Chemical composition and potent antibacterial activities of colony-forming cyanobacteria, Desmonostoc muscorum (Nostocales, Cyanophyceae)
Year 2024,
Volume: 11 Issue: 3, 522 - 532, 29.08.2024
Eldrin Arguelles
Abstract
Cyanobacteria are important natural sources of biomolecules and active compounds with promising biological activities against a wide range of microbial pathogens. The study aimed to evaluate the chemical composition and antibacterial activities of colony-forming cyanobacteria, Desmonostoc muscorum. Proximate analysis showed that D. muscorum biomass possesses high concentration of carbohydrates (35.50 ± 0.12%), protein (20.19 ± 0.03%), and ash (16.90 ± 0.02%). The elemental composition of D. muscorum biomass is in a decreasing order of Ca > Mn > Mg > K > Na > Fe> Zn > Cr > Pb > Cu > Cd. Also, D. muscorum extract exhibited potent antibacterial activities against Staphylococcus saprophyticus, Methicillin-Resistant Staphylococcus aureus, and Listeria monocytogenes with MIC values of 125 μg/mL, 125 μg/mL, and 250 μg/mL, respectively. The current study documents the promising use of D. muscorum as good sources of microelements and compounds which can be harness for food and medical applications.
Ethical Statement
This research study complies with research and publishing ethics. The scientific and legal responsibility for manuscripts published in IJSM belongs to the author(s).
Supporting Institution
Philippine National Collection of Microorganisms (PNCM) National Institute of Molecular Biology and Biotechnology (BIOTECH) University of the Philippine Los Baños
Project Number
UPLB Fund Code: 4700004
Thanks
The author would like to thank the Philippine National Collection of Microorganisms, BIOTECH-UPLB for providing the funds needed for this study. Also, the author acknowledges the suggestions and comments of the reviewers for the improvement of the paper.
References
- Arguelles, E.D.L.R. (2023). Chemical composition and In vitro analysis of antibacterial Activity of Acutodesmus dimorphus (Turpin) P.M. Tsarenko (Scenedesmaceae, Chlorophyta). Journal of Faculty of Pharmacy of Ankara University, 47(1), 169-178. https://doi.org/10.33483/jfpau.1151637
- Arguelles, E.D.L.R. (2022). Total phenolic content and In vitro analysis of antioxidant, antibacterial, and alpha-glucosidase inhibition properties of Chroococcus minutus (Kützing) Nägeli (Chroococcales, Cyanobacteria). Journal of Faculty of Pharmacy of Ankara University, 46(1), 170-181. https://doi.org/10.33483/jfpau.1005986
- Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1), 65-77.
- Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content, and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology, Biotechnology, and Environmental Sciences, 20(1), 150–158.
- Arguelles, E.D.L.R., Laurena, A.C., Monsalud, R.G., & Martinez-Goss, M.R. (2019). High lipid and protein-producing epilithic microalga, Desmodesmus sp. (U-AU2): a promising alternative feedstock for biodiesel and animal feed production. Philippine Journal of Crop Science, 44,13–23.
- Arguelles, E.D.L.R., Sapin, A.B. (2022). Proximate composition and in vitro analysis of antioxidant and antibacterial activities of Padina boryana Thivy. Science, Engineering and Health Studies, 16, 22030002. https://doi.org/10.14456/sehs.2022.2
- Arguelles, E.D.L.R., Sapin, A.B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal Science, 151(S1), 9-24. https://doi.org/10.56899/151.S1.02
- Cock, I.E., & Cheesman, M.J. (2023). A review of the antimicrobial properties of cyanobacterial natural products. Molecules, 28(20), 7127. https://doi.org/10.3390/molecules28207127
- Dussault, D., Vu, K.D., Vansach, T., Horgen, F.D., & Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118. https://doi.org/10.1016/j.foodchem.2015.11.119
- Elfita, Mardiyanto, Fitrya, Eka Larasati, J., Julinar, Widjajanti, H., & Muharni. (2019). Antibacterial activity of Cordyline fructicosa leaf extracts and its endophytic fungi extracts. Biodiversitas, 20(12), 3804–3812. https://doi.org/10.13057/biodiv/d201245
- El-Sheekh, M.M., Osman, M.E.H, Dyab, M.A., & Amer, M.S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21, 42 50. https://doi.org/10.1016/j.etap.2005.06.006
- Ganesan, P., Reegan, A.D., David, R.H.A., Gandhi, M.R., Paulraj, M.G., Al-Dhabi, N.A., & Ignacimuthu, S. (2017). Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alexandria Journal of Medicine, 53(2), 101 110. https://doi.org/10.1016/j.ajme.2016.03.004
- Hirata, K., Takashina, J., Nakagami, H., Ueyama, S., Murakami, K., Kanamori, T., & Miyamoto, K. (1996). Growth inhibition of various organisms by a violet pigment nostocine A, produced by Nostoc spongiaeforme. Bioscience, Biotechnology, and Biochemistry, 60, 1905-1906. https://doi.org/10.1271/bbb.60.1905
- Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2005). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology, 2(2), 1-5.
- Kumar, N., Singh, R.K., Mishra, S.K., Singh, A.K., & Pachouri, U.C. (2010). Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. International Journal of Microbiology Research, 2(2), 12-16.
- Li, H., Linnan, S., Chen, S., Zhao, L., Wang, H., Ding, F., Chen, H., Shi, R., Wang, Y., & Huang, Z. (2018). Physicochemical characterization and functional analysis of the polysaccharides from the edible microalga Nostoc sphaeroides. Molecules, 223, 17-508. https://doi.org/10.3390/molecules23020508
- Little, S.M., Senhorinho, G.N.A., Saleh, M., Basiliko, N., & Scott, J.A. (2021). Antibacterial compounds in green microalgae from extreme environments: a review. Algae, 36(1), 61-72. https://doi.org/10.4490/algae.2021.36.3.6
- Martinez-Goss, M.R., Arguelles, E.D.L.R., Sapin, A.B., & Almeda, R.A. (2021). Chemical Composition and In Vitro Antioxidant and Antibacterial Properties of the Edible Cyanobacterium, Nostoc commune Vaucher. Philippine Science Letters, 14, 25–35.
- Orhan, I., Wisespongpand, P., Atıcı T., & Şener, B. (2003). Toxicity propensities of some marine and fresh-water algae as their chemical defense. Journal of Faculty of Pharmacy of Ankara University, 32(1), 19–29. https://doi.org/10.1501/Eczfak_0000000384
- Preisitsch, M., Harmrolfs, K., Vansach, T., Pham, H.T.L., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H.J., Müller, R., & Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of Antibiotics, 68, 165–17. https://doi.org/10.1038/ja.2014.118
- Salehghamari, E., & Najafi, M. (2016). Isolation of biologically active Actinomycetes from untouched soils: a case study from Karaj district, Iran. Progress in Biological Sciences, 6(1), 65-74.
- Senhorinho, G.N.A., Laamanen, C.A., & Scott, J.A. (2018). Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia, 57, 432–439. https://doi.org/10.2216/17-114.1
- Shaieb, F.A., Issa, A.A., & Meragaa, A. (2014). Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Archives of Biomedical Sciences, 2(2), 34-41.
- Tibbetts, S.M., Milley, J.E., & Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109–1119. https://doi.org/10.1007/s10811-014-0428-x
- Tzima, K., Brunton, N.P., Rai, D.K. (2020). Evaluation of the impact of chlorophyll removal techniques on polyphenols in rosemary and thyme by-products. Journal of Food Biochemistry. 00: e13148.
- Yalçın, D., Erkaya, İ.A., & Erdem, B. (2022). Antimicrobial, antibiofilm potential, and anti-quorum sensing activity of silver nanoparticles synthesized from cyanobacteria Oscillatoria princeps. Environmental Science and Pollution Research, 29, 89738 89752. https://doi.org/10.1007/s11356-022-22068-y
- Yasin, D., Zafaryab, Md., Ansari, S., Ahmad, N., Khan, N.F., Zaki, A., Rizvi, M.M.A. & Fatma, T. (2019). Evaluation of antioxidant and anti-proliferative efficacy of Nostoc muscorum NCCU 442. Biocatalysis and Agricultural Biotechnology, 17, 284 293. https://doi.org/10.1016/j.bcab.2018.12.001
- Żymańczyk-Duda, E., Samson, S.O., Brzezińska-Rodak, M., & Klimek-Ochab, M. (2022). Versatile applications of cyanobacteria in biotechnology. Microorganisms, 10(12), 2318. https://doi.org/10.3390/microorganisms10122318
Chemical composition and potent antibacterial activities of colony-forming cyanobacteria, Desmonostoc muscorum (Nostocales, Cyanophyceae)
Year 2024,
Volume: 11 Issue: 3, 522 - 532, 29.08.2024
Eldrin Arguelles
Abstract
Cyanobacteria are important natural sources of biomolecules and active compounds with promising biological activities against a wide range of microbial pathogens. The study aimed to evaluate the chemical composition and antibacterial activities of colony-forming cyanobacteria, Desmonostoc muscorum. Proximate analysis showed that D. muscorum biomass possesses high concentration of carbohydrates (35.50 ± 0.12%), protein (20.19 ± 0.03%), and ash (16.90 ± 0.02%). The elemental composition of D. muscorum biomass is in a decreasing order of Ca > Mn > Mg > K > Na > Fe> Zn > Cr > Pb > Cu > Cd. Also, D. muscorum extract exhibited potent antibacterial activities against Staphylococcus saprophyticus, Methicillin-Resistant Staphylococcus aureus, and Listeria monocytogenes with MIC values of 125 μg/mL, 125 μg/mL, and 250 μg/mL, respectively. The current study documents the promising use of D. muscorum as good sources of microelements and compounds which can be harness for food and medical applications.
Project Number
UPLB Fund Code: 4700004
References
- Arguelles, E.D.L.R. (2023). Chemical composition and In vitro analysis of antibacterial Activity of Acutodesmus dimorphus (Turpin) P.M. Tsarenko (Scenedesmaceae, Chlorophyta). Journal of Faculty of Pharmacy of Ankara University, 47(1), 169-178. https://doi.org/10.33483/jfpau.1151637
- Arguelles, E.D.L.R. (2022). Total phenolic content and In vitro analysis of antioxidant, antibacterial, and alpha-glucosidase inhibition properties of Chroococcus minutus (Kützing) Nägeli (Chroococcales, Cyanobacteria). Journal of Faculty of Pharmacy of Ankara University, 46(1), 170-181. https://doi.org/10.33483/jfpau.1005986
- Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1), 65-77.
- Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content, and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology, Biotechnology, and Environmental Sciences, 20(1), 150–158.
- Arguelles, E.D.L.R., Laurena, A.C., Monsalud, R.G., & Martinez-Goss, M.R. (2019). High lipid and protein-producing epilithic microalga, Desmodesmus sp. (U-AU2): a promising alternative feedstock for biodiesel and animal feed production. Philippine Journal of Crop Science, 44,13–23.
- Arguelles, E.D.L.R., Sapin, A.B. (2022). Proximate composition and in vitro analysis of antioxidant and antibacterial activities of Padina boryana Thivy. Science, Engineering and Health Studies, 16, 22030002. https://doi.org/10.14456/sehs.2022.2
- Arguelles, E.D.L.R., Sapin, A.B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal Science, 151(S1), 9-24. https://doi.org/10.56899/151.S1.02
- Cock, I.E., & Cheesman, M.J. (2023). A review of the antimicrobial properties of cyanobacterial natural products. Molecules, 28(20), 7127. https://doi.org/10.3390/molecules28207127
- Dussault, D., Vu, K.D., Vansach, T., Horgen, F.D., & Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118. https://doi.org/10.1016/j.foodchem.2015.11.119
- Elfita, Mardiyanto, Fitrya, Eka Larasati, J., Julinar, Widjajanti, H., & Muharni. (2019). Antibacterial activity of Cordyline fructicosa leaf extracts and its endophytic fungi extracts. Biodiversitas, 20(12), 3804–3812. https://doi.org/10.13057/biodiv/d201245
- El-Sheekh, M.M., Osman, M.E.H, Dyab, M.A., & Amer, M.S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21, 42 50. https://doi.org/10.1016/j.etap.2005.06.006
- Ganesan, P., Reegan, A.D., David, R.H.A., Gandhi, M.R., Paulraj, M.G., Al-Dhabi, N.A., & Ignacimuthu, S. (2017). Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alexandria Journal of Medicine, 53(2), 101 110. https://doi.org/10.1016/j.ajme.2016.03.004
- Hirata, K., Takashina, J., Nakagami, H., Ueyama, S., Murakami, K., Kanamori, T., & Miyamoto, K. (1996). Growth inhibition of various organisms by a violet pigment nostocine A, produced by Nostoc spongiaeforme. Bioscience, Biotechnology, and Biochemistry, 60, 1905-1906. https://doi.org/10.1271/bbb.60.1905
- Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2005). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology, 2(2), 1-5.
- Kumar, N., Singh, R.K., Mishra, S.K., Singh, A.K., & Pachouri, U.C. (2010). Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. International Journal of Microbiology Research, 2(2), 12-16.
- Li, H., Linnan, S., Chen, S., Zhao, L., Wang, H., Ding, F., Chen, H., Shi, R., Wang, Y., & Huang, Z. (2018). Physicochemical characterization and functional analysis of the polysaccharides from the edible microalga Nostoc sphaeroides. Molecules, 223, 17-508. https://doi.org/10.3390/molecules23020508
- Little, S.M., Senhorinho, G.N.A., Saleh, M., Basiliko, N., & Scott, J.A. (2021). Antibacterial compounds in green microalgae from extreme environments: a review. Algae, 36(1), 61-72. https://doi.org/10.4490/algae.2021.36.3.6
- Martinez-Goss, M.R., Arguelles, E.D.L.R., Sapin, A.B., & Almeda, R.A. (2021). Chemical Composition and In Vitro Antioxidant and Antibacterial Properties of the Edible Cyanobacterium, Nostoc commune Vaucher. Philippine Science Letters, 14, 25–35.
- Orhan, I., Wisespongpand, P., Atıcı T., & Şener, B. (2003). Toxicity propensities of some marine and fresh-water algae as their chemical defense. Journal of Faculty of Pharmacy of Ankara University, 32(1), 19–29. https://doi.org/10.1501/Eczfak_0000000384
- Preisitsch, M., Harmrolfs, K., Vansach, T., Pham, H.T.L., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H.J., Müller, R., & Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of Antibiotics, 68, 165–17. https://doi.org/10.1038/ja.2014.118
- Salehghamari, E., & Najafi, M. (2016). Isolation of biologically active Actinomycetes from untouched soils: a case study from Karaj district, Iran. Progress in Biological Sciences, 6(1), 65-74.
- Senhorinho, G.N.A., Laamanen, C.A., & Scott, J.A. (2018). Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia, 57, 432–439. https://doi.org/10.2216/17-114.1
- Shaieb, F.A., Issa, A.A., & Meragaa, A. (2014). Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Archives of Biomedical Sciences, 2(2), 34-41.
- Tibbetts, S.M., Milley, J.E., & Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109–1119. https://doi.org/10.1007/s10811-014-0428-x
- Tzima, K., Brunton, N.P., Rai, D.K. (2020). Evaluation of the impact of chlorophyll removal techniques on polyphenols in rosemary and thyme by-products. Journal of Food Biochemistry. 00: e13148.
- Yalçın, D., Erkaya, İ.A., & Erdem, B. (2022). Antimicrobial, antibiofilm potential, and anti-quorum sensing activity of silver nanoparticles synthesized from cyanobacteria Oscillatoria princeps. Environmental Science and Pollution Research, 29, 89738 89752. https://doi.org/10.1007/s11356-022-22068-y
- Yasin, D., Zafaryab, Md., Ansari, S., Ahmad, N., Khan, N.F., Zaki, A., Rizvi, M.M.A. & Fatma, T. (2019). Evaluation of antioxidant and anti-proliferative efficacy of Nostoc muscorum NCCU 442. Biocatalysis and Agricultural Biotechnology, 17, 284 293. https://doi.org/10.1016/j.bcab.2018.12.001
- Żymańczyk-Duda, E., Samson, S.O., Brzezińska-Rodak, M., & Klimek-Ochab, M. (2022). Versatile applications of cyanobacteria in biotechnology. Microorganisms, 10(12), 2318. https://doi.org/10.3390/microorganisms10122318