Research Article
BibTex RIS Cite

A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms

Year 2024, Volume: 6 Issue: 2, 30 - 44, 18.12.2024
https://doi.org/10.54286/ikjm.1524180

Abstract

In this paper, we study the system of third-order difference equations
\begin{equation*}
x_{n+1}=a+\frac{a_{1}}{y_{n}}+\frac{a_{2}}{y_{n-1}}+\frac{a_{3}}{y_{n-2}}%
,\quad y_{n+1}=b+\frac{b_{1}}{x_{n}}+\frac{b_{2}}{x_{n-1}}+\frac{b_{3}}{%
x_{n-2}},\quad n\in \mathbb{N}_{0},
\end{equation*}%
where the parameters $a$, $a_{i}$, $b$, $b_{i}$, $i=1,2,3$, and the initial
values $x_{-j}$, $y_{-j}$, $j=0,1,2$, are positive real numbers. We first
prove a general convergence theorem. By applying this convergence theorem to
the system, we show that positive equilibrium is a global attractor. We also
study the local asymptotic stability of the equilibrium and show that it is
globally asymptotically stable. Finally, we study the invariant set of
solutions.

References

  • R. P. Agarwal, Difference Equations and Inequalities,Marcel Dekker, New York, (1992).
  • N. Akgunes and A. S. Kurbanli, On the system of rational difference equations xn = f ¡ xn−a1 , yn−b1 ¢ , yn = g ¡ yn−b2 , zn−c1 ¢ , zn = g ¡ zn−c2 ,xn−a2 ¢ , Selcuk Journal of Applied Mathematics, 15(1), (2014), 1-8.
  • Y. Akrour, M. Kara, N. Touafek and Y. Yazlik, Solutions formulas for some general systems of nonlinear difference equations, Miskolc Mathematical Notes, 22(2) (2021), 529–555.
  • E. Camouzis and G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, (2007).
  • I. Dekkar, N. Touafek and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Revista de la real academia de ciencias exactas, físicas y naturales. Serie A. Matemáticas, 111(2), (2017) 325-347. Doi:10.1007/s13398-016-0297-z
  • R. DeVault, G. Ladas and S. W. Schultz, Necessary and sufficient conditions for the boundedness of xn+1 = A/x p n +B/x q n−1 , Journal of Difference Equations and Applications, 3(3-4)(1997), 259-266.
  • R. DeVault, G. Ladas and S. W. Schultz, On the recursive sequence xn+1 = A/xn +1/xn−2, Proceedings of the American Mathematical Society, 126(11)(1998), 3257-3261.
  • S. Elaydi, An Introduction to Difference Equations, third edition, Undergraduate Texts in Mathematics, Springer, New York, (1999).
  • H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, Journal of Mathematical Analysis and Applications, 245(2000), 161-170.
  • H. El-Metwally, E. A. Grove, G. Ladas and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, Journal of Difference Equations and Applications, 7(6)(2001), 837- 850.
  • N. Haddad, N. Touafek and J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case, Mathematical Methods in the Applied Sciences, 40(10), (2017), 3599-3607.
  • N. Haddad, N. Touafek and J. F. T. Rabago, Well-defined solutions of a system of difference equations, Journal of Applied Mathematics and Computing, 56, (2018), 439-458, https://doi.org/10.1007/s12190- 017-1081-8
  • E. Hatir, T. Mansour and I. Yalcinkaya, On a fuzzy difference equation, Utilitas Mathematica, 93(2014), 135-151.
  • M. Kara, D. T. Tollu and Y. Yazlik, Global behavior of two-dimensional difference equations system with two periodic coefficients, Tbilisi Mathematical Journal, 13(4), (2020), 49-64.
  • M. Kara, Y. Yazlik and D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacettepe Journal of Mathematics and Statistics, 49(5), (2020), 1566-1593.
  • M. Kara and Y. Yazlik, On the solutions of three-dimensional system of difference equations via recursive relations of order two and applications, Journal of Applied Analysis and Computation, 12(2), (2022) 736-753.
  • M. Kara and Y. Yazlik, Solvable three-dimensional system of higher-order nonlinear difference equations, Filomat, 36(10), (2022), 3449-3469.
  • M. Kara and Y. Yazlik, On a solvable system of rational difference equations of higher order, Turkish Journal of Mathematics, 46(2), (2022) 587-611.
  • V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, (1993).
  • M.R.S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, New York, NY, USA, CRC Press, 2002.
  • A. S. Kurbanli, C. Çinar and D. ¸Sim¸sek, On the periodicity of solutions of the system of rational difference equations, Applied Mathematics, 2, (2011), 410-413.
  • G. Papaschinopoulos and C. J. Schinas, On a system of two nonlinear difference equations, Journal of Mathematical Analysis and Applications, 219 (2) (1998), 415-426.
  • G. Papaschinopoulos and C. J. Schinas, Stability of a class of nonlinear difference equations, Journal of Mathematical Analysis and Applications, 230 (1999), 211-222.
  • G. Papaschinopoulos and C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Analysis: Theory, Methods and Applications, 46 (2001), 967–978.
  • G. Papaschinopoulos and C. J. Schinas, Oscillation and asymptotic stability of two systems of difference equations of rational form, Journal of Difference Equations and Applications, 7 (2001), 601-617.
  • G. Papaschinopoulos and C. J. Schinas, On the system of two difference equations xn+1 = Pk i=0 Ai /y pi n−i , yn+1 = Pk i=0 Bi /x qi n−i , Journal of Mathematical Analysis and Applications, 273 (2) (2002), 294-309.
  • G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation xn+1 = A + B/xn, Soft Computing, 6(2002), 456-461.
  • C. G. Philos, I. K. Purnaras and Y. G. Sficas, Global attractivity in a nonlinear difference equation, Applied Mathematics and Computation, 62(2-3)(1994), 249-258.
  • C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, Journal of Mathematical Analysis and Applications, 216(1)(1997), 164-179.
  • S. Stevi´c and D. T. Tollu, Solvability and semi-cycle analysis of a class of nonlinear systems of difference equations, Mathematical Methods in the Applied Sciences, 42, (2019), 3579-3615. https://doi.org/10.1002/mma.5600
  • S. Stevi´c and D. T. Tollu, Solvability of eight classes of nonlinear systems of difference equations, Mathematical Methods in the Applied Sciences, 42, (2019), 4065-4112. https://doi.org/10.1002/mma.5625
  • N. Taskara, D. T. Tollu, N. Touafek and Y. Yazlik, A solvable system of difference equations, Communications of the Korean Mathematical Society, 35 (1) (2020), 301-319.
  • D. T. Tollu, Y. Yazlik and N. Taskara, On fourteen solvable systems of difference equations, Applied Mathematics and Computation, 233, (2014), 310-319.
  • I. Yalçınkaya, H. El-Metwally and D. T. Tollu, On the fuzzy difference equation zn+1 = A+B/zn−m, Mathematical Notes, 113(2023), 292–302.
  • I. Yalçınkaya, H. El-Metwally, M. Bayram, et al., On the dynamics of a higher-order fuzzy difference equation with rational terms, Soft Computing, 27(2023), 10469–10479. https://doi.org/10.1007/s00500-023- 08586-y
  • Y. Yazlik, E. M. Elsayed and N. Taskara, On the behaviour of the solutions of difference equation systems, Journal of Computational Analysis and Applications, 16(5), (2014), 932-941.
  • Y. Yazlik, D. T. Tollu and N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait Journal of Science, 43(1) (2016), 95-111.
Year 2024, Volume: 6 Issue: 2, 30 - 44, 18.12.2024
https://doi.org/10.54286/ikjm.1524180

Abstract

References

  • R. P. Agarwal, Difference Equations and Inequalities,Marcel Dekker, New York, (1992).
  • N. Akgunes and A. S. Kurbanli, On the system of rational difference equations xn = f ¡ xn−a1 , yn−b1 ¢ , yn = g ¡ yn−b2 , zn−c1 ¢ , zn = g ¡ zn−c2 ,xn−a2 ¢ , Selcuk Journal of Applied Mathematics, 15(1), (2014), 1-8.
  • Y. Akrour, M. Kara, N. Touafek and Y. Yazlik, Solutions formulas for some general systems of nonlinear difference equations, Miskolc Mathematical Notes, 22(2) (2021), 529–555.
  • E. Camouzis and G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, (2007).
  • I. Dekkar, N. Touafek and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Revista de la real academia de ciencias exactas, físicas y naturales. Serie A. Matemáticas, 111(2), (2017) 325-347. Doi:10.1007/s13398-016-0297-z
  • R. DeVault, G. Ladas and S. W. Schultz, Necessary and sufficient conditions for the boundedness of xn+1 = A/x p n +B/x q n−1 , Journal of Difference Equations and Applications, 3(3-4)(1997), 259-266.
  • R. DeVault, G. Ladas and S. W. Schultz, On the recursive sequence xn+1 = A/xn +1/xn−2, Proceedings of the American Mathematical Society, 126(11)(1998), 3257-3261.
  • S. Elaydi, An Introduction to Difference Equations, third edition, Undergraduate Texts in Mathematics, Springer, New York, (1999).
  • H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, Journal of Mathematical Analysis and Applications, 245(2000), 161-170.
  • H. El-Metwally, E. A. Grove, G. Ladas and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, Journal of Difference Equations and Applications, 7(6)(2001), 837- 850.
  • N. Haddad, N. Touafek and J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case, Mathematical Methods in the Applied Sciences, 40(10), (2017), 3599-3607.
  • N. Haddad, N. Touafek and J. F. T. Rabago, Well-defined solutions of a system of difference equations, Journal of Applied Mathematics and Computing, 56, (2018), 439-458, https://doi.org/10.1007/s12190- 017-1081-8
  • E. Hatir, T. Mansour and I. Yalcinkaya, On a fuzzy difference equation, Utilitas Mathematica, 93(2014), 135-151.
  • M. Kara, D. T. Tollu and Y. Yazlik, Global behavior of two-dimensional difference equations system with two periodic coefficients, Tbilisi Mathematical Journal, 13(4), (2020), 49-64.
  • M. Kara, Y. Yazlik and D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacettepe Journal of Mathematics and Statistics, 49(5), (2020), 1566-1593.
  • M. Kara and Y. Yazlik, On the solutions of three-dimensional system of difference equations via recursive relations of order two and applications, Journal of Applied Analysis and Computation, 12(2), (2022) 736-753.
  • M. Kara and Y. Yazlik, Solvable three-dimensional system of higher-order nonlinear difference equations, Filomat, 36(10), (2022), 3449-3469.
  • M. Kara and Y. Yazlik, On a solvable system of rational difference equations of higher order, Turkish Journal of Mathematics, 46(2), (2022) 587-611.
  • V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, (1993).
  • M.R.S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, New York, NY, USA, CRC Press, 2002.
  • A. S. Kurbanli, C. Çinar and D. ¸Sim¸sek, On the periodicity of solutions of the system of rational difference equations, Applied Mathematics, 2, (2011), 410-413.
  • G. Papaschinopoulos and C. J. Schinas, On a system of two nonlinear difference equations, Journal of Mathematical Analysis and Applications, 219 (2) (1998), 415-426.
  • G. Papaschinopoulos and C. J. Schinas, Stability of a class of nonlinear difference equations, Journal of Mathematical Analysis and Applications, 230 (1999), 211-222.
  • G. Papaschinopoulos and C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Analysis: Theory, Methods and Applications, 46 (2001), 967–978.
  • G. Papaschinopoulos and C. J. Schinas, Oscillation and asymptotic stability of two systems of difference equations of rational form, Journal of Difference Equations and Applications, 7 (2001), 601-617.
  • G. Papaschinopoulos and C. J. Schinas, On the system of two difference equations xn+1 = Pk i=0 Ai /y pi n−i , yn+1 = Pk i=0 Bi /x qi n−i , Journal of Mathematical Analysis and Applications, 273 (2) (2002), 294-309.
  • G. Papaschinopoulos and B. K. Papadopoulos, On the fuzzy difference equation xn+1 = A + B/xn, Soft Computing, 6(2002), 456-461.
  • C. G. Philos, I. K. Purnaras and Y. G. Sficas, Global attractivity in a nonlinear difference equation, Applied Mathematics and Computation, 62(2-3)(1994), 249-258.
  • C. J. Schinas, Invariants for difference equations and systems of difference equations of rational form, Journal of Mathematical Analysis and Applications, 216(1)(1997), 164-179.
  • S. Stevi´c and D. T. Tollu, Solvability and semi-cycle analysis of a class of nonlinear systems of difference equations, Mathematical Methods in the Applied Sciences, 42, (2019), 3579-3615. https://doi.org/10.1002/mma.5600
  • S. Stevi´c and D. T. Tollu, Solvability of eight classes of nonlinear systems of difference equations, Mathematical Methods in the Applied Sciences, 42, (2019), 4065-4112. https://doi.org/10.1002/mma.5625
  • N. Taskara, D. T. Tollu, N. Touafek and Y. Yazlik, A solvable system of difference equations, Communications of the Korean Mathematical Society, 35 (1) (2020), 301-319.
  • D. T. Tollu, Y. Yazlik and N. Taskara, On fourteen solvable systems of difference equations, Applied Mathematics and Computation, 233, (2014), 310-319.
  • I. Yalçınkaya, H. El-Metwally and D. T. Tollu, On the fuzzy difference equation zn+1 = A+B/zn−m, Mathematical Notes, 113(2023), 292–302.
  • I. Yalçınkaya, H. El-Metwally, M. Bayram, et al., On the dynamics of a higher-order fuzzy difference equation with rational terms, Soft Computing, 27(2023), 10469–10479. https://doi.org/10.1007/s00500-023- 08586-y
  • Y. Yazlik, E. M. Elsayed and N. Taskara, On the behaviour of the solutions of difference equation systems, Journal of Computational Analysis and Applications, 16(5), (2014), 932-941.
  • Y. Yazlik, D. T. Tollu and N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait Journal of Science, 43(1) (2016), 95-111.
There are 37 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Durhasan Turgut Tollu 0000-0002-3313-8829

İbrahim Yalçınkaya 0000-0003-4546-4493

Early Pub Date September 23, 2024
Publication Date December 18, 2024
Submission Date July 29, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Tollu, D. T., & Yalçınkaya, İ. (2024). A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms. Ikonion Journal of Mathematics, 6(2), 30-44. https://doi.org/10.54286/ikjm.1524180
AMA Tollu DT, Yalçınkaya İ. A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms. ikjm. December 2024;6(2):30-44. doi:10.54286/ikjm.1524180
Chicago Tollu, Durhasan Turgut, and İbrahim Yalçınkaya. “A Qualitative Investigation of a System of Third-Order Difference Equations With Multiplicative Reciprocal Terms”. Ikonion Journal of Mathematics 6, no. 2 (December 2024): 30-44. https://doi.org/10.54286/ikjm.1524180.
EndNote Tollu DT, Yalçınkaya İ (December 1, 2024) A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms. Ikonion Journal of Mathematics 6 2 30–44.
IEEE D. T. Tollu and İ. Yalçınkaya, “A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms”, ikjm, vol. 6, no. 2, pp. 30–44, 2024, doi: 10.54286/ikjm.1524180.
ISNAD Tollu, Durhasan Turgut - Yalçınkaya, İbrahim. “A Qualitative Investigation of a System of Third-Order Difference Equations With Multiplicative Reciprocal Terms”. Ikonion Journal of Mathematics 6/2 (December 2024), 30-44. https://doi.org/10.54286/ikjm.1524180.
JAMA Tollu DT, Yalçınkaya İ. A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms. ikjm. 2024;6:30–44.
MLA Tollu, Durhasan Turgut and İbrahim Yalçınkaya. “A Qualitative Investigation of a System of Third-Order Difference Equations With Multiplicative Reciprocal Terms”. Ikonion Journal of Mathematics, vol. 6, no. 2, 2024, pp. 30-44, doi:10.54286/ikjm.1524180.
Vancouver Tollu DT, Yalçınkaya İ. A qualitative investigation of a system of third-order difference equations with multiplicative reciprocal terms. ikjm. 2024;6(2):30-44.