An Investigation into the Phytochemical Content, Antibacterial Effect, and Antioxidant Capacity of the Ethanol Extract of Salacca wallichiana Mart. Peels
Year 2023,
, 179 - 185, 21.12.2023
Tran Thi Cam Thi
,
Nguyen Trung Quan
,
Hoang Thanh Chi
,
Bui Thi Kim Ly
Abstract
Objective: Salacca wallichiana Mart. is a prominent fruit-bearing tree distributed in Southeast Asia and used in treating many diseases and folk remedies. Thus far, only phytochemical composition-related research has been carried out on this plant, while the other bioactivities retarding its applicability in orthodox medicine have been ignored. Screening for the various bioeffects is needed to verify the authenticity of the medicinal activities of plants.
Materials and Methods: Following Ciulei separation, the phytochemical contents of the fruit peel extracts were determined. The antioxidant effect was evaluated by performing the free radical scavenging and potassium ferricyanide-reducing antioxidant power assays. Agar diffusion and broth dilution methods were used to ascertain the antibacterial capacity, and then the minimal inhibitory concentration (MICs) and MBCs were calculated.
Results: The results illustrated a robust free radical scavenging but a weak reducing activity. The MIC against Gram-positive bacteria was <4 mg/mL. The phytochemical composition included tannins and flavonoids, cardiac glycosides, organic acids, and reducing sugars.
Conclusion: The extracts of S. wallichiana peels demonstrated a potential antioxidant activity along with lethality against Gram- positive bacteria, which was attributed to the diversity in the contents of secondary metabolites.
Supporting Institution
No Application
Project Number
No Application
References
- Nontokozo ZM, Mthokozisi BCS. Herbal Medicine. In: Philip FB, editor. Herbal Medicine. Rijeka: IntechOpen; 2018. google scholar
- Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1-5. google scholar
- Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol. 2007;3(7):360-366. google scholar
- Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):599. doi: 10.3390/molecules21050559 google scholar
- Hussein R, El-Anssary A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herb Med. 2019:12-29. doi: 10.5772/intechopen.76139. google scholar
- Seca AML, Pinto D. Biological potential and medical use of secondary metabolites. Medicines. 2019;6(2):66. doi: 10.3390/medicines6020066 google scholar
- Ragasa C, Ting J, Ramones M, et al. Chemical constituents of Salacca wallichiana Mart. Int J Curr Pharm Res. 2016;7(4):186-189. google scholar
- Lim T. Edible Medicinal and Non Medicinal Plants. Flower. Springer, the Netherlands. 2015. google scholar
- Ragasa C, Ting J, Ramones M, et al. Chemical composition of Salacca wallichiana. Chem Nat Compd. 2018;54(4):788-789. google scholar
- Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. doi: 10.3389/fnut.2023.1118761 google scholar
- Ioan Ciulei EGS, Plante medicinale , fitochimie si fitoterapie. Vol. II: Editura medicala; 1993. google scholar
- Ioan Ciulei EGS, U. Plante medicinale , fitochimie si fitoterapie. Vol. I: Editura medicala; 1993. google scholar
- Jha D, Panda L, Pandian L, Ramaiah S, Anbarasu A. Detec-tion and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol. 2012;168. doi: 10.1007/s12010-012-9834-1 google scholar
- Ayoola G, Coker H, Adesegun S, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res. (ISSN: 1596-5996) 2008;7(3). doi: 10.4314/tjpr.v7i3.14686 google scholar
- MacWillliam IC, Wenn RV. Interpretation of colour tests for polyphenols and melanoidins. BRI Nutfield Surrey. 1972;78:309. google scholar
- Baughman IP. The study of the tannin-gelatin reaction. J Phys Chem. 1927;31(3):448-458. google scholar
- Edeoga HO, Okwu, DE, Mbaebie, BO. Phytochemical con-stituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685-688. google scholar
- Liu S. Extraction and characterization of proanthocyanidins from grape seeds. Open Food Sci J. 2012;6:5-11. google scholar
- Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astrin-gency and radical scavenging effects. Chem Pharm Bull. 1988;36(6):2090-2097. google scholar
- Ly B, Nguyen Q, Dao L, et al. Evaluation of antimicrobial, an-tioxidant and cytotoxic activities of Dialium cochinchinensis seed extract. Indian J Pharm Sci. 2019;81(5): 975-980. google scholar
- Keesey J. Biochemica Information: A revised biochemical refer-ence source: Boehringer Mannheim Biochemicals. Biochemistry. 1987. google scholar
- Zheleva-Dimitrova D, Nedialkov P, Kitanov G. Radical scav-enging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn Mag. 2010;6(22):74-78. google scholar
- Ponnusamy J, Lalitha P. Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int J Pharm Pharm Sci. 2011;3:126-128. google scholar
- Finn RK. Theory of agar diffusion methods for bioassay. Anal Chem. 1959;31(6):975-977. google scholar
- Rampersad SN. Multiple applications of Alamar Blue as an in-dicator of metabolic function and cellular health in cell viabil-ity bioassays. Sensors (Basel, Switzerland). 2012;12(9):12347-12360. google scholar
- Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharml J. 2013;21(2):143-152. google scholar
- Jan R, Asaf S, Numan M, Lubna, Kim K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy. 2021;11(5):968. doi: 10.3390/agronomy11050968 google scholar
- Pagare S, Bhatia M, Tripathi N, Bansal YK. Secondary metabo-lites of plants and their role: Overview. Curr Trends Biotechnol Pharm. 2015;9:293-304. google scholar
- Velu G, Palanichamy V, Rajan A. Phytochemical and pharma-cological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview. 2018:135-156. doi: 10.1007/978-3-319-74210-6_8 google scholar
- Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982-991. google scholar
- Kanlayavattanakul M, Lourith N, Ospondpant D, et al. Salak plum peel extract as a safe and efficient antioxidant appraisal for cos-metics. Biosci Biotechnol Biochem. 2013;77(5):1068-1074. google scholar
- Afrianti L, Widjaja W, Suliasih N, et al. Anticancer activity of 3-hydroxystigmastan- 5(6)-en (0-sitosterol) compound from Salacca edulis reinw variety Bongkok in MCF-7 and T47D cell line. J Adv Agric Technol. 2015;2(2). doi: 10.12720/joaat.2.2.129-133 google scholar
- Santos Sanchez N, Salas-Coronado R, Villanueva C, Hernandez-Carlos B. Antioxidant compounds and their antioxidant mecha-nism. Antioxidants. 1st ed. London, UK: IntechOpen; 2019: 1-28. google scholar
- Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298-300. google scholar
- Pham-Huy L, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. J Biomed Sci: IJBS. 2008;4:89-96. google scholar
- Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017:8416763. doi: 10.1155/2017/8416763 google scholar
- Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915-7922. google scholar
- Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, Ox-idative stress, and antioxidants: Back and forth in the patho-physiology of chronic diseases. Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694 google scholar
- Aneklaphakij C, Saigo T, Watanabe M, et al. Diversity of Chemical structures and biosynthesis of polyphenols in nut-bearing species. Front Plant Sci. 2021;12(440). doi: 10.3389/fpls.2021.642581 google scholar
- Danet A. Recent advances in antioxidant capacity assays. Antioxidants-Benefits, Sources, Mechanisms of Action. Inte-chOpen. 2021. google scholar
- Licht O, Weyers A, Nagel R. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals. Environ Sci Pollut Res Int. 2004;11(5):291-296. google scholar
- Fitri A, Andriani M, Sudarman A, et al. Screening of antioxidant activities and their bioavailability of tropical fruit byproducts from Indonesia. Int J Pharm Pharm Sci. 2016;8:96-100. google scholar
- Paiva L, Lima E, Motta M, Marcone M, Baptista J. Influ-ence of seasonal and yearly variation on phenolic profiles, caf-feine, and antioxidant activities of green tea (Camellia sinen-sis (L.) Kuntze) from Azores. Appl Sci. 2021;11(16):7439. doi: 10.3390/app11167439. google scholar
- Pietrzyk DJ, Frank CW. Chapter Eleven- Oxidation-reduction titrations. In: Pietrzyk DJ, Frank CW, editors. Analytical Chem-istry: Academic Press. 1979. p. 245-64. google scholar
- Cheng Z, Li Y. Reducing power: The measure of antioxidant activities of reductant compounds? Redox Rep. 2004;9(4):213-217. google scholar
- Murugan M, Kolanjinathan K. Qualitative phytochemical screen-ing and antioxidant activity of elytraria acaulis lindau (Acan-thaceae). Asian J Pharm Clin Res. 2016;9:1-4. google scholar
- Gülçin İ. Fe(3+ )-Fe(2+ ) transformation method: An important an-tioxidant assay. Methods Mol Biol (Clifton, NJ). 2015;1208:233-246. google scholar
- Wallace RJ. Antimicrobial properties of plant secondary metabo-lites. Proc Nutr Soc. 2004;63(4):621-629. google scholar
- Brejyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and ap-proaches to resolve it. Molecules. 2020;25(6):1340. doi: 10.3390/molecules25061340 google scholar
- Sari L, Saputro Z, Utomo M, Prodjosantoso A. The use of Salacca zalacca extract as reducing agent to synthesize silver nanopar-ticles (agnps) and the antibacterial activities. Orient J Chem. 2019;35:1557-1564. google scholar
- Wulansari NT, Padmiswari AAIM, Damayanti IAM. The effec-tiveness probiotic drink of salak bali (salacca zalacca) in inhibiting growth of Escherichia coli. J BiolTropis. 2022;22(3):934-939. google scholar
- Chiuman L, Sherlyn S, Aritonang NS, Rudy R, Suhartomi S. In vitro study of antibacterial activity of snake fruit extract against extended spectrum beta lactamase (ESBL) Escherichia coli. Jurnal Aisyah: J ILMU Kesehatan (JIKA). 2023. 2023;8(2). doi: 10.30604/jika.v8i2.1962. google scholar
Year 2023,
, 179 - 185, 21.12.2023
Tran Thi Cam Thi
,
Nguyen Trung Quan
,
Hoang Thanh Chi
,
Bui Thi Kim Ly
Project Number
No Application
References
- Nontokozo ZM, Mthokozisi BCS. Herbal Medicine. In: Philip FB, editor. Herbal Medicine. Rijeka: IntechOpen; 2018. google scholar
- Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1-5. google scholar
- Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol. 2007;3(7):360-366. google scholar
- Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):599. doi: 10.3390/molecules21050559 google scholar
- Hussein R, El-Anssary A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herb Med. 2019:12-29. doi: 10.5772/intechopen.76139. google scholar
- Seca AML, Pinto D. Biological potential and medical use of secondary metabolites. Medicines. 2019;6(2):66. doi: 10.3390/medicines6020066 google scholar
- Ragasa C, Ting J, Ramones M, et al. Chemical constituents of Salacca wallichiana Mart. Int J Curr Pharm Res. 2016;7(4):186-189. google scholar
- Lim T. Edible Medicinal and Non Medicinal Plants. Flower. Springer, the Netherlands. 2015. google scholar
- Ragasa C, Ting J, Ramones M, et al. Chemical composition of Salacca wallichiana. Chem Nat Compd. 2018;54(4):788-789. google scholar
- Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. doi: 10.3389/fnut.2023.1118761 google scholar
- Ioan Ciulei EGS, Plante medicinale , fitochimie si fitoterapie. Vol. II: Editura medicala; 1993. google scholar
- Ioan Ciulei EGS, U. Plante medicinale , fitochimie si fitoterapie. Vol. I: Editura medicala; 1993. google scholar
- Jha D, Panda L, Pandian L, Ramaiah S, Anbarasu A. Detec-tion and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol. 2012;168. doi: 10.1007/s12010-012-9834-1 google scholar
- Ayoola G, Coker H, Adesegun S, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res. (ISSN: 1596-5996) 2008;7(3). doi: 10.4314/tjpr.v7i3.14686 google scholar
- MacWillliam IC, Wenn RV. Interpretation of colour tests for polyphenols and melanoidins. BRI Nutfield Surrey. 1972;78:309. google scholar
- Baughman IP. The study of the tannin-gelatin reaction. J Phys Chem. 1927;31(3):448-458. google scholar
- Edeoga HO, Okwu, DE, Mbaebie, BO. Phytochemical con-stituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685-688. google scholar
- Liu S. Extraction and characterization of proanthocyanidins from grape seeds. Open Food Sci J. 2012;6:5-11. google scholar
- Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astrin-gency and radical scavenging effects. Chem Pharm Bull. 1988;36(6):2090-2097. google scholar
- Ly B, Nguyen Q, Dao L, et al. Evaluation of antimicrobial, an-tioxidant and cytotoxic activities of Dialium cochinchinensis seed extract. Indian J Pharm Sci. 2019;81(5): 975-980. google scholar
- Keesey J. Biochemica Information: A revised biochemical refer-ence source: Boehringer Mannheim Biochemicals. Biochemistry. 1987. google scholar
- Zheleva-Dimitrova D, Nedialkov P, Kitanov G. Radical scav-enging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn Mag. 2010;6(22):74-78. google scholar
- Ponnusamy J, Lalitha P. Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int J Pharm Pharm Sci. 2011;3:126-128. google scholar
- Finn RK. Theory of agar diffusion methods for bioassay. Anal Chem. 1959;31(6):975-977. google scholar
- Rampersad SN. Multiple applications of Alamar Blue as an in-dicator of metabolic function and cellular health in cell viabil-ity bioassays. Sensors (Basel, Switzerland). 2012;12(9):12347-12360. google scholar
- Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharml J. 2013;21(2):143-152. google scholar
- Jan R, Asaf S, Numan M, Lubna, Kim K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy. 2021;11(5):968. doi: 10.3390/agronomy11050968 google scholar
- Pagare S, Bhatia M, Tripathi N, Bansal YK. Secondary metabo-lites of plants and their role: Overview. Curr Trends Biotechnol Pharm. 2015;9:293-304. google scholar
- Velu G, Palanichamy V, Rajan A. Phytochemical and pharma-cological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview. 2018:135-156. doi: 10.1007/978-3-319-74210-6_8 google scholar
- Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982-991. google scholar
- Kanlayavattanakul M, Lourith N, Ospondpant D, et al. Salak plum peel extract as a safe and efficient antioxidant appraisal for cos-metics. Biosci Biotechnol Biochem. 2013;77(5):1068-1074. google scholar
- Afrianti L, Widjaja W, Suliasih N, et al. Anticancer activity of 3-hydroxystigmastan- 5(6)-en (0-sitosterol) compound from Salacca edulis reinw variety Bongkok in MCF-7 and T47D cell line. J Adv Agric Technol. 2015;2(2). doi: 10.12720/joaat.2.2.129-133 google scholar
- Santos Sanchez N, Salas-Coronado R, Villanueva C, Hernandez-Carlos B. Antioxidant compounds and their antioxidant mecha-nism. Antioxidants. 1st ed. London, UK: IntechOpen; 2019: 1-28. google scholar
- Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298-300. google scholar
- Pham-Huy L, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. J Biomed Sci: IJBS. 2008;4:89-96. google scholar
- Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017:8416763. doi: 10.1155/2017/8416763 google scholar
- Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915-7922. google scholar
- Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, Ox-idative stress, and antioxidants: Back and forth in the patho-physiology of chronic diseases. Front Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694 google scholar
- Aneklaphakij C, Saigo T, Watanabe M, et al. Diversity of Chemical structures and biosynthesis of polyphenols in nut-bearing species. Front Plant Sci. 2021;12(440). doi: 10.3389/fpls.2021.642581 google scholar
- Danet A. Recent advances in antioxidant capacity assays. Antioxidants-Benefits, Sources, Mechanisms of Action. Inte-chOpen. 2021. google scholar
- Licht O, Weyers A, Nagel R. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals. Environ Sci Pollut Res Int. 2004;11(5):291-296. google scholar
- Fitri A, Andriani M, Sudarman A, et al. Screening of antioxidant activities and their bioavailability of tropical fruit byproducts from Indonesia. Int J Pharm Pharm Sci. 2016;8:96-100. google scholar
- Paiva L, Lima E, Motta M, Marcone M, Baptista J. Influ-ence of seasonal and yearly variation on phenolic profiles, caf-feine, and antioxidant activities of green tea (Camellia sinen-sis (L.) Kuntze) from Azores. Appl Sci. 2021;11(16):7439. doi: 10.3390/app11167439. google scholar
- Pietrzyk DJ, Frank CW. Chapter Eleven- Oxidation-reduction titrations. In: Pietrzyk DJ, Frank CW, editors. Analytical Chem-istry: Academic Press. 1979. p. 245-64. google scholar
- Cheng Z, Li Y. Reducing power: The measure of antioxidant activities of reductant compounds? Redox Rep. 2004;9(4):213-217. google scholar
- Murugan M, Kolanjinathan K. Qualitative phytochemical screen-ing and antioxidant activity of elytraria acaulis lindau (Acan-thaceae). Asian J Pharm Clin Res. 2016;9:1-4. google scholar
- Gülçin İ. Fe(3+ )-Fe(2+ ) transformation method: An important an-tioxidant assay. Methods Mol Biol (Clifton, NJ). 2015;1208:233-246. google scholar
- Wallace RJ. Antimicrobial properties of plant secondary metabo-lites. Proc Nutr Soc. 2004;63(4):621-629. google scholar
- Brejyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and ap-proaches to resolve it. Molecules. 2020;25(6):1340. doi: 10.3390/molecules25061340 google scholar
- Sari L, Saputro Z, Utomo M, Prodjosantoso A. The use of Salacca zalacca extract as reducing agent to synthesize silver nanopar-ticles (agnps) and the antibacterial activities. Orient J Chem. 2019;35:1557-1564. google scholar
- Wulansari NT, Padmiswari AAIM, Damayanti IAM. The effec-tiveness probiotic drink of salak bali (salacca zalacca) in inhibiting growth of Escherichia coli. J BiolTropis. 2022;22(3):934-939. google scholar
- Chiuman L, Sherlyn S, Aritonang NS, Rudy R, Suhartomi S. In vitro study of antibacterial activity of snake fruit extract against extended spectrum beta lactamase (ESBL) Escherichia coli. Jurnal Aisyah: J ILMU Kesehatan (JIKA). 2023. 2023;8(2). doi: 10.30604/jika.v8i2.1962. google scholar