, S., Monciardini, P., Sosio, M., & Jabes, D. (2010). Antibiotic discovery in the twenty-first century: Current trends and future perspectives. Journal of Antibiotics, 63(8), 423–430. https://doi.org/10.1038/ja.2010.62
- Elmaidomy, A.H., Shady, N.H., Abdeljawad, K.M., Elzamkan, M.B., Helmy, H.H., Tarshan, E.A., Adly, A.N., Hussien, Y.H., Sayed, N.G., Zayed, A., & Abdelmohsen, U.R. (2022). Antimicrobial potentials of natural products against multidrug resistance pathogens: 2022a comprehensive review. RSC Advances, 12(45), 29078 29102. https://doi.org/10.1039/d2ra04884a
- Geraldi, A., Famunghui, M., Abigail, M., Siona Saragih, C.F., Febitania, D., Elmarthenez, H., Putri, C.A., Putri Merdekawati, U.A.S., Sadila, A.Y., & Wijaya, N.H. (2022). Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia. BIO Integration, 3(3), 132–137. https://doi.org/10.15212/bioi-2022-0005
- Gholam, H.E., Zahra, K.H., & Shah, A.A. (2014). Study on isolation partial purification and characterization of an antimicrobial compound produced by Bacllus atrophaeus, Jundishpur. Journal of Microbiology, 7, e11802.
- Hammami, R., Fernandez, B., Lacroix, C., & Fliss, I. (2013). Anti-infective properties of bacteriocins: An update. Cellular and Molecular Life Sciences, 70(16), 2947–2967. https://doi.org/10.1007/s00018-012-1202-3
- Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779
- Jayaraman, J. (2007). Study on laboratory manual in biochemistry (1st ed), New Age International Private Limited Publish.
- Jenssen, H., Hamill, P., & Hancock, R.E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491–511. https://doi.org/10.1128/CMR.00056-05
- Jeyakumar, J.M.J., & Zhang, M. (2022). Bacillus amyloliquefaciens (RO) the source of antimicrobial compounds of sugarcane pathogen. Himalayan Journal of Agriculture. https://doi.org/10.47310/Hja.2022.v03i01.002
- Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110, PubMed: 31287310
- Lawton, E.M., Paul, D., Cotter, C.H., & Ross, P.R. (2006). Study on identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiology Letters, 2, 64–71.
- Lin, C., Tsai, C.H., Chen, P.Y., Wu, C.Y., Chang, Y.L., Yang, Y.L., & Chen, Y.L. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLOS ONE, 13(4), e0196520. https://doi.org/10.1371/journal.pone.0196520
- Makkar, R.S., & Cameotra, S.S. (2002). An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 58(4), 428–434. https://doi.org/10.1007/s00253-001-0924-1
- Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moosazadeh Moghaddam, M., & Mirnejad, R. (2018). Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance, 24(6), 747–767. https://doi.org/10.1089/mdr.2017.0392
- Moldes, A.B., Rodríguez-López, L., Rincón-Fontán, M., López-Prieto, A., Vecino, X., Cruz, J.M., & Cruz, J.M. (2021). Synthetic and bio-derived surfactants versus microbial biosurfactants in the cosmetic industry: An overview. International Journal of Molecular Sciences, 22(5), 2371, 33673442. https://doi.org/10.3390/ijms22052371
- Oscariz, J.C., Lasa, I., & Pissabarro, A.G. (1999). Study on detection and characterization of cerien 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. Microbiology Letters, 1, 337–341.
- Pálffy, R., Gardlík, R., Behuliak, M., Kadasi, L., Turna, J., & Celec, P. (2009). On the physiology and pathophysiology of antimicrobial peptides. Molecular Medicine, 15(1–2), 51–59. https://doi.org/10.2119/molmed.2008.00087
- Parish, M. E., & Davidson, P. M. (1993). Methods for evaluation. In Antimicrobials in foods (2nd ed) (pp. 597–615). Marcel Dekker, Inc.
- Pattnaik, P., Glover, S., & Batish, V.K. (2005). Study on effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiology Research, 160, 213–218.
- Peláez, F. (2006). The historical delivery of antibiotics from microbial natural products-Can history repeat? Biochemistry and Pharmacology, 30, 981 990. https://doi.org/10.1016/j.bcp.2005.10.010
- Piddock, L.J. (1990). Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. Antimicrobial agents research group. Journal of Applied Bacteriology, 68(4), 307–318. https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
- Raheem, N., & Straus, S.K. (2019). Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Frontiers in Microbiology, 10, 2866. https://doi.org/10.3389/fmicb.2019.02866
- Riley, M.A., & Wertz, J.E. (2002). Study on bacteriocins: Evolution ecology and application. Annual Reviews in Microbiology, 56, 117–137.
- Rotem, S., & Mor, A. (2009). Antimicrobial peptide mimics for improved therapeutic properties. Biochimica et Biophysica Acta, 1788(8), 1582 1592. https://doi.org/10.1016/j.bbamem.2008.10.020
- Sang, Y., & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Animal Health Research Reviews, 9(2), 227–235. https://doi.org/10.1017/S1466252308001497
- Sharma, G., Dang, S., Gupta, S. & Gabrani, R. (2018). Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical principles and Practice, 27, 186-192. https://doi.org/10.1159/000487306
- Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Stoica, R.M., Moscovici, M., Tomulescu, C., Cășărică, A., Băbeanu, N., Popa, O., & Kahraman, H.A. (2019). Antimicrobial compounds of the genus Bacillus: A review. Romanian Biotechnological Letters, 24(6), 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
- Sumi, C.D., Yang, B.W., Yeo, In-Cheol, & Hahm, Y.T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 2015, 93-103. https://dx.doi.org/10.1139/cjm-2014-0613
- Vijayalakshmi, K., Premalatha, A., & Suseela, R. (2011). Study on production and antimicrobial potential of a broad spectrum antimicrobial protein from A new strain of Bacillus amyloliquefaciens MBL 27. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 243–249.
- Von, D.H. (1995). Peptides Study on In Genetics and Biochemistry of antibiotic production. I C. Vining & C. Stuttard (Eds.) (pp. 129–171). Butterworth-Heinemann.
- Wang, Y., Zhu, X., Bie, X., Lu, F., Zhang, C., Yao, S., & Lu, Z. (2014). Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying. LWT–Food Science and Technology, 56(2), 502–507. https://doi.org/10.1016/j.lwt.2013.11.041
- Wang, T., Liang, Y., Wu, M., Chen, Z., Lin, J., & Yang, L. (2015). Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23(4), 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
- Xie, J., Zhang, R., Shang, C., & Guo, Y. (2009). Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. African Journal of Biotechnology, 8, 5611–5619.
- Xie, Y.D., Peng Q. J., Ji, Y.Y., Xie, A.L., Yang, L., Mu, S.Z., Li, Z., He, T.X., Xiao, Y., Zhao, J.Y. & Zhang, Q.Y. (2021). Isolation and Identification of Antibacterial Bioactive Compounds from Bacillus megaterium L2. Frontiers in Microbiology, 12, 645484. https://doi.org/10.3389/fmicb.2021.645484