Review
BibTex RIS Cite

From Pond Scum to Miracle Molecules: Cyanobacterial Compounds New Frontiers

Year 2024, , 94 - 105, 30.05.2024
https://doi.org/10.26650/EurJBiol.2024.1357041

Abstract

Cyanobacteria are a diverse group of photosynthetic microorganisms known for their production of bioactive compounds with various biological activities. This review explores cyanobacterial bioactive compounds’ current and future prospects and their roles in different fields. These compounds have great potential for pharmaceuticals, agriculture, and environmental remediation applications. Cyanobacterial bioactive compounds, such as cyanotoxins, peptides, polyketides, alkaloids, and terpenoids, exhibit remarkable properties, including antimicrobial, antifungal, antiviral, antioxidant, anti-inflammatory, and anticancer activities. Advances in genomics, metabolomics, synthetic biology, screening techniques, and bioinformatics have facilitated the identification, characterization, and manipulation of cyanobacterial compounds. The future prospects involve exploring untapped cyanobacterial diversity, integrating advanced technologies like machine learning and high-throughput screening, and sustainable production through biotechnological approaches. These efforts hold promise for discovering new bioactive compounds with unique properties and applications, contributing to the development of innovative pharmaceuticals, agricultural solutions, and environmental remedies.

References

  • Husain A, Alouffi S, Khanam A, et al. Non-inhibitory ef-fects of the potent antioxidant C-phycocyanin from Plectonema sp. on the in vitro glycation reaction. Rev Rom Med Lab. 2022;30(2):199-213. google scholar
  • Husain A, Alouffi S, Khanam A, Akasha R, Farooqui A, Ahmad S. Therapeutic efficacy of natural product ‘c-phycocyanin’ in alleviating streptozotocin-induced diabetes via the inhibition of glycation reaction in rats. Int J Mol Sci. 2022;23(22):14235. doi:10.3390/ijms232214235 google scholar
  • Husain A, Farooqui A, Khanam A, et al. Physicochemical char-acterization of C-phycocyanin from Plectonema sp. and eluci-dation of its bioactive potential through in silico approach. Cell Mol Biol. 2022;67(4):68-82. google scholar
  • Rajneesh, Singh SP, Pathak J, Sinha RP. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renew Sustain Energy Rev. 2017;69:578-595. google scholar
  • Khanam A, Ahmad S, Husain A. A Perspective on the impact of advanced glycation end products in the progression of diabetic nephropathy. Curr Protein Pept Sci. 2022;24(1):2-6. google scholar
  • Khanam A, Kavita K, Sharma RK, et al. In-silico exploration of cyanobacterial bioactive compounds for managing diabetes: Targeting alpha-amylase and beta-glucosidase. Intell Pharm. 2023;1(4):232-243. google scholar
  • Choudhary A, Naughton LM, Montanchez I, Dobson ADW, Rai DK. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar Drugs. 2017;15(9):272. doi:10.3390/md15090272 google scholar
  • Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamalud-din H, Mohd Noh NI. Bioactive metabolites produced by cyanobacteria for growth adaptation and their phar-macological properties. Biology (Basel). 2021;10(10):1061. doi:10.3390/biology10101061 google scholar
  • Alouffi S, Khanam A, Husain A, Akasha R, Rabbani G, Ah-mad S. D-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. Chem Biol Interact. 2022;367:110147. doi:10.1016/j.cbi.2022.110147 google scholar
  • Khanam A, Alouffi S, Alyahyawi AR, et al. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem. 2023;685:115393. doi:10.1016/j.ab.2023.115393 google scholar
  • Lauritano C, Ferrante MI, Rogato A. Marine natural prod-ucts from microalgae: An -omics overview. Mar Drugs. 2019;17(5):269. doi:10.3390/md17050269 google scholar
  • Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural prod-uct biosynthetic pathways. Biotechnol Adv. 2021;49:107759. doi:10.1016/J.BIOTECHADV.2021.107759 google scholar
  • Khanam A, Alouffi S, Rehman S, Ansari IA, Shahab U, Ah-mad S. An in vitro approach to unveil the structural alterations in d-ribose induced glycated fibrinogen. J Biomol Struct Dyn. 2021;39(14):5209-5223. google scholar
  • Majolo F, de Oliveira Becker Delwing LK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioac-tive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196-207. google scholar
  • Li JWH, Vederas JC. Drug discovery and natural products: End of an era or an endless frontier? Science. 2009;325(5937):161-165. google scholar
  • Raja R, Hemaiswarya S, Ganesan V, Carvalho IS. Recent devel-opments in therapeutic applications of Cyanobacteria. Crit Rev Microbiol. 2016;42(3):394-405. google scholar
  • Gulder TA, Moore BS. Chasing the treasures of the sea — bacterial marine natural products. Curr Opin Microbiol. 2009;12(3):252-260. google scholar
  • Saad A, Atia A. Review on freshwater blue-green algae (Cyanobacteria): Occurrence, classification and toxicology. Biosci Biotechnol Res ASIA. 2014;11(3):1319-1325. google scholar
  • Madhyastha HK, Vatsala TM. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol Eng. 2007;24(3):301-305. google scholar
  • Sanchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of Picocyanobacteria and Phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10(JAN):45. doi:10.3389/fmicb.2019.00045 google scholar
  • Di Rienzi SC, Sharon I, Wrighton KC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belong-ing to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102. doi:10.7554/elife.01102 google scholar
  • Altaf MM, Ahmad Khan MS, Ahmad I. Diversity of bioactive compounds and their therapeutic potential. New Look to Phy-tomedicine Adv Herb Prod as Nov Drug Leads. 2018:15-34. google scholar
  • Khalifa SAM, Elias N, Farag MA, et al. Marine natural products: A source of novel anticancer drugs. Mar Drugs. 2019;17(9):491. doi:10.3390/md17090491 google scholar
  • Pandey VD. Cyanobacterial natural products as antimicrobial agents. IntJ Curr Microbiol App Sci. 2015;4(1):310-317. google scholar
  • Plaza M, Herrero M, Alejandro Cifuentes A, Ibanez E. Inno-vative natural functional ingredients from microalgae. J Agric Food Chem. 2009;57(16):7159-7170. google scholar
  • Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep. 2016;33(2):348-364. google scholar
  • Zahra Z, Choo DH, Lee H, Parveen A. Cyanobacteria: Review of current potentials and applications. Environ. 2020;7(2):13. doi:10.3390/ENVIRONMENTS7020013 google scholar
  • Coates RC, Trentacoste E, Gerwick WH. Bioactive and novel chemicals from microalgae. Handb Microalgal Cult Appl Phycol Biotechnol Second Ed., 2013:504-531. doi:10.1002/9781118567166.CH26 google scholar
  • Tikhonova I, Kuzmin A, Deeva D, et al. Cyanobacteria Nostoc punctiforme from abyssal benthos of Lake Baikal: Unique ecology and metabolic potential. Indian J Microbiol. 2017;57(4):422-426. google scholar
  • Fidor A, Konkel R, Mazur-Marzec H. Bioactive peptides pro-duced by Cyanobacteria of the genus Nostoc: A Review. Mar Drugs. 2019;17(10):561. doi:10.3390/md17100561 google scholar
  • Isaacs JD, Strangman WK, Barbera AE, Mallin MA, McIver MR, Wright JLC. Microcystins and two new mi-cropeptin cyanopeptides produced by unprecedented Microcystis aeruginosa blooms in North Carolina’s Cape Fear River. Harm-ful Algae. 2014;31:82-86. google scholar
  • Edwards DJ, Marquez BL, Nogle LM, et al. Structure and biosyn-thesis of the Jamaicamides, new mixed polyketide-peptide neu-rotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 2004;11(6):817-833. google scholar
  • hih C, Teicher B. Cryptophycins: A Novel class of po-tent antimitotic antitumor depsipeptides. Curr Pharm Des. 2005;7(13):1259-1276. google scholar
  • Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 2007;68(7):954-979. google scholar
  • Colas S, Marie B, Lance E, Quiblier C, Tricoire-Leignel H, Mattei C. Anatoxin-a: Overview on a harm-ful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ Res. 2021;193:110590. doi:10.1016/J.ENVRES.2020.110590 google scholar
  • Osswald J, Rellan S, Gago A, Vasconcelos V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int. 2007;33(8):1070-1089. google scholar
  • Araoz R, Vilarino N, Botana LM, Molgo J. Ligand-binding as-says for cyanobacterial neurotoxins targeting cholinergic recep-tors. Anal Bioanal Chem. 2010;397(5):1695-1704. google scholar
  • Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother. 2017;90:760-776. google scholar
  • Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Oth-man SI. Microbial natural products in drug discovery. Process. 2020;8(4):470. doi:10.3390/PR8040470 google scholar
  • Scoglio S. Microcystins in water and in microalgae: Do micro-cystins as microalgae contaminants warrant the current public alarm? Toxicol Reports. 2018;5:785-792. google scholar
  • Harms H, Kurita KL, Pan L, et al. Discovery of anabaenopeptin 679 from freshwater algal bloom material: Insights into the struc-ture-activity relationship of anabaenopeptin protease inhibitors. Bioorganic Med Chem Lett. 2016;26(20):4960-4965. google scholar
  • Catherine Q, Susanna W, Isidora ES, Mark H, Aurelie V, Jean-François H. A review of current knowledge on toxic benthic freshwater cyanobacteria- Ecology, toxin production and risk management. Water Res. 2013;47(15):5464-5479. google scholar
  • Nowruzi B, Blanco S, Nejadsattari T. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake Shoormast (Mazandaran province, Iran). Algologia. 2018;28(4):409-427. google scholar
  • De Morais MG, Da Fontoura Prates D, Moreira JB, Duarte JH, Costa JAV. Phycocyanin from microalgae: Properties, extraction and purification, with some recent applications. Ind Biotechnol. 2018;14(1):30-37. google scholar
  • Stevenson CS, Capper EA, Roshak AK, et al. Scytonemin-A ma-rine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res. 2002;51(2):112-114. google scholar
  • Rumengan IFM, Modaso RH, Lintang R, Rumampuk ND, Posangi J. Cytotoxicity of methanol extracts of Prochloron didemni originated from ascidians Lissoclinum patella and Didemnum molle collected from Manado Bay, North Su-lawesi. IOP Conf Ser Earth Environ Sci. 2020;517(1):012018. doi:10.1088/1755-1315/517/1/012018 google scholar
  • Amaral SC do, Santos AV, Schneider MP da C, Silva JKR da, Xavier LP. Determination of volatile organic compounds and antibacterial activity of the amazonian cyanobacterium Synechococcus sp. strain GFB01. Molecules. 2020;25(20):4744. doi:10.3390/molecules25204744 google scholar
  • Dinh QT, Munoz G, Simon DF, Vo Duy S, Husk B, Sauve S. Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term stor-age of surface water and drinking water samples. Harmful Algae. 2021;101:101955. doi:10.1016/j.hal.2020.101955 google scholar
  • Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Me-jean A, Ploux O. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: Identification of the cyr gene cluster and toxin analysis. Appl Environ Microbiol. 2010;76(15):4943-4949. google scholar
  • Ejike CECC, Collins SA, Balasuriya N, Swanson AK, Mason B, Udenigwe CC. Prospects of microalgae proteins in produc-ing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol. 2017;59:30-36. google scholar
  • Hillwig ML, Liu X. A new family of iron-dependent halo-genases acts on freestanding substrates. Nat Chem Biol. 2014;10(11):921-923. google scholar
  • Plech A, Salditt T, Münster C, Peisl J. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol. 2001;57(4):467-473. google scholar
  • Tillett D, Dittmann E, Erhard M, Von Döhren H, Börner T, Neilan BA. Structural organization of microcystin biosynthe-sis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem Biol. 2000;7(10):753-764. google scholar
  • Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget JL. An-ticancer, antiviral, antibacterial, and antifungal properties in mi-croalgae. Microalgae Heal Dis Prev. 2018:235-261. google scholar
  • Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, immunomodulating, and Microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid Med Cell Longev. 2017;2017:1-14. google scholar
  • Ibrahim EA, Aly HF, Abou Baker DH, Mahmoud K, El-Baz FK. Marine algal sterol hydrocarbon with anti-inflammatory, anticancer and anti-oxidant properties. Int J Pharma Bio Sci. 2016;7(3):392-398. google scholar
  • Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evalu-ation. J Nat Prod. 2008;71(11):1891-1896. google scholar
  • Holland A, Kinnear S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar Drugs. 2013;11(7):2239-2258. google scholar
  • Kar J, Ramrao DP, Zomuansangi R, et al. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol. 2022;13:034471. doi:10.3389/fmicb.2022.1034471 google scholar
  • Niveshika, Verma E, Mishra AK, Singh AK, Singh VK. Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostocsp. MGL001. Front Microbiol. 2016;7(NOV):231637.doi:10.3389/FMICB.2016.01899/BIBTEX google scholar
  • Kumar J, Singh D, Tyagi MB, Kumar A. Cyanobacteria: Appli-cations in biotechnology. Cyanobacteria from Basic Sci to Appl. 2018:327-346. doi:10.1016/B978-0-12-814667-5.00016-7 google scholar
  • Vijayakumar S, Menakha M. Pharmaceutical applications of cyanobacteria-A review. J Acute Med. 2015;5(1):15-23. google scholar
  • Kumar L, Bharadvaja N. A review on microalgae biofuel and biorefinery: Challenges and way forward. Energy Sources, Part A Recover Util Environ Eff. 2020:1-24. google scholar
  • Singh NK, Dhar DW. Microalgae as second generation biofuel. A review. Agron Sustain Dev. 2011;31(4):605-629. google scholar
  • Ibelings BW, Chorus I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ Pollut. 2007;150(1):177-192. google scholar
  • Cerasino L, Salmaso N. Diversity and distribution of cyanobac-terial toxins in the Italian subalpine lacustrine district. Oceanol Hydrobiol Stud. 2012;41(3):54-63. google scholar
  • Patel HM, Rastogi RP, Trivedi U, Madamwar D. Struc-tural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res. 2018;32:372-383. google scholar
  • Assunçao J, Amaro HM, Malcata FX, Guedes AC. Cyanobac-terial pigments: Photosynthetic function and biotechnological purposes. Pharmacol Potential Cyanobacteria. 2022:201-256. doi:10.1016/B978-0-12-821491-6.00008-9 google scholar
  • Donia MS, Hathaway BJ, Sudek S, et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidi-ans. Nat Chem Biol. 2006;2(12):729-735. google scholar
  • Wang Z, Shao J, Xu Y, Yan B, Li R. Genetic ba-sis for geosmin production by the water bloom-forming cyanobacterium, Anabaena ucrainica. Water. 2014;7(1):175-187. doi:10.3390/W7010175 google scholar
  • WuZ, Yang S, Shi J. Overview of the distribution and adaptation of a bloom-forming cyanobacterium Raphidiopsis raciborskii: integrating genomics, toxicity, and ecophysiology. J Oceanol Limnol. 2022;40(5):1774-1791. google scholar
  • Singh T, Basu P, Singh TA, Boudh S, Shukla P. Cyanobacteria as source of novel antimicrobials: A boon to mankind. Microorg Sustain Environ Heal. 2020:219-230. google scholar
  • Shamim A, Mahfooz S, Hussain A, Farooqui A. Ability of Al-acclimatized Immobilized Nostoc muscorum to combat abiotic stress and its potential as a biofertilizer. J Pure Appl Microbiol. 2020;14(2):1377-1386. google scholar
  • Mahfooz S, Jahan S, Shamim A, Husain A, Farooqui A. Ox-idative stress and response of antioxidant system in Nostoc muscorum exposed to different forms of zinc. Turkish J Biochem. 2018;43(4):352-361. google scholar
  • Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 2000;63(3):339-343. google scholar
  • Akbarizare M, Ofoghi H, Hadizadeh M, Moazami N. In vitro as-sessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt Liver J. 2020;10(1):11. doi:10.1186/s43066-020-0018-3 google scholar
  • Blas-Valdivia V, Rojas-Franco P, Serrano-Contreras JI, et al. C-phycoerythrin from Phormidium persicinum prevents acute kid-ney injury by attenuating oxidative and endoplasmic reticulum stress. Mar Drugs. 2021;19(11):589. doi:10.3390/MD19110589 google scholar
  • Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. An-tiviral potential of algal metabolites—A comprehensive review. Mar Drugs. 2021;19(2):94. doi:10.3390/md19020094 google scholar
  • Pavon-Fuentes N, Marin-Prida J, Llopiz-Arzuaga A, et al. Phycocyanobilin reduces brain injury after endothelin-1- in-duced focal cerebral ischaemia. Clin Exp Pharmacol Physiol. 2020;47(3):383-392. google scholar
  • Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-Phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2005;4(3):207-216. google scholar
  • Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. Algal Res. 2023;69:102904. doi:10.1016/j.algal.2022.102904 google scholar
  • Khanam A, Ahmad S, Husain A, Rehman S, Farooqui A, Yusuf MA. Glycation and antioxidants: Hand in the glove of antiglycation and natural antioxidants. Curr Protein Pept Sci. 2020;21(9):899-915. google scholar
  • Tabrizi S. Neurodegenerative diseases neurobiology patho-genesis and therapeutics. J Neurol Neurosurg Psychiatry. 2006;77(2):284. doi:10.1136/JNNP.2005.072710 google scholar
  • Castaneda A, Ferraz R, Vieira M, Cardoso I, Vasconce-los V, Martins R. Bridging cyanobacteria to neurodegener-ative diseases: A new potential source of bioactive com-pounds against alzheimer’s disease. Mar Drugs. 2021;19(6):343. doi:10.3390/md19060343 google scholar
  • Banack SA, Johnson HE, Cheng R, Cox PA. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs. 2007;5(4):180-196. google scholar
  • Banack SA, Caller TA, Stommel EW. The Cyanobacte-ria derived toxin beta-n-methylamino-l-alanine and amy-otrophic lateral sclerosis. Toxins (Basel). 2010;2(12):2837. doi:10.3390/TOXINS2122837 google scholar
  • Sini P, Dang TBC, Fais M, et al. Cyanobacteria, cyanotoxins, and neurodegenerative diseases: Dangerous liaisons. Int J Mol Sci. 2021;22(16):8726. doi:10.3390/ijms22168726 google scholar
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87-96. google scholar
  • Schwarz D, Orf I, Kopka J, Hagemann M. Recent applications of metabolomics toward cyanobacteria. Metabolites. 2013;3(1):72-100. google scholar
  • Pathania R, Srivastava A, Srivastava S, Shukla P. Metabolic sys-tems biology and multi-omics of cyanobacteria: Perspectives and future directions. Bioresour Technol. 2022;343:126007. doi:10.1016/J.BIORTECH.2021.126007 google scholar
  • Abida H, Ruchaud S, Rios L, et al. Bioprospecting marine plankton. Mar Drugs. 2013;11(11):4594. doi:10.3390/MD11114594 google scholar
  • Paul SI, Majumdar BC, Ehsan R, Hasan M, Baidya A, Bakky MAH. Bioprospecting potential of marine microbial natural bioactive compounds. J Appl Biotechnol Reports. 2021;8(2):96-108. google scholar
  • Rotter A, Barbier M, Bertoni F, et al. The Essen-tials of marine biotechnology. Front Mar Sci. 2021;8:158. doi:10.3389/fmars.2021.629629 google scholar
  • Zymanski P, Markowicz M, Mikiciuk-Olasik E. Adap-tation of high-throughput screening in drug discov-ery—Toxicological screening tests. Int J Mol Sci. 2012;13(1):427. doi:10.3390/IJMS13010427 google scholar
  • Ferreira L, Morais J, Preto M, et al. Uncovering the bioac-tive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Mar Drugs. 021;19(11):633.doi:10.3390/md19110633 google scholar
  • Kim W, Chen TY, Cha L, et al. Elucidation of diver-gent desaturation pathways in the formation of vinyl isoni-trile and isocyanoacrylate. Nat Commun. 2022;13(1):5343. doi:10.1038/s41467-022-32870-4 google scholar
  • Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol. 2007;61:89-217. google scholar
  • Komarek J. A polyphasic approach for the taxonomy of Cyanobacteria: Principles and applications. Eur J Phycol. 2016;51(3):346-353. google scholar
  • Srinivasan R, Kannappan A, Shi C, Lin X. Marine bacte-rial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs 2021;19(10):530. doi:10.3390/MD19100530 google scholar
  • Hong K, Gao AH, Xie QY, et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs. 2009;7(1):24-44. google scholar
  • Wang K, Khoo KS, Leong HY, et al. How does the internet of things (IoT) help in microalgae biorefinery? Biotechnol Adv. 2022;54:107819. doi: 10.1016/j.biotechadv.2021.107819 google scholar
  • Wase N V., Wright PC. Systems biology of cyanobacterial sec-ondary metabolite production and its role in drug discovery. Expert Opin Drug Discov. 2008;3(8):903-929. google scholar
  • Sandybayeva SK, Kossalbayev BD, Zayadan BK, et al. Prospects of cyanobacterial pigment production: Biotechno-logical potential and optimization strategies. Biochem Eng J. 2022;187:108640. doi:10.1016/J.BEJ.2022.108640 google scholar
  • Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K. Phy-cobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 2016;109:282-296. google scholar
  • Chu WL, Phang SM. Bioactive compounds from microal-gae and their potential applications as pharmaceuticals and nutraceuticals. Gd Challenges Biol Biotechnol. 2019:429-469. doi:10.1007/978-3-030-25233-5_12 google scholar
  • Pradhan B, Ki JS. Phytoplankton toxins and their poten-tial therapeutic applications: A Journey toward the quest for potent pharmaceuticals. Mar Drugs. 2022;20(4):271. doi:10.3390/MD20040271/S1 google scholar
  • Zanchett G, Oliveira-Filho EC. Cyanobacteria and Cyan-otoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 2013;5(10):1896-1917. doi:10.3390/TOXINS5101896 google scholar
  • Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Po-tential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. 2019;54(5):366-375. google scholar
  • Haque F, Banayan S, Yee J, Chiang YW. Extraction and ap-plications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere. 2017;183:164-175. google scholar
  • Levasseur W, Perre P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv. 2020;41:107545. doi:10.1016/J.BIOTECHADV.2020.107545 google scholar
  • Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A re-view on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut. 2022;301:119035. doi:10.1016/J.ENVPOL.2022.119035 google scholar
  • Mishra A, Medhi K, Malaviya P, Thakur IS. Omics approaches for microalgal applications: Prospects and challenges. Bioresour Technol. 2019;291:121890.doi:10.1016/J.BIORTECH.2019.121890 google scholar
  • Olguín EJ, Sanchez-Galvan G, Arias-Olgum II, et al. Microalgae-based biorefineries: challenges and future trends to produce carbohydrate enriched biomass, high-added value products and bioactive compounds. Biol. 2022;11(8):1146. doi:10.3390/BIOLOGY11081146 google scholar
Year 2024, , 94 - 105, 30.05.2024
https://doi.org/10.26650/EurJBiol.2024.1357041

Abstract

References

  • Husain A, Alouffi S, Khanam A, et al. Non-inhibitory ef-fects of the potent antioxidant C-phycocyanin from Plectonema sp. on the in vitro glycation reaction. Rev Rom Med Lab. 2022;30(2):199-213. google scholar
  • Husain A, Alouffi S, Khanam A, Akasha R, Farooqui A, Ahmad S. Therapeutic efficacy of natural product ‘c-phycocyanin’ in alleviating streptozotocin-induced diabetes via the inhibition of glycation reaction in rats. Int J Mol Sci. 2022;23(22):14235. doi:10.3390/ijms232214235 google scholar
  • Husain A, Farooqui A, Khanam A, et al. Physicochemical char-acterization of C-phycocyanin from Plectonema sp. and eluci-dation of its bioactive potential through in silico approach. Cell Mol Biol. 2022;67(4):68-82. google scholar
  • Rajneesh, Singh SP, Pathak J, Sinha RP. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renew Sustain Energy Rev. 2017;69:578-595. google scholar
  • Khanam A, Ahmad S, Husain A. A Perspective on the impact of advanced glycation end products in the progression of diabetic nephropathy. Curr Protein Pept Sci. 2022;24(1):2-6. google scholar
  • Khanam A, Kavita K, Sharma RK, et al. In-silico exploration of cyanobacterial bioactive compounds for managing diabetes: Targeting alpha-amylase and beta-glucosidase. Intell Pharm. 2023;1(4):232-243. google scholar
  • Choudhary A, Naughton LM, Montanchez I, Dobson ADW, Rai DK. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar Drugs. 2017;15(9):272. doi:10.3390/md15090272 google scholar
  • Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamalud-din H, Mohd Noh NI. Bioactive metabolites produced by cyanobacteria for growth adaptation and their phar-macological properties. Biology (Basel). 2021;10(10):1061. doi:10.3390/biology10101061 google scholar
  • Alouffi S, Khanam A, Husain A, Akasha R, Rabbani G, Ah-mad S. D-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. Chem Biol Interact. 2022;367:110147. doi:10.1016/j.cbi.2022.110147 google scholar
  • Khanam A, Alouffi S, Alyahyawi AR, et al. Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Anal Biochem. 2023;685:115393. doi:10.1016/j.ab.2023.115393 google scholar
  • Lauritano C, Ferrante MI, Rogato A. Marine natural prod-ucts from microalgae: An -omics overview. Mar Drugs. 2019;17(5):269. doi:10.3390/md17050269 google scholar
  • Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural prod-uct biosynthetic pathways. Biotechnol Adv. 2021;49:107759. doi:10.1016/J.BIOTECHADV.2021.107759 google scholar
  • Khanam A, Alouffi S, Rehman S, Ansari IA, Shahab U, Ah-mad S. An in vitro approach to unveil the structural alterations in d-ribose induced glycated fibrinogen. J Biomol Struct Dyn. 2021;39(14):5209-5223. google scholar
  • Majolo F, de Oliveira Becker Delwing LK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioac-tive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett. 2019;31:196-207. google scholar
  • Li JWH, Vederas JC. Drug discovery and natural products: End of an era or an endless frontier? Science. 2009;325(5937):161-165. google scholar
  • Raja R, Hemaiswarya S, Ganesan V, Carvalho IS. Recent devel-opments in therapeutic applications of Cyanobacteria. Crit Rev Microbiol. 2016;42(3):394-405. google scholar
  • Gulder TA, Moore BS. Chasing the treasures of the sea — bacterial marine natural products. Curr Opin Microbiol. 2009;12(3):252-260. google scholar
  • Saad A, Atia A. Review on freshwater blue-green algae (Cyanobacteria): Occurrence, classification and toxicology. Biosci Biotechnol Res ASIA. 2014;11(3):1319-1325. google scholar
  • Madhyastha HK, Vatsala TM. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomol Eng. 2007;24(3):301-305. google scholar
  • Sanchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of Picocyanobacteria and Phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10(JAN):45. doi:10.3389/fmicb.2019.00045 google scholar
  • Di Rienzi SC, Sharon I, Wrighton KC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belong-ing to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102. doi:10.7554/elife.01102 google scholar
  • Altaf MM, Ahmad Khan MS, Ahmad I. Diversity of bioactive compounds and their therapeutic potential. New Look to Phy-tomedicine Adv Herb Prod as Nov Drug Leads. 2018:15-34. google scholar
  • Khalifa SAM, Elias N, Farag MA, et al. Marine natural products: A source of novel anticancer drugs. Mar Drugs. 2019;17(9):491. doi:10.3390/md17090491 google scholar
  • Pandey VD. Cyanobacterial natural products as antimicrobial agents. IntJ Curr Microbiol App Sci. 2015;4(1):310-317. google scholar
  • Plaza M, Herrero M, Alejandro Cifuentes A, Ibanez E. Inno-vative natural functional ingredients from microalgae. J Agric Food Chem. 2009;57(16):7159-7170. google scholar
  • Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep. 2016;33(2):348-364. google scholar
  • Zahra Z, Choo DH, Lee H, Parveen A. Cyanobacteria: Review of current potentials and applications. Environ. 2020;7(2):13. doi:10.3390/ENVIRONMENTS7020013 google scholar
  • Coates RC, Trentacoste E, Gerwick WH. Bioactive and novel chemicals from microalgae. Handb Microalgal Cult Appl Phycol Biotechnol Second Ed., 2013:504-531. doi:10.1002/9781118567166.CH26 google scholar
  • Tikhonova I, Kuzmin A, Deeva D, et al. Cyanobacteria Nostoc punctiforme from abyssal benthos of Lake Baikal: Unique ecology and metabolic potential. Indian J Microbiol. 2017;57(4):422-426. google scholar
  • Fidor A, Konkel R, Mazur-Marzec H. Bioactive peptides pro-duced by Cyanobacteria of the genus Nostoc: A Review. Mar Drugs. 2019;17(10):561. doi:10.3390/md17100561 google scholar
  • Isaacs JD, Strangman WK, Barbera AE, Mallin MA, McIver MR, Wright JLC. Microcystins and two new mi-cropeptin cyanopeptides produced by unprecedented Microcystis aeruginosa blooms in North Carolina’s Cape Fear River. Harm-ful Algae. 2014;31:82-86. google scholar
  • Edwards DJ, Marquez BL, Nogle LM, et al. Structure and biosyn-thesis of the Jamaicamides, new mixed polyketide-peptide neu-rotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 2004;11(6):817-833. google scholar
  • hih C, Teicher B. Cryptophycins: A Novel class of po-tent antimitotic antitumor depsipeptides. Curr Pharm Des. 2005;7(13):1259-1276. google scholar
  • Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 2007;68(7):954-979. google scholar
  • Colas S, Marie B, Lance E, Quiblier C, Tricoire-Leignel H, Mattei C. Anatoxin-a: Overview on a harm-ful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ Res. 2021;193:110590. doi:10.1016/J.ENVRES.2020.110590 google scholar
  • Osswald J, Rellan S, Gago A, Vasconcelos V. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int. 2007;33(8):1070-1089. google scholar
  • Araoz R, Vilarino N, Botana LM, Molgo J. Ligand-binding as-says for cyanobacterial neurotoxins targeting cholinergic recep-tors. Anal Bioanal Chem. 2010;397(5):1695-1704. google scholar
  • Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother. 2017;90:760-776. google scholar
  • Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Oth-man SI. Microbial natural products in drug discovery. Process. 2020;8(4):470. doi:10.3390/PR8040470 google scholar
  • Scoglio S. Microcystins in water and in microalgae: Do micro-cystins as microalgae contaminants warrant the current public alarm? Toxicol Reports. 2018;5:785-792. google scholar
  • Harms H, Kurita KL, Pan L, et al. Discovery of anabaenopeptin 679 from freshwater algal bloom material: Insights into the struc-ture-activity relationship of anabaenopeptin protease inhibitors. Bioorganic Med Chem Lett. 2016;26(20):4960-4965. google scholar
  • Catherine Q, Susanna W, Isidora ES, Mark H, Aurelie V, Jean-François H. A review of current knowledge on toxic benthic freshwater cyanobacteria- Ecology, toxin production and risk management. Water Res. 2013;47(15):5464-5479. google scholar
  • Nowruzi B, Blanco S, Nejadsattari T. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of lake Shoormast (Mazandaran province, Iran). Algologia. 2018;28(4):409-427. google scholar
  • De Morais MG, Da Fontoura Prates D, Moreira JB, Duarte JH, Costa JAV. Phycocyanin from microalgae: Properties, extraction and purification, with some recent applications. Ind Biotechnol. 2018;14(1):30-37. google scholar
  • Stevenson CS, Capper EA, Roshak AK, et al. Scytonemin-A ma-rine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm Res. 2002;51(2):112-114. google scholar
  • Rumengan IFM, Modaso RH, Lintang R, Rumampuk ND, Posangi J. Cytotoxicity of methanol extracts of Prochloron didemni originated from ascidians Lissoclinum patella and Didemnum molle collected from Manado Bay, North Su-lawesi. IOP Conf Ser Earth Environ Sci. 2020;517(1):012018. doi:10.1088/1755-1315/517/1/012018 google scholar
  • Amaral SC do, Santos AV, Schneider MP da C, Silva JKR da, Xavier LP. Determination of volatile organic compounds and antibacterial activity of the amazonian cyanobacterium Synechococcus sp. strain GFB01. Molecules. 2020;25(20):4744. doi:10.3390/molecules25204744 google scholar
  • Dinh QT, Munoz G, Simon DF, Vo Duy S, Husk B, Sauve S. Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term stor-age of surface water and drinking water samples. Harmful Algae. 2021;101:101955. doi:10.1016/j.hal.2020.101955 google scholar
  • Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Me-jean A, Ploux O. Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: Identification of the cyr gene cluster and toxin analysis. Appl Environ Microbiol. 2010;76(15):4943-4949. google scholar
  • Ejike CECC, Collins SA, Balasuriya N, Swanson AK, Mason B, Udenigwe CC. Prospects of microalgae proteins in produc-ing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol. 2017;59:30-36. google scholar
  • Hillwig ML, Liu X. A new family of iron-dependent halo-genases acts on freestanding substrates. Nat Chem Biol. 2014;10(11):921-923. google scholar
  • Plech A, Salditt T, Münster C, Peisl J. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol. 2001;57(4):467-473. google scholar
  • Tillett D, Dittmann E, Erhard M, Von Döhren H, Börner T, Neilan BA. Structural organization of microcystin biosynthe-sis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem Biol. 2000;7(10):753-764. google scholar
  • Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget JL. An-ticancer, antiviral, antibacterial, and antifungal properties in mi-croalgae. Microalgae Heal Dis Prev. 2018:235-261. google scholar
  • Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, immunomodulating, and Microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid Med Cell Longev. 2017;2017:1-14. google scholar
  • Ibrahim EA, Aly HF, Abou Baker DH, Mahmoud K, El-Baz FK. Marine algal sterol hydrocarbon with anti-inflammatory, anticancer and anti-oxidant properties. Int J Pharma Bio Sci. 2016;7(3):392-398. google scholar
  • Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evalu-ation. J Nat Prod. 2008;71(11):1891-1896. google scholar
  • Holland A, Kinnear S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Mar Drugs. 2013;11(7):2239-2258. google scholar
  • Kar J, Ramrao DP, Zomuansangi R, et al. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol. 2022;13:034471. doi:10.3389/fmicb.2022.1034471 google scholar
  • Niveshika, Verma E, Mishra AK, Singh AK, Singh VK. Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostocsp. MGL001. Front Microbiol. 2016;7(NOV):231637.doi:10.3389/FMICB.2016.01899/BIBTEX google scholar
  • Kumar J, Singh D, Tyagi MB, Kumar A. Cyanobacteria: Appli-cations in biotechnology. Cyanobacteria from Basic Sci to Appl. 2018:327-346. doi:10.1016/B978-0-12-814667-5.00016-7 google scholar
  • Vijayakumar S, Menakha M. Pharmaceutical applications of cyanobacteria-A review. J Acute Med. 2015;5(1):15-23. google scholar
  • Kumar L, Bharadvaja N. A review on microalgae biofuel and biorefinery: Challenges and way forward. Energy Sources, Part A Recover Util Environ Eff. 2020:1-24. google scholar
  • Singh NK, Dhar DW. Microalgae as second generation biofuel. A review. Agron Sustain Dev. 2011;31(4):605-629. google scholar
  • Ibelings BW, Chorus I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ Pollut. 2007;150(1):177-192. google scholar
  • Cerasino L, Salmaso N. Diversity and distribution of cyanobac-terial toxins in the Italian subalpine lacustrine district. Oceanol Hydrobiol Stud. 2012;41(3):54-63. google scholar
  • Patel HM, Rastogi RP, Trivedi U, Madamwar D. Struc-tural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res. 2018;32:372-383. google scholar
  • Assunçao J, Amaro HM, Malcata FX, Guedes AC. Cyanobac-terial pigments: Photosynthetic function and biotechnological purposes. Pharmacol Potential Cyanobacteria. 2022:201-256. doi:10.1016/B978-0-12-821491-6.00008-9 google scholar
  • Donia MS, Hathaway BJ, Sudek S, et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidi-ans. Nat Chem Biol. 2006;2(12):729-735. google scholar
  • Wang Z, Shao J, Xu Y, Yan B, Li R. Genetic ba-sis for geosmin production by the water bloom-forming cyanobacterium, Anabaena ucrainica. Water. 2014;7(1):175-187. doi:10.3390/W7010175 google scholar
  • WuZ, Yang S, Shi J. Overview of the distribution and adaptation of a bloom-forming cyanobacterium Raphidiopsis raciborskii: integrating genomics, toxicity, and ecophysiology. J Oceanol Limnol. 2022;40(5):1774-1791. google scholar
  • Singh T, Basu P, Singh TA, Boudh S, Shukla P. Cyanobacteria as source of novel antimicrobials: A boon to mankind. Microorg Sustain Environ Heal. 2020:219-230. google scholar
  • Shamim A, Mahfooz S, Hussain A, Farooqui A. Ability of Al-acclimatized Immobilized Nostoc muscorum to combat abiotic stress and its potential as a biofertilizer. J Pure Appl Microbiol. 2020;14(2):1377-1386. google scholar
  • Mahfooz S, Jahan S, Shamim A, Husain A, Farooqui A. Ox-idative stress and response of antioxidant system in Nostoc muscorum exposed to different forms of zinc. Turkish J Biochem. 2018;43(4):352-361. google scholar
  • Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod. 2000;63(3):339-343. google scholar
  • Akbarizare M, Ofoghi H, Hadizadeh M, Moazami N. In vitro as-sessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt Liver J. 2020;10(1):11. doi:10.1186/s43066-020-0018-3 google scholar
  • Blas-Valdivia V, Rojas-Franco P, Serrano-Contreras JI, et al. C-phycoerythrin from Phormidium persicinum prevents acute kid-ney injury by attenuating oxidative and endoplasmic reticulum stress. Mar Drugs. 2021;19(11):589. doi:10.3390/MD19110589 google scholar
  • Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. An-tiviral potential of algal metabolites—A comprehensive review. Mar Drugs. 2021;19(2):94. doi:10.3390/md19020094 google scholar
  • Pavon-Fuentes N, Marin-Prida J, Llopiz-Arzuaga A, et al. Phycocyanobilin reduces brain injury after endothelin-1- in-duced focal cerebral ischaemia. Clin Exp Pharmacol Physiol. 2020;47(3):383-392. google scholar
  • Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-Phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2005;4(3):207-216. google scholar
  • Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. Algal Res. 2023;69:102904. doi:10.1016/j.algal.2022.102904 google scholar
  • Khanam A, Ahmad S, Husain A, Rehman S, Farooqui A, Yusuf MA. Glycation and antioxidants: Hand in the glove of antiglycation and natural antioxidants. Curr Protein Pept Sci. 2020;21(9):899-915. google scholar
  • Tabrizi S. Neurodegenerative diseases neurobiology patho-genesis and therapeutics. J Neurol Neurosurg Psychiatry. 2006;77(2):284. doi:10.1136/JNNP.2005.072710 google scholar
  • Castaneda A, Ferraz R, Vieira M, Cardoso I, Vasconce-los V, Martins R. Bridging cyanobacteria to neurodegener-ative diseases: A new potential source of bioactive com-pounds against alzheimer’s disease. Mar Drugs. 2021;19(6):343. doi:10.3390/md19060343 google scholar
  • Banack SA, Johnson HE, Cheng R, Cox PA. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs. 2007;5(4):180-196. google scholar
  • Banack SA, Caller TA, Stommel EW. The Cyanobacte-ria derived toxin beta-n-methylamino-l-alanine and amy-otrophic lateral sclerosis. Toxins (Basel). 2010;2(12):2837. doi:10.3390/TOXINS2122837 google scholar
  • Sini P, Dang TBC, Fais M, et al. Cyanobacteria, cyanotoxins, and neurodegenerative diseases: Dangerous liaisons. Int J Mol Sci. 2021;22(16):8726. doi:10.3390/ijms22168726 google scholar
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87-96. google scholar
  • Schwarz D, Orf I, Kopka J, Hagemann M. Recent applications of metabolomics toward cyanobacteria. Metabolites. 2013;3(1):72-100. google scholar
  • Pathania R, Srivastava A, Srivastava S, Shukla P. Metabolic sys-tems biology and multi-omics of cyanobacteria: Perspectives and future directions. Bioresour Technol. 2022;343:126007. doi:10.1016/J.BIORTECH.2021.126007 google scholar
  • Abida H, Ruchaud S, Rios L, et al. Bioprospecting marine plankton. Mar Drugs. 2013;11(11):4594. doi:10.3390/MD11114594 google scholar
  • Paul SI, Majumdar BC, Ehsan R, Hasan M, Baidya A, Bakky MAH. Bioprospecting potential of marine microbial natural bioactive compounds. J Appl Biotechnol Reports. 2021;8(2):96-108. google scholar
  • Rotter A, Barbier M, Bertoni F, et al. The Essen-tials of marine biotechnology. Front Mar Sci. 2021;8:158. doi:10.3389/fmars.2021.629629 google scholar
  • Zymanski P, Markowicz M, Mikiciuk-Olasik E. Adap-tation of high-throughput screening in drug discov-ery—Toxicological screening tests. Int J Mol Sci. 2012;13(1):427. doi:10.3390/IJMS13010427 google scholar
  • Ferreira L, Morais J, Preto M, et al. Uncovering the bioac-tive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Mar Drugs. 021;19(11):633.doi:10.3390/md19110633 google scholar
  • Kim W, Chen TY, Cha L, et al. Elucidation of diver-gent desaturation pathways in the formation of vinyl isoni-trile and isocyanoacrylate. Nat Commun. 2022;13(1):5343. doi:10.1038/s41467-022-32870-4 google scholar
  • Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol. 2007;61:89-217. google scholar
  • Komarek J. A polyphasic approach for the taxonomy of Cyanobacteria: Principles and applications. Eur J Phycol. 2016;51(3):346-353. google scholar
  • Srinivasan R, Kannappan A, Shi C, Lin X. Marine bacte-rial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs 2021;19(10):530. doi:10.3390/MD19100530 google scholar
  • Hong K, Gao AH, Xie QY, et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs. 2009;7(1):24-44. google scholar
  • Wang K, Khoo KS, Leong HY, et al. How does the internet of things (IoT) help in microalgae biorefinery? Biotechnol Adv. 2022;54:107819. doi: 10.1016/j.biotechadv.2021.107819 google scholar
  • Wase N V., Wright PC. Systems biology of cyanobacterial sec-ondary metabolite production and its role in drug discovery. Expert Opin Drug Discov. 2008;3(8):903-929. google scholar
  • Sandybayeva SK, Kossalbayev BD, Zayadan BK, et al. Prospects of cyanobacterial pigment production: Biotechno-logical potential and optimization strategies. Biochem Eng J. 2022;187:108640. doi:10.1016/J.BEJ.2022.108640 google scholar
  • Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K. Phy-cobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 2016;109:282-296. google scholar
  • Chu WL, Phang SM. Bioactive compounds from microal-gae and their potential applications as pharmaceuticals and nutraceuticals. Gd Challenges Biol Biotechnol. 2019:429-469. doi:10.1007/978-3-030-25233-5_12 google scholar
  • Pradhan B, Ki JS. Phytoplankton toxins and their poten-tial therapeutic applications: A Journey toward the quest for potent pharmaceuticals. Mar Drugs. 2022;20(4):271. doi:10.3390/MD20040271/S1 google scholar
  • Zanchett G, Oliveira-Filho EC. Cyanobacteria and Cyan-otoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins. 2013;5(10):1896-1917. doi:10.3390/TOXINS5101896 google scholar
  • Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Po-tential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. 2019;54(5):366-375. google scholar
  • Haque F, Banayan S, Yee J, Chiang YW. Extraction and ap-plications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere. 2017;183:164-175. google scholar
  • Levasseur W, Perre P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv. 2020;41:107545. doi:10.1016/J.BIOTECHADV.2020.107545 google scholar
  • Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A re-view on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut. 2022;301:119035. doi:10.1016/J.ENVPOL.2022.119035 google scholar
  • Mishra A, Medhi K, Malaviya P, Thakur IS. Omics approaches for microalgal applications: Prospects and challenges. Bioresour Technol. 2019;291:121890.doi:10.1016/J.BIORTECH.2019.121890 google scholar
  • Olguín EJ, Sanchez-Galvan G, Arias-Olgum II, et al. Microalgae-based biorefineries: challenges and future trends to produce carbohydrate enriched biomass, high-added value products and bioactive compounds. Biol. 2022;11(8):1146. doi:10.3390/BIOLOGY11081146 google scholar
There are 113 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Review
Authors

Arbab Husain 0000-0002-9487-9284

Md Nematullah 0000-0002-5935-6699

Hamda Khan 0000-0003-2448-9878

Ravi Shekher 0000-0001-5984-0678

Alvina Farooqui 0000-0002-7260-0414

Archana Sahu 0000-0002-6526-2402

Afreen Khanam 0000-0002-5380-1667

Publication Date May 30, 2024
Submission Date September 8, 2023
Published in Issue Year 2024

Cite

AMA Husain A, Nematullah M, Khan H, Shekher R, Farooqui A, Sahu A, Khanam A. From Pond Scum to Miracle Molecules: Cyanobacterial Compounds New Frontiers. Eur J Biol. May 2024;83(1):94-105. doi:10.26650/EurJBiol.2024.1357041