Research Article
BibTex RIS Cite

Chemical and bioactive potential of the nests of Polistes nimpha, Polistes dominula, and Vespa crabro (Hymenoptera: Vespidae)

Year 2025, Volume: 12 Issue: 1, 119 - 134

Abstract

This work was accomplished to establish the chemical components and bioactivity potential of the nest materials of Polistes nimpha (Christ), Polistes dominula (Christ), and Vespa crabro (L.). The biological and chemical compounds of materials and their molecular functionalities were detected using FRAP (ferric reducing antioxidant power) method, DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical method, and Energy Dispersive X-Ray Analysis. Finally, the bioactivity potentials of nest extracts were assayed and phenolic components were determined. C, N, O, Na, Ca, K, Mg, Al, Si are the elemental components of the nest materials. All nest extracts of three species had high biological activity against nine bacteria and one fungus causing common infections. The maximum antibacterial and antifungal activity was seen when gram-negative Pseudomonas aeruginosa, gram-positive Bacillus cereus, and gram-positive Candida albicans were exposed to ethanol extracts of nest samples in 25 μL. High antioxidant activity can be found in the nest extracts. These extracts might help researchers find novel antifungal and antibacterial substances.

References

  • Anderson, K.E., Sheehan, T.H., Eckholm, B.J., Mott, B.M., & Degrandi-Hoffman, G. (2011). An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux, 58(4), 431–444.
  • Babu, K.S., Babu, T.H., Srinivas, P.V., Kishore, K.H., Murthy, U.S.N., & Rao, J.M. (2006). Synthesis and biological evaluation of novel C(7) modified chrysin analogs as antibacterial agents. ACS Medicinal Chemistry Letters, 16(11), 221–224.
  • Bağriaçık, N. (2013a). Some structural features of nest materials of Polistes nimpha (Christ, 1791) in several ecological conditions (Hymenoptera: Vespidae). Journal of the Entomological Research Society, 15(3), 1–7.
  • Bağriaçık, N. (2013b). Some structural features of the nest materials of Dolichovespula sylvestris (Scopoli, 1763) and Dolichovespula media (Retzius, 1783) (Hymenoptera: Vespidae). Journal of Selçuk University Natural and Applied Science, 1(1), 893–902.
  • Bağriaçık, N. (2011). Determination of some structural features of the nest paper of Vespa orientalis Linnaeus and Vespa crabro Linnaeus (Hymenoptera: Vespinae) in Türkiye. Archives of Biological Sciences, 63(2), 449–455.
  • Bağriaçık, N. (2012). Comparison of the nest materials of Polistes gallicus (L.), Polistes dominulus (Christ), and Polistes nimpha (Christ) (Hymenoptera: Vespidae). Archives of Biological Sciences, 64(3), 1079–1084. https://doi.org/10.2298/ABS1203079B
  • Benzie, I.F.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Bot, N.M.A., Ortius-Lechner, D., Finster, K., Maile, R., & Boomsma, J.J. (2002). Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants. Insectes Sociaux, 49, 363–370. https://doi.org/10.1007/s00040-004-0751-3
  • Choi, M.B., & Lee, Y.H. (2020). The structure and antimicrobial potential of wasp and hornet (Vespidae) mastoparans: A review. Entomological Research, 50, 369–376.
  • Curtis, R.T., Apante, Y., & Stamp, N.E. (2005). Nest paper absorbency, toughness, and protein concentration of a native vs. invasive social wasp. Journal of Chemical Ecology, 31, 1089–1100. https://doi.org/10.1007/s10886-005-4249-x
  • El-Seedi, H., Abd El-Wahed, A., Yosri, N., Musharraf, S.G., Chen, L., Moustafa, M., … Khalifa, S. (2020). Antimicrobial properties of Apis mellifera’s bee venom. Toxins, 12(7), 451. https://doi.org/10.3390/toxins12070451
  • Ertürk, Ö., & Bağdatlı, E. (2019). A comprehensive study on nest materials of Vespa crabro and Polistes dominula: Chemical properties and biological characterization with antioxidant and antimicrobial activity. Biologia, 74, 797–812.
  • Ertürk, Ö. (2017). Determination of some structural features of the nest paper materials of Dolichovespula saxonica Fabricius, 1793 (Hymenoptera: Vespinae) in Türkiye. Entomological Research, 47, 286–294.
  • Ertürk, Ö., & Şimşek, A. (2020). Chemical components, antimicrobial, and antioxidant activities of nest materials Vespa crabro germana Christ 1791 (Hymenoptera: Vespidae). Atatürk University Journal of Agricultural Faculty, 51(1), 44–52.
  • Evans, H.E., & West-Eberhard, M.J. (1970). The Wasps. Michigan University Press.
  • Fukumoto, L.R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48(8), 3597–3604. https://doi.org/10.1021/jf000220w
  • Gambino, P. (1993). Antibiotic activity of larval saliva of Vespula wasps. Journal of Invertebrate Pathology, 61(1), 110.
  • Ganor, E., & Ishay, J.S. (1992). The cement in hornet combs. Journal of Ethology, 10(1), 31–39.
  • Ghaderi, A., & Sonboli, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Tanacetum walteri (Anthemideae-Asteraceae) from Iran. Natural Product Research, 33(12), 1787–1790. https://doi.org/10.1080/14786419.2018.1434640
  • Huang, D., Ou, B., & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841 1856. https://doi.org/10.1021/jf030723c
  • Jeanne, R.L. (1975). The adaptiveness of social wasp nest architecture. The Quarterly Review of Biology, 50(3), 267–287.
  • Kim, K., Tsao, R., Yang, R., & Cui, S.W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466–473. https://doi.org/10.1016/j.foodchem.2005.01.032
  • Kirshboim, S., & Ishay, J.S. (2000). Silk produced by hornets: Thermophotovoltaic properties—a review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 127(1), 1–20. https://doi.org/10.1016/S1095-6433(00)00237-3
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Kubo, I., Kinst-Hori, I., Chaudhuri, S.K., Kubo, Y., Sánchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorganic & Medicinal Chemistry, 8(7), 1749–1755. https://doi.org/10.1016/S0968-0896(00)00102-4
  • Kudô, K., Yamane, S.O., Mateus, S., Tsuchida, K., Ito, Y., Miyano, S., Yamamoto, H., & Zucchi, R. (2001). Nest materials and some chemical characteristics of nests of a New World swarm-founding Polistinae wasp Polybia paulista (Hymenoptera: Vespidae). Ethology Ecology & Evolution, 13(4), 351–360. https://doi.org/10.1080/08927014.2001.9522766
  • Matsuura, M. (1991). Vespa and Provespa. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 232–262). Cornell University Press.
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219.
  • Reeve, H.K. (1991). Polistes. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 99–148). Comstock Publishing Associates.
  • Reichling, J., Weseler, A., & Saller, R. (2001). A current review of the antimicrobial activity of Hypericum perforatum L. Pharmacopsychiatry, 34(1), 116 118. https://doi.org/10.1055/s-2001-15514
  • Samarghandian, S., Afshari, J. T., & Davoodi, S. (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line PC-3. Clinics, 66(6), 1073–1079.
  • Silva, T.M.S., Câmara, C.A., Lins, A.C., Barbosa-Filho, J.M., Silva, E.M.S., Freitas, B.M., & Santos, F.A.R. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 19(6), 507–511.
  • Slinkard, K., & Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49–55
  • Turillazzi, S., Perito, B., Pazzagli, L., Pantera, B., Gorfer, S., & Tancredi, M. (2004). Antibacterial activity of larval saliva of the European paper wasp Polistes dominulus (Hymenoptera: Vespidae). Insectes Sociaux, 51(4), 339 341. https://doi.org/10.1007/s00040-004-0751-3
  • Wen, X., Gongpan, P., Meng, Y., Nieh, J.C., Yuan, H., & Tan, K. (2021). Functional characterization, antimicrobial effects, and potential antibacterial mechanisms of new mastoparan peptides from hornet venom (Vespa ducalis, Vespa mandarinia, and Vespa affinis). Toxicon, 200, 48–54. https://doi.org/10.1016/j.toxicon.2021.07.001
  • Wenzel, J.W. (1998). A generic key to the nests of hornets, yellow jackets, and paper wasps worldwide (Vespidae, Vespinae, Polistinae). American Museum Novitates, 3224, New York, USA.
  • Wenzel, J.W. (1991). Evolution of nest architecture. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 480–507). Comstock Publishing Associates.
  • Yacoub, T., Rima, M., Karam, M., Sabatier, J.M., & Fajloun, Z. (2020). Antimicrobials from venomous animals: An overview. Molecules, 25(10), 2402. https://doi.org/10.3390/molecules25102402
  • Yamane, S., Kudo, K., Tajima, T., Nihon’yanagi, K., Shinoda, M., Saito, K., & Yamamoto, H. (1999). Comparison of investment in nest construction by the foundresses of consubgeneric Polistes wasps, P. (Polistes) riparius and P. (P.) chinensis (Hymenoptera: Vespidae). Journal of Ethology, 16(2), 97–104.

Chemical and bioactive potential of the nests of Polistes nimpha, Polistes dominula, and Vespa crabro (Hymenoptera: Vespidae)

Year 2025, Volume: 12 Issue: 1, 119 - 134

Abstract

This work was accomplished to establish the chemical components and bioactivity potential of the nest materials of Polistes nimpha (Christ), Polistes dominula (Christ), and Vespa crabro (L.). The biological and chemical compounds of materials and their molecular functionalities were detected using FRAP (ferric reducing antioxidant power) method, DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical method, and Energy Dispersive X-Ray Analysis. Finally, the bioactivity potentials of nest extracts were assayed and phenolic components were determined. C, N, O, Na, Ca, K, Mg, Al, Si are the elemental components of the nest materials. All nest extracts of three species had high biological activity against nine bacteria and one fungus causing common infections. The maximum antibacterial and antifungal activity was seen when gram-negative Pseudomonas aeruginosa, gram-positive Bacillus cereus, and gram-positive Candida albicans were exposed to ethanol extracts of nest samples in 25 μL. High antioxidant activity can be found in the nest extracts. These extracts might help researchers find novel antifungal and antibacterial substances.

References

  • Anderson, K.E., Sheehan, T.H., Eckholm, B.J., Mott, B.M., & Degrandi-Hoffman, G. (2011). An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux, 58(4), 431–444.
  • Babu, K.S., Babu, T.H., Srinivas, P.V., Kishore, K.H., Murthy, U.S.N., & Rao, J.M. (2006). Synthesis and biological evaluation of novel C(7) modified chrysin analogs as antibacterial agents. ACS Medicinal Chemistry Letters, 16(11), 221–224.
  • Bağriaçık, N. (2013a). Some structural features of nest materials of Polistes nimpha (Christ, 1791) in several ecological conditions (Hymenoptera: Vespidae). Journal of the Entomological Research Society, 15(3), 1–7.
  • Bağriaçık, N. (2013b). Some structural features of the nest materials of Dolichovespula sylvestris (Scopoli, 1763) and Dolichovespula media (Retzius, 1783) (Hymenoptera: Vespidae). Journal of Selçuk University Natural and Applied Science, 1(1), 893–902.
  • Bağriaçık, N. (2011). Determination of some structural features of the nest paper of Vespa orientalis Linnaeus and Vespa crabro Linnaeus (Hymenoptera: Vespinae) in Türkiye. Archives of Biological Sciences, 63(2), 449–455.
  • Bağriaçık, N. (2012). Comparison of the nest materials of Polistes gallicus (L.), Polistes dominulus (Christ), and Polistes nimpha (Christ) (Hymenoptera: Vespidae). Archives of Biological Sciences, 64(3), 1079–1084. https://doi.org/10.2298/ABS1203079B
  • Benzie, I.F.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Bot, N.M.A., Ortius-Lechner, D., Finster, K., Maile, R., & Boomsma, J.J. (2002). Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants. Insectes Sociaux, 49, 363–370. https://doi.org/10.1007/s00040-004-0751-3
  • Choi, M.B., & Lee, Y.H. (2020). The structure and antimicrobial potential of wasp and hornet (Vespidae) mastoparans: A review. Entomological Research, 50, 369–376.
  • Curtis, R.T., Apante, Y., & Stamp, N.E. (2005). Nest paper absorbency, toughness, and protein concentration of a native vs. invasive social wasp. Journal of Chemical Ecology, 31, 1089–1100. https://doi.org/10.1007/s10886-005-4249-x
  • El-Seedi, H., Abd El-Wahed, A., Yosri, N., Musharraf, S.G., Chen, L., Moustafa, M., … Khalifa, S. (2020). Antimicrobial properties of Apis mellifera’s bee venom. Toxins, 12(7), 451. https://doi.org/10.3390/toxins12070451
  • Ertürk, Ö., & Bağdatlı, E. (2019). A comprehensive study on nest materials of Vespa crabro and Polistes dominula: Chemical properties and biological characterization with antioxidant and antimicrobial activity. Biologia, 74, 797–812.
  • Ertürk, Ö. (2017). Determination of some structural features of the nest paper materials of Dolichovespula saxonica Fabricius, 1793 (Hymenoptera: Vespinae) in Türkiye. Entomological Research, 47, 286–294.
  • Ertürk, Ö., & Şimşek, A. (2020). Chemical components, antimicrobial, and antioxidant activities of nest materials Vespa crabro germana Christ 1791 (Hymenoptera: Vespidae). Atatürk University Journal of Agricultural Faculty, 51(1), 44–52.
  • Evans, H.E., & West-Eberhard, M.J. (1970). The Wasps. Michigan University Press.
  • Fukumoto, L.R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48(8), 3597–3604. https://doi.org/10.1021/jf000220w
  • Gambino, P. (1993). Antibiotic activity of larval saliva of Vespula wasps. Journal of Invertebrate Pathology, 61(1), 110.
  • Ganor, E., & Ishay, J.S. (1992). The cement in hornet combs. Journal of Ethology, 10(1), 31–39.
  • Ghaderi, A., & Sonboli, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Tanacetum walteri (Anthemideae-Asteraceae) from Iran. Natural Product Research, 33(12), 1787–1790. https://doi.org/10.1080/14786419.2018.1434640
  • Huang, D., Ou, B., & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841 1856. https://doi.org/10.1021/jf030723c
  • Jeanne, R.L. (1975). The adaptiveness of social wasp nest architecture. The Quarterly Review of Biology, 50(3), 267–287.
  • Kim, K., Tsao, R., Yang, R., & Cui, S.W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 95(3), 466–473. https://doi.org/10.1016/j.foodchem.2005.01.032
  • Kirshboim, S., & Ishay, J.S. (2000). Silk produced by hornets: Thermophotovoltaic properties—a review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 127(1), 1–20. https://doi.org/10.1016/S1095-6433(00)00237-3
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Kubo, I., Kinst-Hori, I., Chaudhuri, S.K., Kubo, Y., Sánchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorganic & Medicinal Chemistry, 8(7), 1749–1755. https://doi.org/10.1016/S0968-0896(00)00102-4
  • Kudô, K., Yamane, S.O., Mateus, S., Tsuchida, K., Ito, Y., Miyano, S., Yamamoto, H., & Zucchi, R. (2001). Nest materials and some chemical characteristics of nests of a New World swarm-founding Polistinae wasp Polybia paulista (Hymenoptera: Vespidae). Ethology Ecology & Evolution, 13(4), 351–360. https://doi.org/10.1080/08927014.2001.9522766
  • Matsuura, M. (1991). Vespa and Provespa. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 232–262). Cornell University Press.
  • Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219.
  • Reeve, H.K. (1991). Polistes. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 99–148). Comstock Publishing Associates.
  • Reichling, J., Weseler, A., & Saller, R. (2001). A current review of the antimicrobial activity of Hypericum perforatum L. Pharmacopsychiatry, 34(1), 116 118. https://doi.org/10.1055/s-2001-15514
  • Samarghandian, S., Afshari, J. T., & Davoodi, S. (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line PC-3. Clinics, 66(6), 1073–1079.
  • Silva, T.M.S., Câmara, C.A., Lins, A.C., Barbosa-Filho, J.M., Silva, E.M.S., Freitas, B.M., & Santos, F.A.R. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis, 19(6), 507–511.
  • Slinkard, K., & Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49–55
  • Turillazzi, S., Perito, B., Pazzagli, L., Pantera, B., Gorfer, S., & Tancredi, M. (2004). Antibacterial activity of larval saliva of the European paper wasp Polistes dominulus (Hymenoptera: Vespidae). Insectes Sociaux, 51(4), 339 341. https://doi.org/10.1007/s00040-004-0751-3
  • Wen, X., Gongpan, P., Meng, Y., Nieh, J.C., Yuan, H., & Tan, K. (2021). Functional characterization, antimicrobial effects, and potential antibacterial mechanisms of new mastoparan peptides from hornet venom (Vespa ducalis, Vespa mandarinia, and Vespa affinis). Toxicon, 200, 48–54. https://doi.org/10.1016/j.toxicon.2021.07.001
  • Wenzel, J.W. (1998). A generic key to the nests of hornets, yellow jackets, and paper wasps worldwide (Vespidae, Vespinae, Polistinae). American Museum Novitates, 3224, New York, USA.
  • Wenzel, J.W. (1991). Evolution of nest architecture. In K.G. Ross & R.W. Matthews (Eds.), The Social Biology of Wasps (pp. 480–507). Comstock Publishing Associates.
  • Yacoub, T., Rima, M., Karam, M., Sabatier, J.M., & Fajloun, Z. (2020). Antimicrobials from venomous animals: An overview. Molecules, 25(10), 2402. https://doi.org/10.3390/molecules25102402
  • Yamane, S., Kudo, K., Tajima, T., Nihon’yanagi, K., Shinoda, M., Saito, K., & Yamamoto, H. (1999). Comparison of investment in nest construction by the foundresses of consubgeneric Polistes wasps, P. (Polistes) riparius and P. (P.) chinensis (Hymenoptera: Vespidae). Journal of Ethology, 16(2), 97–104.
There are 39 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry
Journal Section Articles
Authors

Ömer Ertürk 0000-0001-5837-6893

Zehra Can 0000-0002-9366-5110

Mustafa Yaman 0000-0001-5656-7266

Early Pub Date January 19, 2025
Publication Date
Submission Date June 27, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Ertürk, Ö., Can, Z., & Yaman, M. (2025). Chemical and bioactive potential of the nests of Polistes nimpha, Polistes dominula, and Vespa crabro (Hymenoptera: Vespidae). International Journal of Secondary Metabolite, 12(1), 119-134.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905