Apoptosis Signaling Pathway Regulates the Gene Expression in the Yeast Retrotransposons Ty1 and Ty2
Year 2020,
Volume: 79 Issue: 1, 36 - 42, 17.06.2020
Ceyda Colakoglu
Sezai Türkel
Abstract
Objective: Ty elements are retroviral–like entities present in the yeast Saccharomyces cerevisiae. Apoptosis is a programmed cell death mechanism, conserved in all eukaryotes. In this study, we aimed to analyze how apoptotic signals affect the transcriptions of Ty1 and Ty2 elements in S. cerevisiae. Materials and Methods: To analyze the effects of apoptotic signals on the transcription of Ty element, Ty1-LacZ, and Ty2-LacZ gene fusions were used as reporter genes. These gene fusions were transformed into the wild type and certain yeast mutants that are defective in various signaling pathways. Acetic acid was added to the growth medium of logarithmically growing yeast transformants to induce apoptosis. Transcription levels of the Ty-lacZ gene fusions were analyzed by ß-Galactosidase assays. Results: The results of this study show that transcription of Ty1 and Ty2 decreases approximately 3-fold in response to apoptosis in S. cerevisiae. It appears that apoptosis acts through the transcription factors Tec1p and Sgc1p that associate with the regulatory region of Ty1 and Ty2. Moreover, AMP-activated protein kinase Snf1p, and to a lesser extent Tor1p, seem to be required for the transcriptional repression of Ty1 and Ty2 in apoptosis-induced yeast cells. Conclusion: Ty1 and Ty2 transcription is regulated in response to apoptosis signaling in a differential manner. It seems that protein kinases Tor1p and Snf1p and transcription factors Tec1p and Sgc1p are involved in the apoptosis dependent regulation of Ty transcription.
Supporting Institution
There are no funders to report for this submission.
References
- 1. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 1998; 8: 464-78.
- 2. Boeke J, Garfinkel DJ, Styles CA, Fink G. Ty elements transpose through an RNA intermediate. Cell 1985; 40: 491-500.
- 3. Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 2005; 110: 457-61.
- 4. Farabaugh PJ. Translational frameshifting: implications for the mechanism of translational frame maintenance. Prog Nucleic Acid Res Mol Biol 2000; 64: 131-70.
- 5. Curcio MJ, Lutz S, Lesage P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol Spectr 2015; 3: 1-35.
- 6. Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 1990; 62: 339-52.
- 7. Farabaugh PJ, XB. Liao, Belcourt M, Zhao H, Kapakos J, Clare J. Enhancer and silencer-like sites within the transcribed portion of a Ty2 transposable element of S. cerevisiae. Mol Cell Biol 1989; 9: 4824-34.
- 8. Farabaugh PJ, Vimaladithan A, Türkel S, Johnson R, Zhao H. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 2081-90.
- 9. Türkel S, Farabaugh PJ. Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty elements of Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 2091-103.
- 10. Morillon A, Bénard L, Springer M, Lesage P. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Mol Cell Biol 2002; 22: 2078-88.
- 11. Todeschini AL, Morillon A, Springer M, Lesage P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25: 7459-72.
- 12. Curcio MJ, Hedge AM, Boeke JD, Garfinkel DJ. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol Gen Genet 1990; 220: 213-21.
- 13. Company M, Errede BA. Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol Cell Biol 1988; 8: 5299-309.
- 14. Laloux I, Dubois E ,Dewerchin M, Jacobs E. TEC1, a gene involved in the activation of Tyl and Tyl-mediated gene expression in Saccharomyces cerevisiae: Cloning and molecular analysis. Mol Cell Biol 1990; 10: 3541-50.
- 15. Löhning C, Ciriacy M. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression. Yeast. 1994; 10: 1329-39.
- 16. Türkel S, Yenice B. Analysis of the Effects of Chromatin Modifying Complexes on the Transcription of Retrotransposon Ty2-917 in Saccharomyces cerevisiae. Turk J Biol 2006; 30: 101-6.
- 17. Türkel S, Liao XB, Farabaugh PJ. Gcr1-dependent transcriptional activation of yeast retrotransposon Ty2-917. Yeast 1997; 13: 917-30.
- 18. Kerr JFR, Wyllie AH, Currie R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57.
- 19. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817-29.
- 20. Nunez G, Benedict, MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237-45.
- 21. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 2007; 35: 495-516. 22. D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43: 582-92.
- 23. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich KU. Apoptosis in yeast. Curr Opin Microbiol 2004; 7: 655-60.
- 24. Stolz A, Hilt W, Buchberger A, Wolf DH. Cdc48: a power machine in protein degradation. Trends Biochem Sci 2011; 36: 515-23.
- 25. Jürgensmeier JM, Krajewski S, Armstrong RC, Wilson GM, et al. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 1997; 8: 325-39.
- 26. Mazzoni C, Falcone C. Caspase-dependent apoptosis in yeast. Biochim Biophys Acta (BBA). 2008; 1783: 1320-7.
- 27. Madeo F, Herker E, Maldener C, Wissing S. et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9: 911-7. 28. Wilkinson D, Ramsdale M. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 2011; 39: 1502-8. 29. Shrestha A, Brunette S, Lloyd W, Lynn S, Megeney A. The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discovery 2019; 5: Article: 6.
- 30. Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73(11-12): 2237-50.
- 31. Giannattasio S, Guaragnella N, Zdralevic M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4, article 33.
- 32. Corte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 2013; 14: 838.
- 33. Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 2009; 9: 720-32.
- 34. Bonomelli B, Martegani E, Colombo S. Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2020; 523:130-4.
- 35. Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discovery 2018; 4: 20.
- 36. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer Deletion Strains derived from Saccharomyces cerevisiae S288C: a Useful set of Strains and Plasmids for PCR-mediated Gene Disruption and Other Applications. Yeast 1998; 14: 115-32.
- 37. Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995; 11: 355-60.
- 38. Rose MD, Winston F, Heiter P. Methods in Yeast Genetics. A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1990.
- 39. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 1983; 101: 181-91.
- 40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75.
- 41. Risler JK, Kenny AE, Palumbo RJ, Eric R, Gamache ER, Curcio MJ. Host co-factors of the retrovirus-like transposon Ty1. 2012; Mobile DNA 2012; 3: 12.
- 42. Garfinkel DJ, Nyswaner KM, Stefanisko KM, Chang C, Moore SP. Ty1 Copy number dynamics in Saccharomyces. Genetics 2005; 169: 1845-57.
- 43. Lopez MC, Baker HV. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 2000; 182: 4970-8.
- 44. Brückner S, Kern S, Birke R, Saugar I, Ulrich HD, Mösch HU. The TEA transcription factor Tec1 links TOR and MAPK pathways to coordinate yeast development. Genetics 2011: 189; 479–94
- 45. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 2010; 17: 763–73.
Year 2020,
Volume: 79 Issue: 1, 36 - 42, 17.06.2020
Ceyda Colakoglu
Sezai Türkel
References
- 1. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: A comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 1998; 8: 464-78.
- 2. Boeke J, Garfinkel DJ, Styles CA, Fink G. Ty elements transpose through an RNA intermediate. Cell 1985; 40: 491-500.
- 3. Capy P. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res 2005; 110: 457-61.
- 4. Farabaugh PJ. Translational frameshifting: implications for the mechanism of translational frame maintenance. Prog Nucleic Acid Res Mol Biol 2000; 64: 131-70.
- 5. Curcio MJ, Lutz S, Lesage P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol Spectr 2015; 3: 1-35.
- 6. Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 1990; 62: 339-52.
- 7. Farabaugh PJ, XB. Liao, Belcourt M, Zhao H, Kapakos J, Clare J. Enhancer and silencer-like sites within the transcribed portion of a Ty2 transposable element of S. cerevisiae. Mol Cell Biol 1989; 9: 4824-34.
- 8. Farabaugh PJ, Vimaladithan A, Türkel S, Johnson R, Zhao H. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 2081-90.
- 9. Türkel S, Farabaugh PJ. Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty elements of Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 2091-103.
- 10. Morillon A, Bénard L, Springer M, Lesage P. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Mol Cell Biol 2002; 22: 2078-88.
- 11. Todeschini AL, Morillon A, Springer M, Lesage P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25: 7459-72.
- 12. Curcio MJ, Hedge AM, Boeke JD, Garfinkel DJ. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol Gen Genet 1990; 220: 213-21.
- 13. Company M, Errede BA. Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol Cell Biol 1988; 8: 5299-309.
- 14. Laloux I, Dubois E ,Dewerchin M, Jacobs E. TEC1, a gene involved in the activation of Tyl and Tyl-mediated gene expression in Saccharomyces cerevisiae: Cloning and molecular analysis. Mol Cell Biol 1990; 10: 3541-50.
- 15. Löhning C, Ciriacy M. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression. Yeast. 1994; 10: 1329-39.
- 16. Türkel S, Yenice B. Analysis of the Effects of Chromatin Modifying Complexes on the Transcription of Retrotransposon Ty2-917 in Saccharomyces cerevisiae. Turk J Biol 2006; 30: 101-6.
- 17. Türkel S, Liao XB, Farabaugh PJ. Gcr1-dependent transcriptional activation of yeast retrotransposon Ty2-917. Yeast 1997; 13: 917-30.
- 18. Kerr JFR, Wyllie AH, Currie R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57.
- 19. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817-29.
- 20. Nunez G, Benedict, MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237-45.
- 21. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 2007; 35: 495-516. 22. D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43: 582-92.
- 23. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich KU. Apoptosis in yeast. Curr Opin Microbiol 2004; 7: 655-60.
- 24. Stolz A, Hilt W, Buchberger A, Wolf DH. Cdc48: a power machine in protein degradation. Trends Biochem Sci 2011; 36: 515-23.
- 25. Jürgensmeier JM, Krajewski S, Armstrong RC, Wilson GM, et al. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 1997; 8: 325-39.
- 26. Mazzoni C, Falcone C. Caspase-dependent apoptosis in yeast. Biochim Biophys Acta (BBA). 2008; 1783: 1320-7.
- 27. Madeo F, Herker E, Maldener C, Wissing S. et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9: 911-7. 28. Wilkinson D, Ramsdale M. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 2011; 39: 1502-8. 29. Shrestha A, Brunette S, Lloyd W, Lynn S, Megeney A. The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discovery 2019; 5: Article: 6.
- 30. Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73(11-12): 2237-50.
- 31. Giannattasio S, Guaragnella N, Zdralevic M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4, article 33.
- 32. Corte-Real M, Sousa MJ. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 2013; 14: 838.
- 33. Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 2009; 9: 720-32.
- 34. Bonomelli B, Martegani E, Colombo S. Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2020; 523:130-4.
- 35. Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discovery 2018; 4: 20.
- 36. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Designer Deletion Strains derived from Saccharomyces cerevisiae S288C: a Useful set of Strains and Plasmids for PCR-mediated Gene Disruption and Other Applications. Yeast 1998; 14: 115-32.
- 37. Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995; 11: 355-60.
- 38. Rose MD, Winston F, Heiter P. Methods in Yeast Genetics. A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 1990.
- 39. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 1983; 101: 181-91.
- 40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75.
- 41. Risler JK, Kenny AE, Palumbo RJ, Eric R, Gamache ER, Curcio MJ. Host co-factors of the retrovirus-like transposon Ty1. 2012; Mobile DNA 2012; 3: 12.
- 42. Garfinkel DJ, Nyswaner KM, Stefanisko KM, Chang C, Moore SP. Ty1 Copy number dynamics in Saccharomyces. Genetics 2005; 169: 1845-57.
- 43. Lopez MC, Baker HV. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 2000; 182: 4970-8.
- 44. Brückner S, Kern S, Birke R, Saugar I, Ulrich HD, Mösch HU. The TEA transcription factor Tec1 links TOR and MAPK pathways to coordinate yeast development. Genetics 2011: 189; 479–94
- 45. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 2010; 17: 763–73.