Araştırma Makalesi
BibTex RIS Kaynak Göster

RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION

Yıl 2017, Cilt: 10 Sayı: 1, 1 - 13, 31.01.2017

Öz

In this paper, a novel cumulative distribution function (c:d:f:) for beta-pareto (BP) distribution, through two distinct practical frames, is developed. However, the presented models are obviously more pragmatic than the ones being demonstrated in previous works, in the case of extending the further relations.
Then, using the exhibited c.d.f.s, certain recurrence relations for the single and product moments of the order statistics of a random sample of size n arising from beta-Pareto distribution are derived.

Kaynakça

  • Akinsete, A., Famoye, F. and Lee, C. (2008). The beta-Pareto distribution. Statistics, 42, 547-563.
  • Alshawarbeh, E., Lee, C. and Famoye, F. (2012). Beta-Cauchy distribution. Journal of Probability and Statistical Science, 10, 41-57.
  • Arnold B. C., Balakrishnan N. and Nagaraja H. N. (1992). A rst course in order statistics. John Wiley, New York.
  • Cordeiro, G. M. and Lemonte, A. J. (2011). The ?-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling. Computational Statistics and Data Analysis, 55, 1445-1461.
  • David H. A. and Nagaraja H. N. (2003). Order statistics. 3rd edn. John Wiley & Sons, New York.
  • Eugene N., Lee, C. and Famoye, F. (2002). The beta-normal distribution and its applications. Communications in Statistics - Theory and Methods, 31(4), 497-512.
  • Famoye, F., Lee, C. and Olumolade O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-136.
  • Gradshteyn I. S. and Ryzhik I. M. (2007). Table of Integrals, Series, and Products. 7th Edition. Elsevier Inc.
  • Jones M. C. (2004). Families of distributions arising from distributions of order statistics. Test, 13(1), 1-43.
  • Malik H. J., Balakrishnan N. and Ahmed S. E. (1988). Recurrence relations and identities for moments of order statistics- I: Arbitrary continuous distributions. Commun. Statist. - Theo. Meth., 17, 2623- 2655.
  • Nadarajah S. and Gupta A. K. (2004). The beta Frechet distribution. Far East Journal of Theoretical Statistics, 14, 15-24.
  • Samuel P. and Thomas P. Y. (2000). An improved form of a recurrence relation on the product moments of order statistics. Commun. Statist. - Theo. Meth., 29, 1559- 1564.
  • Thomas P. Y. and Samuel P. (1996). A note on recurrence relations for the product moments of order statistics. Statistics & Probability Letters, 29, 245 - 249.
Yıl 2017, Cilt: 10 Sayı: 1, 1 - 13, 31.01.2017

Öz

Kaynakça

  • Akinsete, A., Famoye, F. and Lee, C. (2008). The beta-Pareto distribution. Statistics, 42, 547-563.
  • Alshawarbeh, E., Lee, C. and Famoye, F. (2012). Beta-Cauchy distribution. Journal of Probability and Statistical Science, 10, 41-57.
  • Arnold B. C., Balakrishnan N. and Nagaraja H. N. (1992). A rst course in order statistics. John Wiley, New York.
  • Cordeiro, G. M. and Lemonte, A. J. (2011). The ?-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling. Computational Statistics and Data Analysis, 55, 1445-1461.
  • David H. A. and Nagaraja H. N. (2003). Order statistics. 3rd edn. John Wiley & Sons, New York.
  • Eugene N., Lee, C. and Famoye, F. (2002). The beta-normal distribution and its applications. Communications in Statistics - Theory and Methods, 31(4), 497-512.
  • Famoye, F., Lee, C. and Olumolade O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-136.
  • Gradshteyn I. S. and Ryzhik I. M. (2007). Table of Integrals, Series, and Products. 7th Edition. Elsevier Inc.
  • Jones M. C. (2004). Families of distributions arising from distributions of order statistics. Test, 13(1), 1-43.
  • Malik H. J., Balakrishnan N. and Ahmed S. E. (1988). Recurrence relations and identities for moments of order statistics- I: Arbitrary continuous distributions. Commun. Statist. - Theo. Meth., 17, 2623- 2655.
  • Nadarajah S. and Gupta A. K. (2004). The beta Frechet distribution. Far East Journal of Theoretical Statistics, 14, 15-24.
  • Samuel P. and Thomas P. Y. (2000). An improved form of a recurrence relation on the product moments of order statistics. Commun. Statist. - Theo. Meth., 29, 1559- 1564.
  • Thomas P. Y. and Samuel P. (1996). A note on recurrence relations for the product moments of order statistics. Statistics & Probability Letters, 29, 245 - 249.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Hossein Jabbari Khamnei Bu kişi benim

Roghaye Makouyi Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2017
Kabul Tarihi 12 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 1

Kaynak Göster

APA Khamnei, H. J., & Makouyi, R. (2017). RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION. Istatistik Journal of The Turkish Statistical Association, 10(1), 1-13.
AMA Khamnei HJ, Makouyi R. RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION. IJTSA. Ocak 2017;10(1):1-13.
Chicago Khamnei, Hossein Jabbari, ve Roghaye Makouyi. “RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION”. Istatistik Journal of The Turkish Statistical Association 10, sy. 1 (Ocak 2017): 1-13.
EndNote Khamnei HJ, Makouyi R (01 Ocak 2017) RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION. Istatistik Journal of The Turkish Statistical Association 10 1 1–13.
IEEE H. J. Khamnei ve R. Makouyi, “RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION”, IJTSA, c. 10, sy. 1, ss. 1–13, 2017.
ISNAD Khamnei, Hossein Jabbari - Makouyi, Roghaye. “RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION”. Istatistik Journal of The Turkish Statistical Association 10/1 (Ocak 2017), 1-13.
JAMA Khamnei HJ, Makouyi R. RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION. IJTSA. 2017;10:1–13.
MLA Khamnei, Hossein Jabbari ve Roghaye Makouyi. “RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION”. Istatistik Journal of The Turkish Statistical Association, c. 10, sy. 1, 2017, ss. 1-13.
Vancouver Khamnei HJ, Makouyi R. RECURRENCE RELATION FOR THE MOMENTS OF ORDER STATISTICS FROM A BETA-PARETO DISTRIBUTION. IJTSA. 2017;10(1):1-13.