Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of high antioxidant ZnONPs produced from different fungi as alternative biomaterials

Yıl 2024, Cilt: 11 Sayı: 4, 812 - 832
https://doi.org/10.21448/ijsm.1485796

Öz

In this study, zinc oxide nanoparticles (ZnONPs), a promising alternative biomaterial, were synthesized using a non-toxic, cost-effective green synthesis approach using various fungal species (Penicillium citrinum, Fusarium solani, Aspergillus flavus and Aspergillus niger). The effect of different fungal species on the structural, optical, morphological and antimicrobial properties of ZnO nanoparticles (ZnONPs) was compared. ZnO nanoparticles (ZnONPs) crystallized in a hexagonal wurtzite structure with grain sizes ranging from 45 to 61 nm. Fungal species had a significant effect on the surface plasmon resonance (SPR) peak observed at 302 nm. ZnONPs were obtained in different morphologies such as nanodiscs, nanospheres, nanorchins and nanonuts, and it was determined that fungal species had a significant effect on these structures. The antibacterial activity of ZnONPs against Candida albicans, Streptococcus mutans, Pseudomonas aeruginosa, Eosinophilic pneumonia and Staphylococcus aureus was investigated. The effect of these nanoparticle shapes on antibacterial activity was evaluated. ZnONPs were found to have a significant antimicrobial effect especially on Candida albicans and Streptococcus mutans. ZnONPs produced only with Aspergillus niger fungus were found to have a strong antimicrobial effect especially on Staphylococcus aureus. Based on these results, the biosynthesis of ZnO nanoparticles (ZnONPs) using Penicillium citrinum, Fusarium solani, Aspergillus flavus and Aspergillus niger fungal species is proposed for the production of ZnONPs as a biomaterial with remarkable antibacterial properties and various morphologies.

Teşekkür

We would also like to thank Prof. Dr. Rasime Demirel from Eskisehir Technical University for her help in providing fungi cultures.

Kaynakça

  • Abdelhakim, H.K., El-Sayed, E.R., & Rashidi, F.B. (2020). Biosynthesis of zinc oxide nanoparticles withantimicrobial, anticancer, antioxidant and photocatalytic activities by theendophytic Alternaria tenuissima. Journal of Applied Microbiology, 128, 1634–1646. https://doi.org/10.1111/jam.14581
  • Ahmad, H., Venugopal, K., Rajagopal, K., De Britto, S., Nandini, B., Pushpalatha, H.G., & Jogaiah, S. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules, 10(3), 425. https://doi.org/10.3390/biom10030425
  • Alavi, M., & Nokhodchi, A. (2021). Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today, 26(8), 1953-1962. https://doi.org/10.1016/j.drudis.2021.03.030
  • Bhardwaj, N., Gaur, A., & Yadav, K. (2017). Effect of doping on optical properties in BiMn1−x (TE)xO3 (where x= 0.0, 0.1 and TE= Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol gel methods. Applied Physics A, 123(6), 429 436. https://doi.org/10.1007/s00339-017-1042-y
  • Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55 61. https://doi.org/10.1016/j.mssp.2014.12.053
  • Brady, N.G., O’Leary, S.L., Moormann, G.C., Singh, M. K., Watt, J., & Bachand, G.D. (2023). Mycosynthesis of Zinc Oxide Nanoparticles Exhibits Fungal Species Dependent Morphological Preference. Nano Micro Small, 19(15), 2205799. https://doi.org/10.1002/smll.202205799
  • Chauhan, R., Reddy, A., & Abraham, J., (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied Nanoscience, 5, 63–71. https://doi.org/10.1007/s13204-014-0292-7
  • Chaurasia, V., Chand N., & Bajpai, S.K. (2010). Water Sorption Properties and Antimicrobial Action of Zinc Oxide Nanoparticles-Loaded Cellulose Acetate Films. Journal of Macromolecular Sciencer Part A: Pure and Applied Chemistry, 47, 1 9. https://doi.org/10.1080/10601320903539207
  • Cooper, K.E. (1955). Theory of Antibiotic Inhibition Zones in Agar Media. Nature 176, 510–511. https://doi.org/10.1038/176510b0
  • Dhillon, G.S., Brar, S.K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi. Critical Reviews in Biotechnology, 32(1), 49 73. https://doi.org/10.3109/07388551.2010.550568
  • Guilger-Casagrande, M., & de Lima, R. (2019). Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Frontiers in Bioengineering and Biotechnology, 7(287), 1-16. https://doi.org/10.3389/fbioe.2019.00287
  • Gupta, S., Ravi, R.K., & Pathak, B. (2024). Photocatalytic Removal of Anthracene Using Zinc Oxide Nanoparticles Synthesized by Fusarium proliferatumWC416. Geomicrobiology Journal, 41(1), 72-81, 10. https://doi.org/1080/01490451.2023.2272621
  • Günay, K., Leblebici, Z., & Koca, F.D. (2021). Biosynthesis, characterization and anti-bacterial effect of zinc nanoparticles (ZnO NP). Nevşehir Journal of Science and Technology, 10(1), 56-66. https://doi.org/10.17100/nevbiltek.917256
  • Jain, N., Bhargava, A., Tarafdar, J.C., Singh, S.K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied Microbiology Biotechnology, 97, 859–869. https://doi.org/10.1007/s00253-012-3934-2
  • Jain, N., Bhargava, A., & Panwar, J., (2014). Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chemical Engineering Science, 243, 549–555. https://doi.org/10.1016/j.cej.2013.11.085
  • Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam. A., & Rajeswari, V.D. (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. Opennano, 3, 48-55. https://doi.org/10.1016/j.onano.2018.06.001
  • Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam, A., & Rajeswari, V.D. (2022). Annona reticulata leaves-assisted synthesis of zinc oxide nanoparticles and assessment of cytotoxicity and photocatalytic impact. Materials Letters, 309, 131379. https://doi.org/10.1016/j.matlet.2021.131379
  • Kumar, R.V., Vinoth, S., Baskar, V., Arun, M., & Gurusaravanan, P. (2022). Synthesis of zinc oxide nanoparticles mediated by Dictyota dichotoma endophytic fungi and its photocatalytic degradation of fast green dye and antibacterial applications. South African Journal of Botany, 15, 337-344. https://doi.org/10.1016/j.sajb.2022.03.016
  • L. Nehru, G. D. Kandasamy, V. Sekar, M. Ali Alshehri, C. Panneerselvam, A. Alasmari, & P. Kathirvel, (2023). Green synthesis of ZnO-NPs using endophytic fungal extract of Xylaria arbuscula from Blumea axillaris and its biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 51(1), 318 333. https://doi.org/10.1080/21691401.2023.2232654
  • Mahamuni Badiger, P., Ghare, V., Nikam, C., & Patil, N. (2023). The fungal infections and their inhibition by Zinc oxide nanoparticles: an alternative approach to encounter drug resistance. Nucleus, 1-19. https://doi.org/10.1007/s13237-023-00439-1
  • Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Pandiselvi, K., Kalanjiam, M.A.R., Murugan, K., & Benelli, G. (2017). Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microbial Pathogenesis, 104, 268 277. https://doi.org/10.1016/j.micpath.2017.01.029
  • Meruvu, H., Vangalapati, M., Chippada, S.C., & Bammidi, S.R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry, 4(1), 217–222.
  • Moghaddam, A.B, Namvar, F., Moniri, M., Tahir, P.M., Azizi, S., & Mohamad, R. (2015). Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules, 20, 16540 16565. https://doi.org/10.3390/molecules200916540
  • Moghaddam, A.B., Moniri, M., Azizi, S., Rahim, R.A., Ariff, A.B., Saad, W.Z., Namvar, F., Navaderi, M., & Mohamad, R. (2017). Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules, 22, 872. https://doi.org/10.3390/molecules22060872
  • Mohamed, A.A., Fouda, A., Abdel-Rahman, M.A., Hassan, S.D., El-Gamal, Salem, M.S., & Shaheen, S.S. & (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles, Biocatalysis and Agricultural Biotechnology, 19, 101103. https://doi.org/10.1016/j.bcab.2019.101103
  • Molina, D.A., Giner‑Casares, J.J., & Cano, M. (2020). Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration. Topics in Current Chemistry, 378(8), 1 17. https://doi.org/10.1007/s41061-019-0273-0
  • Moormann, G.C., & Bachand, G.D. (2021). Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates. Sand 2021, 9437R.
  • Moormann, G.C., & Bachand, G.D. (2021). Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates. Center for Intergarted Nanotechnologies (CINT), 9437R, 1-4. https://doi.org/10.2172/1817833
  • Pariona, N., Paraguay-Delgado, F., Basurto-Cereceda, S., Morales Mendoza, J.E., Hermida-Montero, L.A., & Mtz-Enriquez, A.I. (2020). Shap dependent antifungal activity of ZnO particles against phytopatogenic Fungi. Applied Nanoscience, 10, 435–43.
  • Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review Journals, 56, 978. https://doi.org/10.1103/PhysRev.56.978
  • Pesika, N.S., Stebe, K.J., & Searson, P.C. (2003). Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals. The Journal of Physical Chemistry B, 107(38), 10412–10415. https://doi.org/10.1021/jp0303218
  • Qianwei, L.I., Feixue, L.I.U., Min, L.I., Chen, C., & Gadd, G.M. (2022). Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews, 41, 31e44. https://doi.org/10.1016/j.fbr.2021.07.003
  • Rajan, A., Cherian, E., & Baskar, G. (2016). Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. International Journal of Modern Science and Technology, 1(2), 52-57.
  • Rajiv, P., Rajeshwari, S., & Venckatesh, R. (2013). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384–387
  • Sarkar, J., Ghosh, M., Mukherjee, A., Chattopadhyay, D., & Acharya, K. (2014). Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess and Biosystems Engineering, 37, 165–171. https://doi.org/10.1007/s00449-013-0982-7
  • Senthilkumar, S.R., & Sivakumar T. (2014). Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 6(6), 461–465.
  • Singh, I., & Singh, S., (2019). Study of algal mediated biosynthesis of nanoparticle: future of green nanotechnology. Current Life Sciences, 5(1), 7 14. https://doi.org/10.5281/zenodo.2666643
  • Soosen, S.M., Bose, L., & George, K.C. (2009). Optical properties of ZnO nanoparticles. Academic Review, 16(1-2), 57–65.
  • Tauc, J., & Menth, A. (1972). States in the gap. Journal of Non-Crystal Solids, 569, 8–10. https://doi.org/10.1016/0022-3093(72)90194-9
  • Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92(5), 1324. https://doi.org/10.1103/PhysRev.92.1324
  • Vlad, S., Tanase, C., Macocinschi, D., Ciobanu, C., Balaes, T., Filip, D., & Gradinaru, L.M. (2012). Antifungal behaviour of polyurethane membranes with zinc oxide nanoparticles. Journal of Nanomaterial Biostructructure, 7, 51–58.
  • Venkatesh, K.S., Palani, N.S., Krishnamoorthi, S.R., Thirumal, V., & Ilangovan, R. (2013). Fungus mediated biosynthesis and characterization of zinc oxide nanorods. AIP Conference Proceeding, 1536, 93–94. https://doi.org/10.1063/1.4810116
  • Vettumperumal, R., Kalyanaraman, S., Santoshkumar, B., & Thangavel, R. (2016). Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method. Materials Research Bulletin, 77, 101–110. https://doi.org/10.1016/j.materresbull.2016.01.015
  • Wang, L., Hu, C., & Shao, L., (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–49. https://doi.org/10.2147/IJN.S121956
  • Yavuz, İ., & Yılmaz, E.Ş. (2021), Nanoparticles with Biological Systems, Journal of Gazi University Science Faculty, 1, 93-108. https://doi.org/10.5281/zenodo.4843592
  • Yoldas, B.E., & Partlow, D.P. (1985). Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films, 129(1–2), 1–14. https://doi.org/10.1016/0040-6090(85)90089-6
  • Zeghoud, S., Hemmami, H., Seghir, B.B., Amor, I.B., Kouadri, I., Rebiai, A., Simal-Gandara, J. (2022). A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Materials Today Communications, 33, 104747. https://doi.org/10.1016/j.mtcomm.2022.104747

Comparison of high antioxidant ZnONPs produced from different fungi as alternative biomaterials

Yıl 2024, Cilt: 11 Sayı: 4, 812 - 832
https://doi.org/10.21448/ijsm.1485796

Öz

In this study, zinc oxide nanoparticles (ZnONPs), a promising alternative biomaterial, were synthesized using a non-toxic, cost-effective green synthesis approach using various fungal species (Penicillium citrinum, Fusarium solani, Aspergillus flavus and Aspergillus niger). The effect of different fungal species on the structural, optical, morphological and antimicrobial properties of ZnO nanoparticles (ZnONPs) was compared. ZnO nanoparticles (ZnONPs) crystallized in a hexagonal wurtzite structure with grain sizes ranging from 45 to 61 nm. Fungal species had a significant effect on the surface plasmon resonance (SPR) peak observed at 302 nm. ZnONPs were obtained in different morphologies such as nanodiscs, nanospheres, nanorchins and nanonuts, and it was determined that fungal species had a significant effect on these structures. The antibacterial activity of ZnONPs against Candida albicans, Streptococcus mutans, Pseudomonas aeruginosa, Eosinophilic pneumonia and Staphylococcus aureus was investigated. The effect of these nanoparticle shapes on antibacterial activity was evaluated. ZnONPs were found to have a significant antimicrobial effect especially on Candida albicans and Streptococcus mutans. ZnONPs produced only with Aspergillus niger fungus were found to have a strong antimicrobial effect especially on Staphylococcus aureus. Based on these results, the biosynthesis of ZnO nanoparticles (ZnONPs) using Penicillium citrinum, Fusarium solani, Aspergillus flavus and Aspergillus niger fungal species is proposed for the production of ZnONPs as a biomaterial with remarkable antibacterial properties and various morphologies.

Teşekkür

We would also like to thank Prof. Dr. Rasime Demirel from Eskisehir Technical University for her help in providing fungi cultures.

Kaynakça

  • Abdelhakim, H.K., El-Sayed, E.R., & Rashidi, F.B. (2020). Biosynthesis of zinc oxide nanoparticles withantimicrobial, anticancer, antioxidant and photocatalytic activities by theendophytic Alternaria tenuissima. Journal of Applied Microbiology, 128, 1634–1646. https://doi.org/10.1111/jam.14581
  • Ahmad, H., Venugopal, K., Rajagopal, K., De Britto, S., Nandini, B., Pushpalatha, H.G., & Jogaiah, S. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules, 10(3), 425. https://doi.org/10.3390/biom10030425
  • Alavi, M., & Nokhodchi, A. (2021). Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today, 26(8), 1953-1962. https://doi.org/10.1016/j.drudis.2021.03.030
  • Bhardwaj, N., Gaur, A., & Yadav, K. (2017). Effect of doping on optical properties in BiMn1−x (TE)xO3 (where x= 0.0, 0.1 and TE= Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol gel methods. Applied Physics A, 123(6), 429 436. https://doi.org/10.1007/s00339-017-1042-y
  • Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55 61. https://doi.org/10.1016/j.mssp.2014.12.053
  • Brady, N.G., O’Leary, S.L., Moormann, G.C., Singh, M. K., Watt, J., & Bachand, G.D. (2023). Mycosynthesis of Zinc Oxide Nanoparticles Exhibits Fungal Species Dependent Morphological Preference. Nano Micro Small, 19(15), 2205799. https://doi.org/10.1002/smll.202205799
  • Chauhan, R., Reddy, A., & Abraham, J., (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied Nanoscience, 5, 63–71. https://doi.org/10.1007/s13204-014-0292-7
  • Chaurasia, V., Chand N., & Bajpai, S.K. (2010). Water Sorption Properties and Antimicrobial Action of Zinc Oxide Nanoparticles-Loaded Cellulose Acetate Films. Journal of Macromolecular Sciencer Part A: Pure and Applied Chemistry, 47, 1 9. https://doi.org/10.1080/10601320903539207
  • Cooper, K.E. (1955). Theory of Antibiotic Inhibition Zones in Agar Media. Nature 176, 510–511. https://doi.org/10.1038/176510b0
  • Dhillon, G.S., Brar, S.K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi. Critical Reviews in Biotechnology, 32(1), 49 73. https://doi.org/10.3109/07388551.2010.550568
  • Guilger-Casagrande, M., & de Lima, R. (2019). Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Frontiers in Bioengineering and Biotechnology, 7(287), 1-16. https://doi.org/10.3389/fbioe.2019.00287
  • Gupta, S., Ravi, R.K., & Pathak, B. (2024). Photocatalytic Removal of Anthracene Using Zinc Oxide Nanoparticles Synthesized by Fusarium proliferatumWC416. Geomicrobiology Journal, 41(1), 72-81, 10. https://doi.org/1080/01490451.2023.2272621
  • Günay, K., Leblebici, Z., & Koca, F.D. (2021). Biosynthesis, characterization and anti-bacterial effect of zinc nanoparticles (ZnO NP). Nevşehir Journal of Science and Technology, 10(1), 56-66. https://doi.org/10.17100/nevbiltek.917256
  • Jain, N., Bhargava, A., Tarafdar, J.C., Singh, S.K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied Microbiology Biotechnology, 97, 859–869. https://doi.org/10.1007/s00253-012-3934-2
  • Jain, N., Bhargava, A., & Panwar, J., (2014). Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chemical Engineering Science, 243, 549–555. https://doi.org/10.1016/j.cej.2013.11.085
  • Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam. A., & Rajeswari, V.D. (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. Opennano, 3, 48-55. https://doi.org/10.1016/j.onano.2018.06.001
  • Kalpana, V.N., Kataru, B.A.S., Sravani, N., Vigneshwari, T., Panneerselvam, A., & Rajeswari, V.D. (2022). Annona reticulata leaves-assisted synthesis of zinc oxide nanoparticles and assessment of cytotoxicity and photocatalytic impact. Materials Letters, 309, 131379. https://doi.org/10.1016/j.matlet.2021.131379
  • Kumar, R.V., Vinoth, S., Baskar, V., Arun, M., & Gurusaravanan, P. (2022). Synthesis of zinc oxide nanoparticles mediated by Dictyota dichotoma endophytic fungi and its photocatalytic degradation of fast green dye and antibacterial applications. South African Journal of Botany, 15, 337-344. https://doi.org/10.1016/j.sajb.2022.03.016
  • L. Nehru, G. D. Kandasamy, V. Sekar, M. Ali Alshehri, C. Panneerselvam, A. Alasmari, & P. Kathirvel, (2023). Green synthesis of ZnO-NPs using endophytic fungal extract of Xylaria arbuscula from Blumea axillaris and its biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 51(1), 318 333. https://doi.org/10.1080/21691401.2023.2232654
  • Mahamuni Badiger, P., Ghare, V., Nikam, C., & Patil, N. (2023). The fungal infections and their inhibition by Zinc oxide nanoparticles: an alternative approach to encounter drug resistance. Nucleus, 1-19. https://doi.org/10.1007/s13237-023-00439-1
  • Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Pandiselvi, K., Kalanjiam, M.A.R., Murugan, K., & Benelli, G. (2017). Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microbial Pathogenesis, 104, 268 277. https://doi.org/10.1016/j.micpath.2017.01.029
  • Meruvu, H., Vangalapati, M., Chippada, S.C., & Bammidi, S.R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry, 4(1), 217–222.
  • Moghaddam, A.B, Namvar, F., Moniri, M., Tahir, P.M., Azizi, S., & Mohamad, R. (2015). Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules, 20, 16540 16565. https://doi.org/10.3390/molecules200916540
  • Moghaddam, A.B., Moniri, M., Azizi, S., Rahim, R.A., Ariff, A.B., Saad, W.Z., Namvar, F., Navaderi, M., & Mohamad, R. (2017). Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules, 22, 872. https://doi.org/10.3390/molecules22060872
  • Mohamed, A.A., Fouda, A., Abdel-Rahman, M.A., Hassan, S.D., El-Gamal, Salem, M.S., & Shaheen, S.S. & (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles, Biocatalysis and Agricultural Biotechnology, 19, 101103. https://doi.org/10.1016/j.bcab.2019.101103
  • Molina, D.A., Giner‑Casares, J.J., & Cano, M. (2020). Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration. Topics in Current Chemistry, 378(8), 1 17. https://doi.org/10.1007/s41061-019-0273-0
  • Moormann, G.C., & Bachand, G.D. (2021). Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates. Sand 2021, 9437R.
  • Moormann, G.C., & Bachand, G.D. (2021). Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates. Center for Intergarted Nanotechnologies (CINT), 9437R, 1-4. https://doi.org/10.2172/1817833
  • Pariona, N., Paraguay-Delgado, F., Basurto-Cereceda, S., Morales Mendoza, J.E., Hermida-Montero, L.A., & Mtz-Enriquez, A.I. (2020). Shap dependent antifungal activity of ZnO particles against phytopatogenic Fungi. Applied Nanoscience, 10, 435–43.
  • Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review Journals, 56, 978. https://doi.org/10.1103/PhysRev.56.978
  • Pesika, N.S., Stebe, K.J., & Searson, P.C. (2003). Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals. The Journal of Physical Chemistry B, 107(38), 10412–10415. https://doi.org/10.1021/jp0303218
  • Qianwei, L.I., Feixue, L.I.U., Min, L.I., Chen, C., & Gadd, G.M. (2022). Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews, 41, 31e44. https://doi.org/10.1016/j.fbr.2021.07.003
  • Rajan, A., Cherian, E., & Baskar, G. (2016). Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. International Journal of Modern Science and Technology, 1(2), 52-57.
  • Rajiv, P., Rajeshwari, S., & Venckatesh, R. (2013). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384–387
  • Sarkar, J., Ghosh, M., Mukherjee, A., Chattopadhyay, D., & Acharya, K. (2014). Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess and Biosystems Engineering, 37, 165–171. https://doi.org/10.1007/s00449-013-0982-7
  • Senthilkumar, S.R., & Sivakumar T. (2014). Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 6(6), 461–465.
  • Singh, I., & Singh, S., (2019). Study of algal mediated biosynthesis of nanoparticle: future of green nanotechnology. Current Life Sciences, 5(1), 7 14. https://doi.org/10.5281/zenodo.2666643
  • Soosen, S.M., Bose, L., & George, K.C. (2009). Optical properties of ZnO nanoparticles. Academic Review, 16(1-2), 57–65.
  • Tauc, J., & Menth, A. (1972). States in the gap. Journal of Non-Crystal Solids, 569, 8–10. https://doi.org/10.1016/0022-3093(72)90194-9
  • Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92(5), 1324. https://doi.org/10.1103/PhysRev.92.1324
  • Vlad, S., Tanase, C., Macocinschi, D., Ciobanu, C., Balaes, T., Filip, D., & Gradinaru, L.M. (2012). Antifungal behaviour of polyurethane membranes with zinc oxide nanoparticles. Journal of Nanomaterial Biostructructure, 7, 51–58.
  • Venkatesh, K.S., Palani, N.S., Krishnamoorthi, S.R., Thirumal, V., & Ilangovan, R. (2013). Fungus mediated biosynthesis and characterization of zinc oxide nanorods. AIP Conference Proceeding, 1536, 93–94. https://doi.org/10.1063/1.4810116
  • Vettumperumal, R., Kalyanaraman, S., Santoshkumar, B., & Thangavel, R. (2016). Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method. Materials Research Bulletin, 77, 101–110. https://doi.org/10.1016/j.materresbull.2016.01.015
  • Wang, L., Hu, C., & Shao, L., (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–49. https://doi.org/10.2147/IJN.S121956
  • Yavuz, İ., & Yılmaz, E.Ş. (2021), Nanoparticles with Biological Systems, Journal of Gazi University Science Faculty, 1, 93-108. https://doi.org/10.5281/zenodo.4843592
  • Yoldas, B.E., & Partlow, D.P. (1985). Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films, 129(1–2), 1–14. https://doi.org/10.1016/0040-6090(85)90089-6
  • Zeghoud, S., Hemmami, H., Seghir, B.B., Amor, I.B., Kouadri, I., Rebiai, A., Simal-Gandara, J. (2022). A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Materials Today Communications, 33, 104747. https://doi.org/10.1016/j.mtcomm.2022.104747
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikrobiyoloji (Diğer), Organik Yeşil Kimya
Bölüm Makaleler
Yazarlar

Olcay Gençyılmaz 0000-0002-7410-2937

Mohanad Fawzi Mutar Mutar Bu kişi benim 0009-0008-1285-8342

Erken Görünüm Tarihi 8 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 17 Mayıs 2024
Kabul Tarihi 22 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 4

Kaynak Göster

APA Gençyılmaz, O., & Mutar, M. F. M. (2024). Comparison of high antioxidant ZnONPs produced from different fungi as alternative biomaterials. International Journal of Secondary Metabolite, 11(4), 812-832. https://doi.org/10.21448/ijsm.1485796
International Journal of Secondary Metabolite
e-ISSN: 2148-6905