Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 25 - 34, 15.07.2024

Abstract

References

  • [1]Muhammet Kaan Yeşilyurt, Hayrunnisa Nadaroğlu, Ömer Çomaklı. Phase Change Materialsand Selection Thereof for Heat Transfer Applications. International Journal of Innovative Research and Reviews(2019) 3(2):16–22.
  • [2]Yeşilyurt MK, Çomakli Ö. Encapsulated Phase Change Material Slurries as Working Fluid in Novel Photovoltaic Thermal Liquid Systems: A Comprehensive Review. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering(2023) 47(4):1275–1305. doi:10.1007/s40997-023-00599-0.
  • [3]Tyagi, VV, Buddhi, D. PCM Thermal storage in buildings: Astateof art. Renew. Sustain. Energy Rev.(200711:1146–1166.
  • [4]Pillai KK, Brinkworth BJ. The storage of low-grade thermal energy using phase change materials. Appl.Energy(1976) 2(3):205–216.
  • [5]Verma P, Singal S. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews(2008) 12(4):999–1031.
  • [6]Kenısarın M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Review(1976) 11(9):1913–1965.
  • [7]Zalba B, Marin JM, Cabeza LF, Mehling H. Free-cooling of buildings with phase change materials. International Journal of Refrigeration(2004) 27(8):839–849.
  • [8]Hasnain SM. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques. Energy Conversion and Management(1998) 39(11):1127–1138.
  • [9]Abhat A, Malatidis A-ES, N.A. Heat-of-fusion storage systems for solar heating applications. In: Thermal Storage of Solar Energy(1981).
  • [10]Fang M, Chen G. Effects of different multiple pcms on the performance of a latent thermal energy storage system. Applied Thermal Engineering(2007) 27(5-6):994–1000.
  • [11]Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling(2012) 36(9):4080–4086.
  • [12]Bilen K, Takgil F, Kaygusuz K. Thermal energy storage behavior of CaCl2.6H2O during melting and solidification. Energy Sources Part A(2008) 30(9):775–787.
  • [13]Güngör A.Heat pipe heat exchangers ın energy recovery ın air conditioning. ll. National Plumbing Engineering Congress and Exhibition(1995) 95:–040.
  • [14]Javadi H, Ajarostaghi S, Rosen MA, Pourfallah M. Performance of ground heat exchangers: A comprehensive review of recent advances. Energy(2019) 178:207–223.
  • [15]Serageldin AA, Abdelrahman AK, Ookawara S. Earth-air heat exchanger thermal performance ın egyptian conditions: Experimental results, mathematical model and computational fluid dynamics simulation. Energy Conversion and Management(2016) 122:25–38.
  • [16]Lektal MC, Benzaama MH, Kindinis A, Mokhtari AM, Belardi R. Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers. Renewable Energy(2021):163 22–40.
  • [17]Ashby MF, Brechet Y, Cebon D, Salvo L. Selection strategies for materials and processes. Materials and Design(2004) 25:51–67.
  • [18]İpek MY. Material selection in heat exchangers with Aashby approach. Master’s Thesis. Pamukkale University, Institute of Science and Technology. Denizli (2015).
  • [19]Shatikian V, Ziskind G, Letan R. Numerical investigation of a pcm-based heat sink with internal fins. Int J Heat Mass Transf(2005) 48(17):3689–3706.
  • [20]Saha SK, Dutta P. Heat transfer correlations for pcm-based heat sinks with plate fins. Appl Therm Eng(2010) 30(16):2485–2491.
  • [21]Lamberg P, Siren K. Analytical model for melting ın a semi-infinite pcm storage with an internal fin. Heat Mass Transfer(2003) 39(2):167–176.
  • [22]Ji C, Qin Z, Dubey S, Choo FH, Duan F. Simulation on pcm melting enhancement with double-fin length arrangements ın a rectangular enclosure induced by natural convection. Int J Heat Mass Transfer(2018) 127:255–265.
  • [23]Zhao C, Wang J, Sun Y, He S, Hooman K. Fin design optimization to enhance pcm melting rate inside a rectangular enclosure. Applied Energy(2022) 321(119368).
  • [24]Sharifi N, Bergman TL, Faghri A. Enhancement of PCM melting ın enclosures with horizontally-finned internal surfaces. Int J Heat Mass Transf(2011) 54(19):4182–4192.
  • [25]He F, Zou J, Meng X, Gao W, Ai L. Effect of copper foam fin (cff) shapes on thermal performance improvement of the latent heat storage units. Journal of Energy Storage(2022) 45(103520).
  • [26]Kamkari B, Shokouhmand H. Experimental investigation of phase change material melting ın rectangular enclosures with horizontal partial fins. Int J. Heat Mass Transfer(2014) 78:839–851.
  • [27]Coen F. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Solar Energy(1988) 41(2):193–197.
  • [28]Cabeza L, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Corrosion experiments on salt hydrates used as phase change materials ın cold storage. In: International Energy Agency (IEA) ECES IA Annex 17 Workshop (2001. Lleida, Spain.
  • [29]Cabeza LF, Roca J, Nogues M, Mehling H. Immersion corrosion tests on metal-salt hydrate pairs for latent heat storage ın the 48 to 58 0C temperature range. Mater. Corros.(200253:902–907.
  • [30]Cabeza LF, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage ın the 32 to 36 0C temperature range. Mater(2001) Corros.52:748–754.
  • [31]Cabeza LF, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Immersion corrosion tests onmetal-salt hydrate pairs used for latent heat storage ın the 32 to 36 0C temperature range52(2001). 140–146.
  • [32]Farrell AJ, Norton B, Kennedy DM. Corrosive effects of salt hydrate phase change materials used with aluminium and copper. Journal of Materials Processing Technolog(2006) 175(1-3).
  • [33]Mohamed SA, Al-Sulaiman FA, Ibrahim NI, H ZM, Al-Ahmed A, Saidur R, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews(2017) 70:1072–1089.
  • [34]Mert MS, Sert M, Mert HH. A Review on the current status of organic phase change materials for thermal energy storage systems. Journal of Engineering Sciences and Design(2018) 6(1):161–174.
  • [35]Sharma R, Ganesan P, Tyagi V, Metselaar H, Sandaran S. Developments ın organic solid–liquid phase change materials and their applications ın thermal energy storage. Energy Conversion and Management(2015) 95:193–228.
  • [36]Carlsson B, Wettermark G. Heat transfer properties of a heat of fusion store based on CaCl2.6H2O. Solar Energy(1980) 24:239–247.
  • [37]Iten M, Liu SA. Work procedure of utilizing pcms as thermal storage systems based on air-tes systems. Energy Conversion and Management(2014) 77:608–627.
  • [38]Mazman M. Latent heat storage and applications. Doctoral thesis. Çukurova University. Institute of Science and Technology (2006).
  • [39]Sharma SD, Kıtano H, Sagara K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng., Mie Univ.(200429:31–64.
  • [40]Şimşek F, Organ S. Investigation of the effect of using different type of fin on the melting time of PCM in a latent thermal energy storage unit using CaCl2.6H2O and Na2 SO4.10H2O phase change materials by CFD analysis. The Black Sea Journal of Sciences(2023) 13(2):701–723.
  • [41]Rana S, M Z, Kumar R. CFD approach for the enhancement of thermal energy storage ın phase change material charged heat exchanger. Case Studies in Thermal Engineering(2022) 33:101921.
  • [42]Mahdi JM, Nsofor EC. Multiple-segment metal foam application ın the shell-and-tube PCM thermal energy storage system. J.Energy Storage(2018) 20:529–541.
  • [43]Cano D, Funéz C, Rodriguez L, Valverde JL, Sanchez-Silva L. Experimental investigation of a thermal storage system using phase change materials. Appl. Therm. Eng(2016) 107:264–270.
  • [44]Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage syste. Renew Sustain Energy Rev(2018) 93:245–259.
  • [45]Levin PP, Shitzer A,Hetsroni G. Numerical optimization of a pcm-based heat sink with internal fins. Int. J. Heat Mass(2013) 61:638–645.
  • [46]Abdi A, Shahrooz M, Chiu J, Martin V. Experimental investigation of solidification and melting in a vertically finned cavity. App. Therm. Eng(2021) 198:117459.
  • [47]Suresh C, Saha SK. Comparative study of performance enhancement of latent thermal energy storage system with copper porous fin. Journal of Energy Storage(2023) 72:108451.
  • [48]Al-Mudhafar A, Nowakowski AF, Nicolleau F. Enhancing the thermal performance of pcm ın a shell and tube latent heat energy storage system by utilizing innovative fins. Energy Reports(2021) 7:120–126.
  • [49]Tiari S, Hockins A, Shank K. Experimental study of a latent heat thermal energy storage system assisted by varying annular fins. Journal of Energy Storage(2022) 55(105603).
  • [50]Wang Y, Zadeh PG, Duong XQ, Chung JD. Optimizing fin design for enhanced melting performance ın latent heat thermal energy storage systems. Journal of Energy(2023) 73(109108).

Numerical Analysis of Double Pipe Heat Exchanger Using Different Internal Pipe Material in the Melting Process of PCM

Year 2024, Volume: 8 Issue: 1, 25 - 34, 15.07.2024

Abstract

This study investigated the full melting times of Phase Change Materials (PCMs) stored in the space between two pipes in a double-pipe heat exchanger using a two-dimensional Computational Fluid Dynamics (CFD) model. CaCl2.6H2O and Na2SO4.10H2O, salt hydrates in the inorganic group, were used as PCM in the intermediate space. The inner pipe material through which the heat transfer fluid passes was changed in the heat exchanger and analyses were continued for aluminum and copper. The melting thermal behavior of the heat exchanger, which is designed as a thermal energy storage unit with CFD analysis, is modeled under optimum design conditions created according to the enthalpy-porosity approach. As a result, in the heat exchanger where CaCl2.6H2O is used as PCM, the full melting times of PCM were measured as 105 and 115 minutes if the inner tube was copper and aluminum and 130 and 140 minutes, respectively, when Na2SO4.10H2O was used. In the case of using copper instead of aluminum as the inner tube material, it was observed that the melting time shortened by 8.7% in the heat exchanger with CaCl2.6H2O and by 7.1% in the heat exchanger with Na2SO4.10H2O

References

  • [1]Muhammet Kaan Yeşilyurt, Hayrunnisa Nadaroğlu, Ömer Çomaklı. Phase Change Materialsand Selection Thereof for Heat Transfer Applications. International Journal of Innovative Research and Reviews(2019) 3(2):16–22.
  • [2]Yeşilyurt MK, Çomakli Ö. Encapsulated Phase Change Material Slurries as Working Fluid in Novel Photovoltaic Thermal Liquid Systems: A Comprehensive Review. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering(2023) 47(4):1275–1305. doi:10.1007/s40997-023-00599-0.
  • [3]Tyagi, VV, Buddhi, D. PCM Thermal storage in buildings: Astateof art. Renew. Sustain. Energy Rev.(200711:1146–1166.
  • [4]Pillai KK, Brinkworth BJ. The storage of low-grade thermal energy using phase change materials. Appl.Energy(1976) 2(3):205–216.
  • [5]Verma P, Singal S. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews(2008) 12(4):999–1031.
  • [6]Kenısarın M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Review(1976) 11(9):1913–1965.
  • [7]Zalba B, Marin JM, Cabeza LF, Mehling H. Free-cooling of buildings with phase change materials. International Journal of Refrigeration(2004) 27(8):839–849.
  • [8]Hasnain SM. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques. Energy Conversion and Management(1998) 39(11):1127–1138.
  • [9]Abhat A, Malatidis A-ES, N.A. Heat-of-fusion storage systems for solar heating applications. In: Thermal Storage of Solar Energy(1981).
  • [10]Fang M, Chen G. Effects of different multiple pcms on the performance of a latent thermal energy storage system. Applied Thermal Engineering(2007) 27(5-6):994–1000.
  • [11]Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling(2012) 36(9):4080–4086.
  • [12]Bilen K, Takgil F, Kaygusuz K. Thermal energy storage behavior of CaCl2.6H2O during melting and solidification. Energy Sources Part A(2008) 30(9):775–787.
  • [13]Güngör A.Heat pipe heat exchangers ın energy recovery ın air conditioning. ll. National Plumbing Engineering Congress and Exhibition(1995) 95:–040.
  • [14]Javadi H, Ajarostaghi S, Rosen MA, Pourfallah M. Performance of ground heat exchangers: A comprehensive review of recent advances. Energy(2019) 178:207–223.
  • [15]Serageldin AA, Abdelrahman AK, Ookawara S. Earth-air heat exchanger thermal performance ın egyptian conditions: Experimental results, mathematical model and computational fluid dynamics simulation. Energy Conversion and Management(2016) 122:25–38.
  • [16]Lektal MC, Benzaama MH, Kindinis A, Mokhtari AM, Belardi R. Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers. Renewable Energy(2021):163 22–40.
  • [17]Ashby MF, Brechet Y, Cebon D, Salvo L. Selection strategies for materials and processes. Materials and Design(2004) 25:51–67.
  • [18]İpek MY. Material selection in heat exchangers with Aashby approach. Master’s Thesis. Pamukkale University, Institute of Science and Technology. Denizli (2015).
  • [19]Shatikian V, Ziskind G, Letan R. Numerical investigation of a pcm-based heat sink with internal fins. Int J Heat Mass Transf(2005) 48(17):3689–3706.
  • [20]Saha SK, Dutta P. Heat transfer correlations for pcm-based heat sinks with plate fins. Appl Therm Eng(2010) 30(16):2485–2491.
  • [21]Lamberg P, Siren K. Analytical model for melting ın a semi-infinite pcm storage with an internal fin. Heat Mass Transfer(2003) 39(2):167–176.
  • [22]Ji C, Qin Z, Dubey S, Choo FH, Duan F. Simulation on pcm melting enhancement with double-fin length arrangements ın a rectangular enclosure induced by natural convection. Int J Heat Mass Transfer(2018) 127:255–265.
  • [23]Zhao C, Wang J, Sun Y, He S, Hooman K. Fin design optimization to enhance pcm melting rate inside a rectangular enclosure. Applied Energy(2022) 321(119368).
  • [24]Sharifi N, Bergman TL, Faghri A. Enhancement of PCM melting ın enclosures with horizontally-finned internal surfaces. Int J Heat Mass Transf(2011) 54(19):4182–4192.
  • [25]He F, Zou J, Meng X, Gao W, Ai L. Effect of copper foam fin (cff) shapes on thermal performance improvement of the latent heat storage units. Journal of Energy Storage(2022) 45(103520).
  • [26]Kamkari B, Shokouhmand H. Experimental investigation of phase change material melting ın rectangular enclosures with horizontal partial fins. Int J. Heat Mass Transfer(2014) 78:839–851.
  • [27]Coen F. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Solar Energy(1988) 41(2):193–197.
  • [28]Cabeza L, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Corrosion experiments on salt hydrates used as phase change materials ın cold storage. In: International Energy Agency (IEA) ECES IA Annex 17 Workshop (2001. Lleida, Spain.
  • [29]Cabeza LF, Roca J, Nogues M, Mehling H. Immersion corrosion tests on metal-salt hydrate pairs for latent heat storage ın the 48 to 58 0C temperature range. Mater. Corros.(200253:902–907.
  • [30]Cabeza LF, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage ın the 32 to 36 0C temperature range. Mater(2001) Corros.52:748–754.
  • [31]Cabeza LF, Roca J, Illa J, Badia F, Mehling H, Hiebler S, et al. Immersion corrosion tests onmetal-salt hydrate pairs used for latent heat storage ın the 32 to 36 0C temperature range52(2001). 140–146.
  • [32]Farrell AJ, Norton B, Kennedy DM. Corrosive effects of salt hydrate phase change materials used with aluminium and copper. Journal of Materials Processing Technolog(2006) 175(1-3).
  • [33]Mohamed SA, Al-Sulaiman FA, Ibrahim NI, H ZM, Al-Ahmed A, Saidur R, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews(2017) 70:1072–1089.
  • [34]Mert MS, Sert M, Mert HH. A Review on the current status of organic phase change materials for thermal energy storage systems. Journal of Engineering Sciences and Design(2018) 6(1):161–174.
  • [35]Sharma R, Ganesan P, Tyagi V, Metselaar H, Sandaran S. Developments ın organic solid–liquid phase change materials and their applications ın thermal energy storage. Energy Conversion and Management(2015) 95:193–228.
  • [36]Carlsson B, Wettermark G. Heat transfer properties of a heat of fusion store based on CaCl2.6H2O. Solar Energy(1980) 24:239–247.
  • [37]Iten M, Liu SA. Work procedure of utilizing pcms as thermal storage systems based on air-tes systems. Energy Conversion and Management(2014) 77:608–627.
  • [38]Mazman M. Latent heat storage and applications. Doctoral thesis. Çukurova University. Institute of Science and Technology (2006).
  • [39]Sharma SD, Kıtano H, Sagara K. Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng., Mie Univ.(200429:31–64.
  • [40]Şimşek F, Organ S. Investigation of the effect of using different type of fin on the melting time of PCM in a latent thermal energy storage unit using CaCl2.6H2O and Na2 SO4.10H2O phase change materials by CFD analysis. The Black Sea Journal of Sciences(2023) 13(2):701–723.
  • [41]Rana S, M Z, Kumar R. CFD approach for the enhancement of thermal energy storage ın phase change material charged heat exchanger. Case Studies in Thermal Engineering(2022) 33:101921.
  • [42]Mahdi JM, Nsofor EC. Multiple-segment metal foam application ın the shell-and-tube PCM thermal energy storage system. J.Energy Storage(2018) 20:529–541.
  • [43]Cano D, Funéz C, Rodriguez L, Valverde JL, Sanchez-Silva L. Experimental investigation of a thermal storage system using phase change materials. Appl. Therm. Eng(2016) 107:264–270.
  • [44]Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage syste. Renew Sustain Energy Rev(2018) 93:245–259.
  • [45]Levin PP, Shitzer A,Hetsroni G. Numerical optimization of a pcm-based heat sink with internal fins. Int. J. Heat Mass(2013) 61:638–645.
  • [46]Abdi A, Shahrooz M, Chiu J, Martin V. Experimental investigation of solidification and melting in a vertically finned cavity. App. Therm. Eng(2021) 198:117459.
  • [47]Suresh C, Saha SK. Comparative study of performance enhancement of latent thermal energy storage system with copper porous fin. Journal of Energy Storage(2023) 72:108451.
  • [48]Al-Mudhafar A, Nowakowski AF, Nicolleau F. Enhancing the thermal performance of pcm ın a shell and tube latent heat energy storage system by utilizing innovative fins. Energy Reports(2021) 7:120–126.
  • [49]Tiari S, Hockins A, Shank K. Experimental study of a latent heat thermal energy storage system assisted by varying annular fins. Journal of Energy Storage(2022) 55(105603).
  • [50]Wang Y, Zadeh PG, Duong XQ, Chung JD. Optimizing fin design for enhanced melting performance ın latent heat thermal energy storage systems. Journal of Energy(2023) 73(109108).
There are 50 citations in total.

Details

Primary Language English
Subjects Nanoelectromechanical Systems
Journal Section Research Articles
Authors

Fadime Şimşek

Publication Date July 15, 2024
Submission Date April 22, 2024
Acceptance Date July 7, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Şimşek, F. (2024). Numerical Analysis of Double Pipe Heat Exchanger Using Different Internal Pipe Material in the Melting Process of PCM. International Journal of Innovative Research and Reviews, 8(1), 25-34.