Research Article
BibTex RIS Cite
Year 2022, , 1 - 10, 30.06.2022
https://doi.org/10.26650/EurJBiol.2021.1011530

Abstract

References

  • 1. Fırat M. Stachys semsurensis (Lamiaceae), a new species from Adıya- man province (Turkey) belonging to section. Infrarosularis. Phyto- taxa 2021; 511: 275-82.
  • 2. Hedge IC. Lamiaceae of south-west Asia: diversity, distribution and endemism. Proc Royal Soc B 1986; 89: 23-5.
  • 3. Yaris E, Adsız LB, Yener I, Tuncay E, Yilmaz MA, et al. Isolation of secondary metabolites of two endemic species: Salvia rosifolia Sm. and Salvia cerino-pruinosa Rech. f. var. elazigensis (Lamiaceae). J Food Meas 2021; 1-10.
  • 4. Baytop T. Therapy with medicinal plants in Turkey. Istanbul: Nobel Medical Press; 1999. 5. Singh B, Singh B, Kishor A, Singh S, Bhat MN, et al. Exploring plant- based ethnomedicine and quantitative ethnopharmacology: Me- dicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability 2020; 12: 7526.
  • 6. Tundis R, Leporini M, Bonesi M, Rovito S, Passalacqua NG. Salvia of- ficinalis L. from Italy: A comparative chemical and biological study of its essential oil in the mediterranean context. Molecules 2020; 25: 5826.
  • 7. Hedge IC. Salvia L. Davis PH, editor. Flora of Turkey and the East Aege- an Islands. Edinburgh: Edinburgh University Press; 1982. p. 400-61.
  • 8. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Vol X). Edinburgh: Edinburgh University Press; 1988.
  • 9. Vural M, Adıgüzel N. A new species from Central Anatolia: Salvia aytacii M. Vural & N. Adıgüzel (Labiatae). Turk J Bot 1996; 20: 531- 34.
  • 10. Celep F, Raders E, Drew B. Two new hybrid species of Salvia (S.× karamanensis and S.×doganii) from Turkey: Evidence from mo- lecular and morphological studies. Turk J Bot 2020; 44: 647-60.
  • 11. Akkol EK, Göger F, Koşar M, Başer KHC. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Tur- key. Food Chem 2008; 108: 942- 49.
  • 12. Sindhuja R, Rajendran A, Jayanthi P. Herbaceous life forms of Maruthamalai Hills, Southern Western Ghats, India. Int J Med Aro- mat Plants 2012; 2: 625-31.
  • 13. Ozbey BG, Ozdeniz E, Bolukbaşi A, Oktem M, Keleş Y, et al. The role of free proline and soluble carbonhydrates in serpentine stress on some serpetinophyte and serpentinovag plants. Acta Biologica Turcica 2017; 30: 146-51.
  • 14. Soriano P, Moruno F, Boscaiu M, Vicente O, Hurtado A, et al. Is sa- linity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila? Plant Soil 2014; 384: 363-79.
  • 15. Westworth S, Ashwath N, Cozzolino D. Application of FTIR-ATR spectroscopy to detect salinity response in Beauty Leaf Tree (Calo- phyllum inophyllum L). Energy Procedia 2019; 160: 761-68.
  • 16. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017; 7: 18.
  • 17. Barer R, Cole ARH, Thompson HW. Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology. Na- ture 1949;163:198-201.
  • 18. Legner N, Meinen C, Rauber R. Root differentiation of agricultural plant cultivars and proveniences using FTIR spectroscopy. Front Plant Sci 2018; 9: 748.
  • 19. Götz A, Nikzad-Langerodi R, Staedler Y, Bellaire A, Saukel J. Ap- parent penetration depth in attenuated total reflection Fouri- er-transform infrared (ATR-FTIR) spectroscopy of Allium cepa L. epidermis and cuticle. Spectrochim Acta A Mol Biomol Spectrosc 2020;224:117460.
  • 20. Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 2006;1758:858-67.
  • 21. Ferreira IC, Aguiar EM, Silva AT, Santos LL, Cardoso-Sousa L, et al. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy analysis of saliva for breast cancer diagnosis. J Oncol 2020; 4343590.
  • 22. Ivanova DG, Singh BR. Nondestructive FTIR monitoring of leaf senescence and elicitin‐induced changes in plant leaves. Biopoly- mers: Original Research on Biomolecules 2003; 72: 79-85.
  • 23. Wahab MA, Boubakri H, Jellali S, Jedidi N. Characterization of am- monium retention processes onto Cactus leaves fibers using FTIR, EDX and SEM analysis. J Hazard Mater 2012; 241: 101-9.
  • 24. Palacio S, Aitkenhead M, Escudero A, Montserrat-Martí G, Maestro M et al. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 2014; 9: e107285.
  • 25. Woutersen A, Jardine PE, Bogotá-Angel RG, Zhang HX, Silvestro D, et al. A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon Nitraria L. (Nitrariaceae). PeerJ 2018; 6: e5055.
  • 26. Debnath M, Ashwath N, Hill CB, Callahan DL, Dias DA, et al. (2018). Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiol Biochem 2018; 129: 56-70.
  • 27. Aswathappa N, Munns R, Bachelard EP, Tonnet ML. Ion concentra- tions in the xylem sap of two Casuarina species differing in salt tolerance. Proceedings of the 7th International Workshop on Plant Membrane Transport (Membrane Transport in Plants and Fungi). Sydney: University of Sydney Publication; 1986. p. 486-489.
  • 28. Huhtamäki T, Tian X., Korhonen JT, Ras RH. Surface-wetting char- acterization using contact-angle measurements. Nat Protoc 2018; 13: 1521-38.
  • 29. Yokoyama G, Yasutake D, Tanizaki T, Kitano M. Leaf wetting miti- gates midday depression of photosynthesis in tomato plants. Pho- tosynthetica 2019; 57: 740-7.
  • 30. Yokoyama G, Yasutake D, Minami K, Kimura K, Marui A, et al. Eval- uation of the physiological significance of leaf wetting by dew as a supplemental water resource in semi-arid crop production. Agric Water Manag 2021;255:106964.
  • 31. Roy T, Sabharwal TP, Kumar M, Ranjan P, Balasubramaniam R. Math- ematical modelling of superhydrophobic surfaces for determining the correlation between water contact angle and geometrical pa- rameters. Precis Eng 2020; 61: 55-64.
  • 32. Wang J, Chen H, Sui T, Li A, Chen D. Investigation on hydrophobic- ity of lotus leaf: Experiment and theory. Plant Sci 2009;176:687-95.
  • 33. Neinhuis C, Barthlott W. Characterization and distribution of wa- ter-repellent, self-cleaning plant surfaces. Ann Bot 997; 79: 667-77.
  • 34. Legrand Q, Benayoun S, Valette S. Biomimetic approach for the elaboration of highly hydrophobic surfaces: Study of the links be- tween morphology and wettability. Biomimetics 2021; 6: 38.
  • 35. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Vol XII). Edinburgh: Edinburgh University Press; 1982.
  • 36. Ozcan AU, Aytaş I. Temporal landscape change in biodiversity hotspot and geological heritage karst landscapes: Çankırı gypsum hills case. Yuzuncu Yil Univ J Agric Sci 2019; 29: 618-27.
  • 37. Boke H, Akkurt S, Ozdemir S, Goktürk EH, Saltik ENC. Quantification of CaCO3-CaSO3·0.5 H2O-CaSO4·2H2O mixtures by FTIR analysis and its ANN model. Mater Lett 2004; 58: 723-6.
  • 38. Shillito LM, Almond MJ, Nicholson J, Pantos M, Matthews W. Rapid characterisation of archaeological midden components using FT- IR spectroscopy, SEM-EDX and micro-XRD. Spectrochim Acta A Mol Biomol Spectrosc 2009; 73: 133-9.
  • 39. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A. Conversion of phos- phogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Environ Sci 2016; 7: 1925-33.
  • 40. Zaccheo P, Cabassi G, Ricca G, Crippa L. Decomposition of organic residues in soil: Experimental technique and spectroscopic ap- proach. Org Geochem 2002; 33: 327-45.
  • 41. Liu D, Tian H, Jia X, Zhang L. Effects of calcium carbonate poly- morph on the structure and properties of soy protein‐based nano- composites. Macromol Biosci 2008; 8: 401-9.
  • 42. Ma F, Huang AM, Zhang SF, Zhou Q, Zhang QH. Identification of three Diospysros species using FT-IR and 2DCOS-IR. J Mol Struct 2020; 1220: 128709.
  • 43. Ferreira ML, Gerbino E, Cavallero GJ, Casabuono AC, Couto AS, et al. Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd (II), Cu (II) and Zn (II). Spectrochim Acta A Mol Biomol Spectrosc 2020; 228: 117820.
  • 44. Jastrzębski W, Sitarz M, Rokita M, Bułat K. Infrared spectroscopy of different phosphates structures. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79: 722-27.
  • 45. Smidt E, Meissl K. The applicability of fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manage 2007; 27: 268-76.
  • 46. Li C, Du C, Ma F, Zhou J. Diagnosis of nitrogen status in Chinese cabbage (Brassica rapa chinensis) using the ratio of amide II to am- ide I in leaves based on mid‐ infrared photoacoustic spectroscopy. J Plant Nutr Soil Sci 2015; 178: 888-95.
  • 47. Frost RL, Yang J, Ding Z. Raman and FTIR spectroscopy of natural oxalates: Implications for the evidence of life on Mars. Chin Sci Bull 2003; 48: 1844-52.
  • 48. Sun XF, Jing Z, Fowler P, Wu Y, Rajaratnam M. Structural characteri- zation and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 2011; 33(3): 588-98.
  • 49. Parvan L, Dumitru M, Sîrbu C, Cioroianu T. Fertilizer with humic substances. Rom Agric Res 2013; 30: 205-12.
  • 50. Centeno SA, Guzman MI, Yamazakikleps A, Védova COD. Charac- terization by FTIR of the effect of lead white on some properties of proteinaceous binding media. J Am Inst Conserv 2004; 43: 139-50.
  • 51. Jamarun N, Yuwan S, Juita R, Rahayuningsih J. Synthesis and char- acterization carbonate apatite from bukit tui limestone padang Indonesia. J Appl Chem 2015; 4: 542-9.
  • 52. Valarmathi D, Abraham L, Gunasekaran S. Growth of calcium ox- alate monohydrate crystal by gel method and its spectroscopic analysis. Indian J Pure Appl Phys 2010; 48: 36-8.
  • 53. De Campos Vidal B, Mello MLS. Collagen type I amide I band infra- red spectroscopy. Micron 2011; 42: 283-89.
  • 54. Mandal PK, Mandal TK. Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cem Concr Res 2002; 32: 313-16.
  • 55. Terpáková E, Kidalová L, Eštoková A, Čigášová J, Števulová N. Chemical modification of hemp shives and their characteriza- tion. Procedia Eng 2008; 42: 931-41.
  • 56. Xin X, Si W, Yao Z, Feng R, Du B, et al. Adsorption of benzoic acid from aqueous solution by three kinds of modified bentonites. J Colloid Interface Sci 2011; 359: 499- 504.
  • 57. Johnston A, Rogers K. A study of the intermolecular interactions of lipid components from analogue fingerprint residues. Sci Justice 2018; 58: 121-7.
  • 58. Bolukbasi A, Kurt L, Palacio S. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical compo- sition of gypsum plants from Turkey. Plant Biol 2016; 18(2): 271-9.
  • 59. Ozdemir C, Ozkan M, Kandemir A. The morphological and anatom- ical properties of Gypsophila lepidioides Boiss (Caryophyllaceae) endemic to Turkey. Int Res J Plant Sci 2010; 1: 69-74.
  • 60. Katata G, Held A. Combined measurements of microscopic leaf wetness and dry-deposited inorganic compounds in a spruce for- est. Atmos Pollut Res 2021; 12: 217-24.
  • 61. Utami SNH, Suswati D. Chemical and spectroscopy of peat from West and Central Kalimantan, Indonesia in relation to peat proper- ties. Int J Environ Agric Res 2016; 2: 45-52.
  • 62. Mukhopadhyay RD, Vedhanarayanan B, Ajayaghosh A. Creation of “Rose Petal” and “Lotus Leaf” effects on alumina by surface func- tionalization and metal‐ion coordination. Angew Chem 2017; 129(50): 16234-8.
  • 63. Wei J, Tang Y, Wang M, Hua G, Zhang Y, Peng R. Wettability on plant leaf surfaces and its effect on pesticide efficiency. Int J Precis Agric Aviat 2020; 3(1): 30-7.

Chemical Profiling and Wetting Behaviors of Endemic Salvia absconditiflora Greuter & Burdet (Lamiaceae) Collected from Gypsum Areas

Year 2022, , 1 - 10, 30.06.2022
https://doi.org/10.26650/EurJBiol.2021.1011530

Abstract

Objective: Salvia absconditiflora Greuter & Burdet is an endemic plant and survives in nature by adapting to extreme conditions. The aims of this study are to characterize and compare the diversity in the spectral-chemical structure of S. absconditiflora’s plant parts using the FTIR spectroscopy technique, to determine the wettability of the adaxial and abaxial epidermal surfaces of S. abscontidiflora leaves and to interpret whether there is a difference between the contact angle (CA) measurements at the points determined in the surface area of the leaves from the part close to the petiole to the leaf tip. Materials and Methods: The ATR-FTIR spectra for the chemical content of S. absconditiflora were obtained from six different plant parts and information about their chemical compositions was obtained. CA measurements were carried out for the natural events of the leaf area, especially for the water holding capacity or hydrophilic-hydrophobic characteristics. Results: The biochemical fingerprint of S. absconditiflora was determined by the analysis of chemical groups in vegetative and generative plant parts using ATR-FTIR spectroscopy. The CAs showed that the leaf had a hydrophobic character. In addition, leaf hysteresis was determined for each plant part, and it was understood that the lotus effect also appeared in S. absconditiflora. Conclusion: Detailed biochemical profiling, wettability, and hysteresis reports of S. absconditiflora were created for the first time. With this study, important clues about the adaptation of plants to harsh conditions were obtained.

References

  • 1. Fırat M. Stachys semsurensis (Lamiaceae), a new species from Adıya- man province (Turkey) belonging to section. Infrarosularis. Phyto- taxa 2021; 511: 275-82.
  • 2. Hedge IC. Lamiaceae of south-west Asia: diversity, distribution and endemism. Proc Royal Soc B 1986; 89: 23-5.
  • 3. Yaris E, Adsız LB, Yener I, Tuncay E, Yilmaz MA, et al. Isolation of secondary metabolites of two endemic species: Salvia rosifolia Sm. and Salvia cerino-pruinosa Rech. f. var. elazigensis (Lamiaceae). J Food Meas 2021; 1-10.
  • 4. Baytop T. Therapy with medicinal plants in Turkey. Istanbul: Nobel Medical Press; 1999. 5. Singh B, Singh B, Kishor A, Singh S, Bhat MN, et al. Exploring plant- based ethnomedicine and quantitative ethnopharmacology: Me- dicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability 2020; 12: 7526.
  • 6. Tundis R, Leporini M, Bonesi M, Rovito S, Passalacqua NG. Salvia of- ficinalis L. from Italy: A comparative chemical and biological study of its essential oil in the mediterranean context. Molecules 2020; 25: 5826.
  • 7. Hedge IC. Salvia L. Davis PH, editor. Flora of Turkey and the East Aege- an Islands. Edinburgh: Edinburgh University Press; 1982. p. 400-61.
  • 8. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Vol X). Edinburgh: Edinburgh University Press; 1988.
  • 9. Vural M, Adıgüzel N. A new species from Central Anatolia: Salvia aytacii M. Vural & N. Adıgüzel (Labiatae). Turk J Bot 1996; 20: 531- 34.
  • 10. Celep F, Raders E, Drew B. Two new hybrid species of Salvia (S.× karamanensis and S.×doganii) from Turkey: Evidence from mo- lecular and morphological studies. Turk J Bot 2020; 44: 647-60.
  • 11. Akkol EK, Göger F, Koşar M, Başer KHC. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Tur- key. Food Chem 2008; 108: 942- 49.
  • 12. Sindhuja R, Rajendran A, Jayanthi P. Herbaceous life forms of Maruthamalai Hills, Southern Western Ghats, India. Int J Med Aro- mat Plants 2012; 2: 625-31.
  • 13. Ozbey BG, Ozdeniz E, Bolukbaşi A, Oktem M, Keleş Y, et al. The role of free proline and soluble carbonhydrates in serpentine stress on some serpetinophyte and serpentinovag plants. Acta Biologica Turcica 2017; 30: 146-51.
  • 14. Soriano P, Moruno F, Boscaiu M, Vicente O, Hurtado A, et al. Is sa- linity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila? Plant Soil 2014; 384: 363-79.
  • 15. Westworth S, Ashwath N, Cozzolino D. Application of FTIR-ATR spectroscopy to detect salinity response in Beauty Leaf Tree (Calo- phyllum inophyllum L). Energy Procedia 2019; 160: 761-68.
  • 16. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017; 7: 18.
  • 17. Barer R, Cole ARH, Thompson HW. Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology. Na- ture 1949;163:198-201.
  • 18. Legner N, Meinen C, Rauber R. Root differentiation of agricultural plant cultivars and proveniences using FTIR spectroscopy. Front Plant Sci 2018; 9: 748.
  • 19. Götz A, Nikzad-Langerodi R, Staedler Y, Bellaire A, Saukel J. Ap- parent penetration depth in attenuated total reflection Fouri- er-transform infrared (ATR-FTIR) spectroscopy of Allium cepa L. epidermis and cuticle. Spectrochim Acta A Mol Biomol Spectrosc 2020;224:117460.
  • 20. Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 2006;1758:858-67.
  • 21. Ferreira IC, Aguiar EM, Silva AT, Santos LL, Cardoso-Sousa L, et al. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy analysis of saliva for breast cancer diagnosis. J Oncol 2020; 4343590.
  • 22. Ivanova DG, Singh BR. Nondestructive FTIR monitoring of leaf senescence and elicitin‐induced changes in plant leaves. Biopoly- mers: Original Research on Biomolecules 2003; 72: 79-85.
  • 23. Wahab MA, Boubakri H, Jellali S, Jedidi N. Characterization of am- monium retention processes onto Cactus leaves fibers using FTIR, EDX and SEM analysis. J Hazard Mater 2012; 241: 101-9.
  • 24. Palacio S, Aitkenhead M, Escudero A, Montserrat-Martí G, Maestro M et al. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 2014; 9: e107285.
  • 25. Woutersen A, Jardine PE, Bogotá-Angel RG, Zhang HX, Silvestro D, et al. A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon Nitraria L. (Nitrariaceae). PeerJ 2018; 6: e5055.
  • 26. Debnath M, Ashwath N, Hill CB, Callahan DL, Dias DA, et al. (2018). Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiol Biochem 2018; 129: 56-70.
  • 27. Aswathappa N, Munns R, Bachelard EP, Tonnet ML. Ion concentra- tions in the xylem sap of two Casuarina species differing in salt tolerance. Proceedings of the 7th International Workshop on Plant Membrane Transport (Membrane Transport in Plants and Fungi). Sydney: University of Sydney Publication; 1986. p. 486-489.
  • 28. Huhtamäki T, Tian X., Korhonen JT, Ras RH. Surface-wetting char- acterization using contact-angle measurements. Nat Protoc 2018; 13: 1521-38.
  • 29. Yokoyama G, Yasutake D, Tanizaki T, Kitano M. Leaf wetting miti- gates midday depression of photosynthesis in tomato plants. Pho- tosynthetica 2019; 57: 740-7.
  • 30. Yokoyama G, Yasutake D, Minami K, Kimura K, Marui A, et al. Eval- uation of the physiological significance of leaf wetting by dew as a supplemental water resource in semi-arid crop production. Agric Water Manag 2021;255:106964.
  • 31. Roy T, Sabharwal TP, Kumar M, Ranjan P, Balasubramaniam R. Math- ematical modelling of superhydrophobic surfaces for determining the correlation between water contact angle and geometrical pa- rameters. Precis Eng 2020; 61: 55-64.
  • 32. Wang J, Chen H, Sui T, Li A, Chen D. Investigation on hydrophobic- ity of lotus leaf: Experiment and theory. Plant Sci 2009;176:687-95.
  • 33. Neinhuis C, Barthlott W. Characterization and distribution of wa- ter-repellent, self-cleaning plant surfaces. Ann Bot 997; 79: 667-77.
  • 34. Legrand Q, Benayoun S, Valette S. Biomimetic approach for the elaboration of highly hydrophobic surfaces: Study of the links be- tween morphology and wettability. Biomimetics 2021; 6: 38.
  • 35. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands (Vol XII). Edinburgh: Edinburgh University Press; 1982.
  • 36. Ozcan AU, Aytaş I. Temporal landscape change in biodiversity hotspot and geological heritage karst landscapes: Çankırı gypsum hills case. Yuzuncu Yil Univ J Agric Sci 2019; 29: 618-27.
  • 37. Boke H, Akkurt S, Ozdemir S, Goktürk EH, Saltik ENC. Quantification of CaCO3-CaSO3·0.5 H2O-CaSO4·2H2O mixtures by FTIR analysis and its ANN model. Mater Lett 2004; 58: 723-6.
  • 38. Shillito LM, Almond MJ, Nicholson J, Pantos M, Matthews W. Rapid characterisation of archaeological midden components using FT- IR spectroscopy, SEM-EDX and micro-XRD. Spectrochim Acta A Mol Biomol Spectrosc 2009; 73: 133-9.
  • 39. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A. Conversion of phos- phogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Environ Sci 2016; 7: 1925-33.
  • 40. Zaccheo P, Cabassi G, Ricca G, Crippa L. Decomposition of organic residues in soil: Experimental technique and spectroscopic ap- proach. Org Geochem 2002; 33: 327-45.
  • 41. Liu D, Tian H, Jia X, Zhang L. Effects of calcium carbonate poly- morph on the structure and properties of soy protein‐based nano- composites. Macromol Biosci 2008; 8: 401-9.
  • 42. Ma F, Huang AM, Zhang SF, Zhou Q, Zhang QH. Identification of three Diospysros species using FT-IR and 2DCOS-IR. J Mol Struct 2020; 1220: 128709.
  • 43. Ferreira ML, Gerbino E, Cavallero GJ, Casabuono AC, Couto AS, et al. Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd (II), Cu (II) and Zn (II). Spectrochim Acta A Mol Biomol Spectrosc 2020; 228: 117820.
  • 44. Jastrzębski W, Sitarz M, Rokita M, Bułat K. Infrared spectroscopy of different phosphates structures. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79: 722-27.
  • 45. Smidt E, Meissl K. The applicability of fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manage 2007; 27: 268-76.
  • 46. Li C, Du C, Ma F, Zhou J. Diagnosis of nitrogen status in Chinese cabbage (Brassica rapa chinensis) using the ratio of amide II to am- ide I in leaves based on mid‐ infrared photoacoustic spectroscopy. J Plant Nutr Soil Sci 2015; 178: 888-95.
  • 47. Frost RL, Yang J, Ding Z. Raman and FTIR spectroscopy of natural oxalates: Implications for the evidence of life on Mars. Chin Sci Bull 2003; 48: 1844-52.
  • 48. Sun XF, Jing Z, Fowler P, Wu Y, Rajaratnam M. Structural characteri- zation and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 2011; 33(3): 588-98.
  • 49. Parvan L, Dumitru M, Sîrbu C, Cioroianu T. Fertilizer with humic substances. Rom Agric Res 2013; 30: 205-12.
  • 50. Centeno SA, Guzman MI, Yamazakikleps A, Védova COD. Charac- terization by FTIR of the effect of lead white on some properties of proteinaceous binding media. J Am Inst Conserv 2004; 43: 139-50.
  • 51. Jamarun N, Yuwan S, Juita R, Rahayuningsih J. Synthesis and char- acterization carbonate apatite from bukit tui limestone padang Indonesia. J Appl Chem 2015; 4: 542-9.
  • 52. Valarmathi D, Abraham L, Gunasekaran S. Growth of calcium ox- alate monohydrate crystal by gel method and its spectroscopic analysis. Indian J Pure Appl Phys 2010; 48: 36-8.
  • 53. De Campos Vidal B, Mello MLS. Collagen type I amide I band infra- red spectroscopy. Micron 2011; 42: 283-89.
  • 54. Mandal PK, Mandal TK. Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cem Concr Res 2002; 32: 313-16.
  • 55. Terpáková E, Kidalová L, Eštoková A, Čigášová J, Števulová N. Chemical modification of hemp shives and their characteriza- tion. Procedia Eng 2008; 42: 931-41.
  • 56. Xin X, Si W, Yao Z, Feng R, Du B, et al. Adsorption of benzoic acid from aqueous solution by three kinds of modified bentonites. J Colloid Interface Sci 2011; 359: 499- 504.
  • 57. Johnston A, Rogers K. A study of the intermolecular interactions of lipid components from analogue fingerprint residues. Sci Justice 2018; 58: 121-7.
  • 58. Bolukbasi A, Kurt L, Palacio S. Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical compo- sition of gypsum plants from Turkey. Plant Biol 2016; 18(2): 271-9.
  • 59. Ozdemir C, Ozkan M, Kandemir A. The morphological and anatom- ical properties of Gypsophila lepidioides Boiss (Caryophyllaceae) endemic to Turkey. Int Res J Plant Sci 2010; 1: 69-74.
  • 60. Katata G, Held A. Combined measurements of microscopic leaf wetness and dry-deposited inorganic compounds in a spruce for- est. Atmos Pollut Res 2021; 12: 217-24.
  • 61. Utami SNH, Suswati D. Chemical and spectroscopy of peat from West and Central Kalimantan, Indonesia in relation to peat proper- ties. Int J Environ Agric Res 2016; 2: 45-52.
  • 62. Mukhopadhyay RD, Vedhanarayanan B, Ajayaghosh A. Creation of “Rose Petal” and “Lotus Leaf” effects on alumina by surface func- tionalization and metal‐ion coordination. Angew Chem 2017; 129(50): 16234-8.
  • 63. Wei J, Tang Y, Wang M, Hua G, Zhang Y, Peng R. Wettability on plant leaf surfaces and its effect on pesticide efficiency. Int J Precis Agric Aviat 2020; 3(1): 30-7.
There are 62 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ayşenur Kayabaş 0000-0003-3555-4399

Ertan Yildirim 0000-0002-4083-3408

Publication Date June 30, 2022
Submission Date October 18, 2021
Published in Issue Year 2022

Cite

AMA Kayabaş A, Yildirim E. Chemical Profiling and Wetting Behaviors of Endemic Salvia absconditiflora Greuter & Burdet (Lamiaceae) Collected from Gypsum Areas. Eur J Biol. June 2022;81(1):1-10. doi:10.26650/EurJBiol.2021.1011530