Araştırma Makalesi
BibTex RIS Kaynak Göster

Antitumoral Properties of a Pincer-Type Isonicotinohydrazone-Hg(II) Complex

Yıl 2021, Cilt: 80 Sayı: 2, 129 - 137, 17.12.2021
https://doi.org/10.26650/EurJBiol.2021.1010029

Öz

Objective: The aim of this study was to evaluate the antitumoral properties of the novel Hg(SCN)2 complex of a pincer-type isonicotinohyrazone ligand (PTIH).

Materials and Methods: Hydrazine ligands were prepared through a Schiff base condensation between the 2-Acetylpyridine and isonicotinoyl acid hydrazide. PTIH was synthetized by a branch tube method using Hg(SCN)2. In vitro cell killing activity, the induction of apoptosis, the influence on motility, and the effects on mRNA expression to a motility-related gene (E-cadherin) of PTIH were evaluated in A549, HepG2, HUH7 cancer cell lines, and BEAS2B non-cancer cell line.

Results: PTIH was found to be cytotoxic to cancer cells, compared to non-cancers, and induced apoptosis. Additionally, it suppressed cell migration in A549 cells, leading to an increase in the levels of E-cadherin mRNA expression, and decreased colony formation in HepG2 and HUH7 cells. Through UV titration studies, it was determined that PTIH showed albumin binding and interacted with DNA by electrostatically and/or groove binding.

Conclusion: PTIH exerted more cytotoxic effects in some cancer cells than in normal cells. This feature and other anticancer properties make it a promising agent.

Teşekkür

We thank to Central Research Laboratory of Cukurova University (CUMERLAB) for providing lab space and for sharing UV Vis spectrophotometer core facility. We also thank to Dr. Demet Taşdemir for sharing A549 and BEAS2B cells and to Prof. Dr. Mehmet Ozturk for HUH7 and HEPG2 cells.

Kaynakça

  • 1. Szabo KJ, Wendt OF. Pincer and pincer type complexes, applications in synthesis and catalysis: Wiley-VCH, Weinheim, Germany, 2014. google scholar
  • 2. Mahmoudi G, Bauza A, Gurbanov AV, Zubkov FI, Maniukiewicz W, Rodnguez-Dieguez A, et al. The role of unconventional stacking in-teractions in the supramolecular assemblies of Hg(II) coordination compounds. CrystEngComm 2016; 18: 9056-66. google scholar
  • 3. Mahmoudi G, Zareba JK, Bauza A, Kubicki M, Bartyzel A, Keramidas A, et al. Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effects. CrystEngComm 2018; 20: 1065-76. google scholar
  • 4. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schröder M. Two- and three-dimensional CuSCN co-ordination networks including new CuSCN structural motifs. Coord Chem Rev 1999; 183: 117-38. google scholar
  • 5. Sarkar M, Biradha K. Crystal engineering of metal-organic frame-works containing amide functionalities: Studies on network rec-ognition, transformations, and exchange dynamics of guests and anions. Cryst Growth Des 2007; 7: 1318-31. google scholar
  • 6. Beheshti A, Clegg W. Nobakht V, Harrington RW. Metal-to-ligand ratio as a design factor in the one-pot synthesis of coordination polymers with [MS4Cun] (M=W or Mo, n=3or 5) cluster nodes and a flexible pyr-azole-based bridging ligand. Cryst Growth Des 2013; 13: 1023-32. google scholar
  • 7. Angelusiu MV, Barbuceanu SF, Draghici C, Almajan GL. New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthe-sis, spectroscopic characterization, and in vitro antibacterial evalu-ation. Eur J Med Chem 2010; 45: 2055-62. google scholar
  • 8. Aslan HG, Ozcan S, Karacan N. Synthesis, characterization and an-timicrobial activity of salicylaldehyde benzenesulfonylhydrazone (Hsalbsmh) and its Nickel(II), Palladium(II), Platinum(II), Copper(II), Cobalt(II) complexes. Inorg Chem Commun 2011; 14: 1550-53. google scholar
  • 9. Xu Z, Zhang X, Zhang W, Gao Y, Zeng Z. Synthesis characteriza-tion DNA interaction and antibacterial activities of two tetra-nuclear cobalt(II) and nickel(II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. Inorg Chem Commun 2011; 14: 1569-73. google scholar
  • 10. Zhang L, He M, Zhang Y, Nilubol N, Shen M, Kebebew E. Quanti-tative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: opportuni-ties for repurposing. J Clin Endocrinol Metab 2012; 97(3): E319-28. google scholar
  • 11. Malella R, Konkanchi R, Guda R, Munirathinam N, Gandamalla D, Yel-lu NR, et al. Zn(II), Cd(II), and Hg(II) metal complexes of 2-aminonic-otinaldehyde: Synthesis, crystal structure, biological evaluation, and molecular docking study. Inorganica Chim. Acta 2017; 469: 66-75. google scholar
  • 12. Icsel C, Yilmaz VT, Aydinlik S, Aygün M. Zn(II), Cd(II) and Hg(II) sac-charinate complexes with 2,6-bis(2- benzimidazolyl)pyridine as promising anticancer agents in breast and lung cancer cell lines via ROS-induced apoptosis. Dalton Trans 2020; 49: 7842-51. google scholar
  • 13. Yumnan S, Rajkumari L. Thermodynamics of the complexation of N-(Pyridin-2-ylmethylene) isonicotinohydrazide with lighter lan-thanides. J Chem Eng Data 2009; 54: 28- 34. google scholar
  • 14. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA. Visualization and characterization of voids in crys-talline materials. Dalton Trans 2011; 13: 1804- 13. google scholar
  • 15. Megger DA, Rosowski K, Radunsky C, Kösters J, Siteka B, Müller J. Structurally related hydrazone-based metal complexes with differ-ent antitumor activites variably induce apoptotic cell death. Dal-ton Trans 2017; 46: 4759-67. google scholar
  • 16. Pape VFS, Türk D, Szabo P, Wiese M, Enyedy EA. Cook G, Synthesis and characterization of the anticancer and metal-binding prop-erties of novel pyrimidinylhydrazone derivatives. Inorg Biochem 2015; 144: 18-30. google scholar
  • 17. Pape VFS, Torh S, Füredi A, Szebenyi K, Lovrics A, Szabo P, et al. De-sign, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur J Med Chem 2016; 117: 335-54. google scholar
  • 18. Afkhami FA, Mahmoudi G, Qu F, Gupta A, Zangrando E, Fronteral A. Supramolecular architecture constructed from the hemidirected lead(II) complex with N’-(4- hydroxybenzylidene)isonicotinohydra-zide. Inorganica Chim. Acta 2020; 502: 119350. google scholar
  • 19. Mahmoudi G, Khandar AA, Afkhami AF, Miroslaw B, Gurbanov VA, Zubkov F, et al. Modulation of coordination in pincer-type isonic-otinohydrazone Schiff base ligands by proton transfer. CrystEng-Comm 2019; 21: 108-17. google scholar
  • 20. Saygideger Y, Saygıdeğer Demir B, Taskin Tok, Avci A, Sezan A, Bay-dar O, et al. Antitumoral effects of Santolina chameacyparissus on non-small cell lung cancer cells. J Exp Clin Med 2021; 38(3): 294-300. google scholar
  • 21. https://www.biolegend.com/nl-be/products/apc-annexin-v-apoptosis-detection-kit-with-pi-9788. google scholar
  • 22. Marmur J, Doty P. Determination of the base composition of de-oxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1983; 5: 109-18. google scholar
  • 23. Wolfe A, Shimer GH, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Bio-chemistry 1987; 26: 6392-96. google scholar
  • 24. Raja DS, Bhuvanesh NSP, Natarajan K. Biological evaluation of a novel water- soluble sulfur bridged binuclear copper (II) thiosemi-carbazone complex. Eur J Med Chem 2011; 46: 4584-94. (b) google scholar
  • 25. Raja DS, Paramaguru G, Bhuvanesh NSP, Reibensipes JH, Reanga-nathan R, Natarajan K. Effect of terminal N-substitution in 2-oxo-1, 2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the mode of coordination, structure, interaction with protein, radical scavenging, and cytotoxic activity of copper(II) complexes. Dalton Trans 2011; 40: 4548-59. (a) google scholar
  • 26. Gupta RK, Sharma G, Pandey R, Kumar A, Koch B, Li P-Z, et al. DNA/ Protein binding, molecular docking, and in vitro anticancer activi-ty of some thioether-dipyrrinato complexes. Inorg Chem 2013; 52: 13984-96. google scholar
  • 27. Brito AF, Abrantes AM, Pinto-Costa C, Gomes AR, Mamede AC, Ca-salta-Lopes J, et al. Hepatocellular carcinoma and chemotherapy: the role of p53. Chemotherapy 2012; 58: 381-86. google scholar
  • 28. Ye R-R, Peng W, Chen B-C, Jiang N, Chen X-Q, Mao Z-W, et al. Mi-tochondria-targeted artesunate conjugated cyclometalated iridi-um(III) complexes as potent anti- HepG2 hepatocellular carcinoma agents. Metallomics 2020; 12: 1131-41. google scholar
  • 29. Machakanur SS, Patil BR, Badiger DS, Bakale RP, Gudasi KB, Bligh SWA. Synthesis characterization and anticancer evaluation of nov-el tri-arm star shaped 1, 3, 5-triazine hydrazones. J Mole Struct 2012; 1011: 121-27. google scholar
  • 30. Dasgupta S, Karim S, Banerjee S, Saha M, Saha KD, Das D. Design-ing of novel zinc (II) Schiff base complexes having acyl hydrazone linkage: Study of phosphatates and anti-cancer activity. Dalton Trans 2020; 49: 1232-40. google scholar
  • 31. Wang F, Yin H, Cui J, Zhang Y, Geng H, Hong M. DNA-binding and BSA interaction of diorganotin (IV) complexes derived from hydra-zone Schiff base. J Organomet Chem 2014; 759: 83-91. google scholar
  • 32. Balaji S, Subarkhan MKM, Ramesh R, Wang H, Semeril D. Synthesis and structure of arene Ru (II) NAO chelating complexes: In vitro cytotoxicity and cancer cell death mechanism. Organometallics, 2020; 39 (8): 1366-75. google scholar
  • 33. Li Z-H, Yang D-X, Geng PF, Zhang J, Wei HM, Hu B, et al. Design, synthesis and biological evaluation of [1,2,3] triazolo[4,5-d] pyrim-idine derivatives possessing a hydrazone moiety as antiprolifera-tive agents. Eur J Med Chem 2016; 124: 967-80. google scholar
  • 34. Saygıdeger Demir B, Mahmoudi G, Sezan A, Derinoz E, Nas E, Say-gideger Y, et al. Evaluation of the antitumor activity of a series of the pincer-type metallocomplexes produced from isonicotinohy-drazide derivative. J Inorg Biochem 2021; 223: 111525. google scholar
  • 35. Marloye M, Berger G, Gelbcke M, Dufrasne F. A survey of the mech-anisms of action anticancer transition metal complexes. Future Med Chem 2016; 8 (18): 2263-86. google scholar
  • 36. HacA, Brokowska J, Rintz E, Bartkowski M, Wgcjrzyn G,Antosiewicz AH. Mechanism of selective anticancer activity of isothiocyanates relies on diferences in DNA damage repair between cancer and healthy cells. Eur J Nutr 2020; 59: 1421-32. google scholar
  • 37. Lin RK, Zhou N, Lyu YL, Tsai YC, Lu CH, Kerrigan J, et al. Dietary iso-thiocyanate induced apoptosis via thiol modifcation of DNA to-poisomerase IIalpha. J Biol Chem 2011; 286: 33591-600. google scholar
  • 38. El-bendary MM, Arshad MN, Asiri AM. Structure characterization and antitumor activity of palladium pseudo halide complexes with 4-acetylpyridine. J Coord Chem 2019; 72(18): 3088-101. google scholar
  • 39. Ribatti D, Tamma R, Annese T, Epithelial-mesenchymal transi-tion in cancer: A historical overview. Transl Oncol 2020; 13(6): 100773. google scholar
  • 40. Kelly JM, Tossi AB, McConnell DJ, Uigin CO. A study of the interac-tions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation, and thermal dena-turation. Nucl Acids Res 1985; 13: 6017-34. google scholar
  • 41. Abdel-Rahman LH, El-Khatib RM, Nassr LA, Abu-Dief AM, Ismael M, Seleem AA. Metal based pharmacologically active agents: synthe-sis, structural characterization, molecular modeling, CT-DNA bind-ing studies and in vitro antimicrobial screening of iron(II) bromo-salicylidene amino acid chelates. Spectrochim Acta A Mol Biomol Spectrosc 2014; 117: 366-78. google scholar
  • 42. Rahban M, Divsalar A, Saboury AA, Golestani A. Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. J Phys Chem 2010; 114: 5798-803. google scholar
  • 43. Sarwar T, Husain MA, Rehman SU, Ishqi, HM, Tabish M. Multi-spec-troscopic and molecular modeling studies on the interaction of esculetin with calf thymus DNA. Mol Biosyst 2015; 11(2): 522-31. google scholar
  • 44. Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, et al. Synthesis, charac-terization, photoluminescence, molecular docking and bioactivity of Zinc (II) compounds based on different substituents. Molecules, 2020; 25(15): 3459. google scholar
  • 45. Draksharap A, Boersma AJ, Leising M, Meetsma A, Browne WR, Ro-elfes G. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis. Dalton Trans 2015; 44: 3647-55. google scholar
  • 46. Li W, Ji YY, Wang JW, Zhu YM. Cytotoxic activities and DNA binding properties of 1-methyl-7H-indeno[1,2-b] quinolinium-7-(4-dime-thylamino) benzylidene triflate. DNA Cell Biol 2012; 31(6): 1046-53. google scholar
  • 47. Franich AA, Zivkovic MD, Milovanovic J, Arsenijevic D, Arsenijevic A, Milovanovic M, et al. In vitro cytotoxic activities, DNA- and BSA-binding studies of dinuclear palladium(II) complexes with dif-ferent pyridine-based bridging ligands. J Inorg Biochem 2020; 210: 111-58. google scholar
  • 48. Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y. Et al. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38(17): 4977-96. google scholar
Yıl 2021, Cilt: 80 Sayı: 2, 129 - 137, 17.12.2021
https://doi.org/10.26650/EurJBiol.2021.1010029

Öz

Kaynakça

  • 1. Szabo KJ, Wendt OF. Pincer and pincer type complexes, applications in synthesis and catalysis: Wiley-VCH, Weinheim, Germany, 2014. google scholar
  • 2. Mahmoudi G, Bauza A, Gurbanov AV, Zubkov FI, Maniukiewicz W, Rodnguez-Dieguez A, et al. The role of unconventional stacking in-teractions in the supramolecular assemblies of Hg(II) coordination compounds. CrystEngComm 2016; 18: 9056-66. google scholar
  • 3. Mahmoudi G, Zareba JK, Bauza A, Kubicki M, Bartyzel A, Keramidas A, et al. Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effects. CrystEngComm 2018; 20: 1065-76. google scholar
  • 4. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schröder M. Two- and three-dimensional CuSCN co-ordination networks including new CuSCN structural motifs. Coord Chem Rev 1999; 183: 117-38. google scholar
  • 5. Sarkar M, Biradha K. Crystal engineering of metal-organic frame-works containing amide functionalities: Studies on network rec-ognition, transformations, and exchange dynamics of guests and anions. Cryst Growth Des 2007; 7: 1318-31. google scholar
  • 6. Beheshti A, Clegg W. Nobakht V, Harrington RW. Metal-to-ligand ratio as a design factor in the one-pot synthesis of coordination polymers with [MS4Cun] (M=W or Mo, n=3or 5) cluster nodes and a flexible pyr-azole-based bridging ligand. Cryst Growth Des 2013; 13: 1023-32. google scholar
  • 7. Angelusiu MV, Barbuceanu SF, Draghici C, Almajan GL. New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthe-sis, spectroscopic characterization, and in vitro antibacterial evalu-ation. Eur J Med Chem 2010; 45: 2055-62. google scholar
  • 8. Aslan HG, Ozcan S, Karacan N. Synthesis, characterization and an-timicrobial activity of salicylaldehyde benzenesulfonylhydrazone (Hsalbsmh) and its Nickel(II), Palladium(II), Platinum(II), Copper(II), Cobalt(II) complexes. Inorg Chem Commun 2011; 14: 1550-53. google scholar
  • 9. Xu Z, Zhang X, Zhang W, Gao Y, Zeng Z. Synthesis characteriza-tion DNA interaction and antibacterial activities of two tetra-nuclear cobalt(II) and nickel(II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. Inorg Chem Commun 2011; 14: 1569-73. google scholar
  • 10. Zhang L, He M, Zhang Y, Nilubol N, Shen M, Kebebew E. Quanti-tative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: opportuni-ties for repurposing. J Clin Endocrinol Metab 2012; 97(3): E319-28. google scholar
  • 11. Malella R, Konkanchi R, Guda R, Munirathinam N, Gandamalla D, Yel-lu NR, et al. Zn(II), Cd(II), and Hg(II) metal complexes of 2-aminonic-otinaldehyde: Synthesis, crystal structure, biological evaluation, and molecular docking study. Inorganica Chim. Acta 2017; 469: 66-75. google scholar
  • 12. Icsel C, Yilmaz VT, Aydinlik S, Aygün M. Zn(II), Cd(II) and Hg(II) sac-charinate complexes with 2,6-bis(2- benzimidazolyl)pyridine as promising anticancer agents in breast and lung cancer cell lines via ROS-induced apoptosis. Dalton Trans 2020; 49: 7842-51. google scholar
  • 13. Yumnan S, Rajkumari L. Thermodynamics of the complexation of N-(Pyridin-2-ylmethylene) isonicotinohydrazide with lighter lan-thanides. J Chem Eng Data 2009; 54: 28- 34. google scholar
  • 14. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA. Visualization and characterization of voids in crys-talline materials. Dalton Trans 2011; 13: 1804- 13. google scholar
  • 15. Megger DA, Rosowski K, Radunsky C, Kösters J, Siteka B, Müller J. Structurally related hydrazone-based metal complexes with differ-ent antitumor activites variably induce apoptotic cell death. Dal-ton Trans 2017; 46: 4759-67. google scholar
  • 16. Pape VFS, Türk D, Szabo P, Wiese M, Enyedy EA. Cook G, Synthesis and characterization of the anticancer and metal-binding prop-erties of novel pyrimidinylhydrazone derivatives. Inorg Biochem 2015; 144: 18-30. google scholar
  • 17. Pape VFS, Torh S, Füredi A, Szebenyi K, Lovrics A, Szabo P, et al. De-sign, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur J Med Chem 2016; 117: 335-54. google scholar
  • 18. Afkhami FA, Mahmoudi G, Qu F, Gupta A, Zangrando E, Fronteral A. Supramolecular architecture constructed from the hemidirected lead(II) complex with N’-(4- hydroxybenzylidene)isonicotinohydra-zide. Inorganica Chim. Acta 2020; 502: 119350. google scholar
  • 19. Mahmoudi G, Khandar AA, Afkhami AF, Miroslaw B, Gurbanov VA, Zubkov F, et al. Modulation of coordination in pincer-type isonic-otinohydrazone Schiff base ligands by proton transfer. CrystEng-Comm 2019; 21: 108-17. google scholar
  • 20. Saygideger Y, Saygıdeğer Demir B, Taskin Tok, Avci A, Sezan A, Bay-dar O, et al. Antitumoral effects of Santolina chameacyparissus on non-small cell lung cancer cells. J Exp Clin Med 2021; 38(3): 294-300. google scholar
  • 21. https://www.biolegend.com/nl-be/products/apc-annexin-v-apoptosis-detection-kit-with-pi-9788. google scholar
  • 22. Marmur J, Doty P. Determination of the base composition of de-oxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1983; 5: 109-18. google scholar
  • 23. Wolfe A, Shimer GH, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Bio-chemistry 1987; 26: 6392-96. google scholar
  • 24. Raja DS, Bhuvanesh NSP, Natarajan K. Biological evaluation of a novel water- soluble sulfur bridged binuclear copper (II) thiosemi-carbazone complex. Eur J Med Chem 2011; 46: 4584-94. (b) google scholar
  • 25. Raja DS, Paramaguru G, Bhuvanesh NSP, Reibensipes JH, Reanga-nathan R, Natarajan K. Effect of terminal N-substitution in 2-oxo-1, 2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the mode of coordination, structure, interaction with protein, radical scavenging, and cytotoxic activity of copper(II) complexes. Dalton Trans 2011; 40: 4548-59. (a) google scholar
  • 26. Gupta RK, Sharma G, Pandey R, Kumar A, Koch B, Li P-Z, et al. DNA/ Protein binding, molecular docking, and in vitro anticancer activi-ty of some thioether-dipyrrinato complexes. Inorg Chem 2013; 52: 13984-96. google scholar
  • 27. Brito AF, Abrantes AM, Pinto-Costa C, Gomes AR, Mamede AC, Ca-salta-Lopes J, et al. Hepatocellular carcinoma and chemotherapy: the role of p53. Chemotherapy 2012; 58: 381-86. google scholar
  • 28. Ye R-R, Peng W, Chen B-C, Jiang N, Chen X-Q, Mao Z-W, et al. Mi-tochondria-targeted artesunate conjugated cyclometalated iridi-um(III) complexes as potent anti- HepG2 hepatocellular carcinoma agents. Metallomics 2020; 12: 1131-41. google scholar
  • 29. Machakanur SS, Patil BR, Badiger DS, Bakale RP, Gudasi KB, Bligh SWA. Synthesis characterization and anticancer evaluation of nov-el tri-arm star shaped 1, 3, 5-triazine hydrazones. J Mole Struct 2012; 1011: 121-27. google scholar
  • 30. Dasgupta S, Karim S, Banerjee S, Saha M, Saha KD, Das D. Design-ing of novel zinc (II) Schiff base complexes having acyl hydrazone linkage: Study of phosphatates and anti-cancer activity. Dalton Trans 2020; 49: 1232-40. google scholar
  • 31. Wang F, Yin H, Cui J, Zhang Y, Geng H, Hong M. DNA-binding and BSA interaction of diorganotin (IV) complexes derived from hydra-zone Schiff base. J Organomet Chem 2014; 759: 83-91. google scholar
  • 32. Balaji S, Subarkhan MKM, Ramesh R, Wang H, Semeril D. Synthesis and structure of arene Ru (II) NAO chelating complexes: In vitro cytotoxicity and cancer cell death mechanism. Organometallics, 2020; 39 (8): 1366-75. google scholar
  • 33. Li Z-H, Yang D-X, Geng PF, Zhang J, Wei HM, Hu B, et al. Design, synthesis and biological evaluation of [1,2,3] triazolo[4,5-d] pyrim-idine derivatives possessing a hydrazone moiety as antiprolifera-tive agents. Eur J Med Chem 2016; 124: 967-80. google scholar
  • 34. Saygıdeger Demir B, Mahmoudi G, Sezan A, Derinoz E, Nas E, Say-gideger Y, et al. Evaluation of the antitumor activity of a series of the pincer-type metallocomplexes produced from isonicotinohy-drazide derivative. J Inorg Biochem 2021; 223: 111525. google scholar
  • 35. Marloye M, Berger G, Gelbcke M, Dufrasne F. A survey of the mech-anisms of action anticancer transition metal complexes. Future Med Chem 2016; 8 (18): 2263-86. google scholar
  • 36. HacA, Brokowska J, Rintz E, Bartkowski M, Wgcjrzyn G,Antosiewicz AH. Mechanism of selective anticancer activity of isothiocyanates relies on diferences in DNA damage repair between cancer and healthy cells. Eur J Nutr 2020; 59: 1421-32. google scholar
  • 37. Lin RK, Zhou N, Lyu YL, Tsai YC, Lu CH, Kerrigan J, et al. Dietary iso-thiocyanate induced apoptosis via thiol modifcation of DNA to-poisomerase IIalpha. J Biol Chem 2011; 286: 33591-600. google scholar
  • 38. El-bendary MM, Arshad MN, Asiri AM. Structure characterization and antitumor activity of palladium pseudo halide complexes with 4-acetylpyridine. J Coord Chem 2019; 72(18): 3088-101. google scholar
  • 39. Ribatti D, Tamma R, Annese T, Epithelial-mesenchymal transi-tion in cancer: A historical overview. Transl Oncol 2020; 13(6): 100773. google scholar
  • 40. Kelly JM, Tossi AB, McConnell DJ, Uigin CO. A study of the interac-tions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation, and thermal dena-turation. Nucl Acids Res 1985; 13: 6017-34. google scholar
  • 41. Abdel-Rahman LH, El-Khatib RM, Nassr LA, Abu-Dief AM, Ismael M, Seleem AA. Metal based pharmacologically active agents: synthe-sis, structural characterization, molecular modeling, CT-DNA bind-ing studies and in vitro antimicrobial screening of iron(II) bromo-salicylidene amino acid chelates. Spectrochim Acta A Mol Biomol Spectrosc 2014; 117: 366-78. google scholar
  • 42. Rahban M, Divsalar A, Saboury AA, Golestani A. Nanotoxicity and spectroscopy studies of silver nanoparticle: calf thymus DNA and K562 as targets. J Phys Chem 2010; 114: 5798-803. google scholar
  • 43. Sarwar T, Husain MA, Rehman SU, Ishqi, HM, Tabish M. Multi-spec-troscopic and molecular modeling studies on the interaction of esculetin with calf thymus DNA. Mol Biosyst 2015; 11(2): 522-31. google scholar
  • 44. Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, et al. Synthesis, charac-terization, photoluminescence, molecular docking and bioactivity of Zinc (II) compounds based on different substituents. Molecules, 2020; 25(15): 3459. google scholar
  • 45. Draksharap A, Boersma AJ, Leising M, Meetsma A, Browne WR, Ro-elfes G. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis. Dalton Trans 2015; 44: 3647-55. google scholar
  • 46. Li W, Ji YY, Wang JW, Zhu YM. Cytotoxic activities and DNA binding properties of 1-methyl-7H-indeno[1,2-b] quinolinium-7-(4-dime-thylamino) benzylidene triflate. DNA Cell Biol 2012; 31(6): 1046-53. google scholar
  • 47. Franich AA, Zivkovic MD, Milovanovic J, Arsenijevic D, Arsenijevic A, Milovanovic M, et al. In vitro cytotoxic activities, DNA- and BSA-binding studies of dinuclear palladium(II) complexes with dif-ferent pyridine-based bridging ligands. J Inorg Biochem 2020; 210: 111-58. google scholar
  • 48. Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y. Et al. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38(17): 4977-96. google scholar
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Burcu Saygıdeğer Demir 0000-0001-5179-0522

Aycan Sezan 0000-0003-1506-7083

Ezgi Derinöz 0000-0002-1951-6862

Eylem Nas 0000-0003-3799-9172

Mehmet Özerten 0000-0003-4868-0212

Ghodrat Mahmoudı 0000-0002-4846-5283

Yasemin Saygideger 0000-0003-3293-373X

Yayımlanma Tarihi 17 Aralık 2021
Gönderilme Tarihi 15 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 80 Sayı: 2

Kaynak Göster

AMA Saygıdeğer Demir B, Sezan A, Derinöz E, Nas E, Özerten M, Mahmoudı G, Saygideger Y. Antitumoral Properties of a Pincer-Type Isonicotinohydrazone-Hg(II) Complex. Eur J Biol. Aralık 2021;80(2):129-137. doi:10.26650/EurJBiol.2021.1010029