Review
BibTex RIS Cite
Year 2023, Volume: 82 Issue: 1, 109 - 123, 26.06.2023
https://doi.org/10.26650/EurJBiol.2023.1163155

Abstract

References

  • 1. Munir N, Jahangeer M, Bouyahya A, et al. Heavy metal con-tamination of natural foods is a serious health issue: a review. Sustainability. 2022;14(1):161. doi:10.3390/su14010161. google scholar
  • 2. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mer-cury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;227. doi:10.3389/fphar.2021.764227. google scholar
  • 3. Mandal S. Essential and heavy metal content in wild and culti-vated Mentha species from Bosnia and Herzegovina. Kemija u industriji. 2021;70(7-8):393. doi:10.15255/KUI.2021.093. google scholar
  • 4. Aouacheri O, Saka S. Cytoprotective effects of Zingiber offici-nale against the oxidative stress induced by lead acetate toxicity in rats. Phytotherapie. 2021;19(5-6):297-305. google scholar
  • 5. Dghaim R, Al Khatib S, Rasool H, Ali Khan M. Determination of heavy metal concentration in traditional herbs commonly con-sumed in the United Arab Emirates. J Environ Public Health. 2015;2015. doi:10.1155/2015/974256. google scholar
  • 6. Islam EU, Yang XE, He ZL, Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B. 2007;8(1):1-13. google scholar
  • 7. Asiminicesei DM, Vasilachi IC, Gavrilescu MARIA. Heavy metal contamination of medicinal plants and potential impli-cations on human health. Revista de Chimie. 2020;71(7):16-36. google scholar
  • 8. Zaynab M, Al-Yahyai R, Ameen A, et al. Health and en-vironmental effects of heavy metals. J King Saud Univ Sci. 2022;34(1):101653. doi: 10.1016/j.jksus.2021.101653. google scholar
  • 9. Kabata-Pandias A, Kabata-Pandias A, Pendias H. Trace elements in soils and plants. CRC Press, Incorporated; 1984. google scholar
  • 10. Salgarello M, Visconti G, Barone-Adesi L. Interlocking circum-areolar suture with undyed polyamide thread: a personal experi-ence. Aesthetic Plast Surg. 2013;37:1061-1062. google scholar
  • 11. Wedepohl KH. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59(7):1217-1232. google scholar
  • 12. Ball JW, Izbicki JA. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem. 2004;19(7):1123-1135. google scholar
  • 13. Viers J, Oliva P, Nonell A, Gelabert A, Sonke JE, Freydier R, Dupre B. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol. 2007;239(1-2):124-137. google scholar
  • 14. Hüffmeyer N, Klasmeier J, Matthies M. Geo-referenced model-ing of zinc concentrations in the Ruhr river basin (Germany) us-ingthemodelGREAT-ER. Sci Total Environ. 2009;407(7):2296-2305. google scholar
  • 15. Ayandiran TA, Fawole OO, Adewoye SO, Ogundiran MA. Bio-concentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and de-tergent effluent. J Cell Anim Biol. 2009;3(8):113-118. google scholar
  • 16. Sonone SS, Jadhav S, Sankhla MS, Kumar R. Water contami-nation by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett Appl NanoBioScience. 2020;10(2):2148-2166. google scholar
  • 17. Means B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002). Environ-mental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response; 1989. google scholar
  • 18. Wu B, Zhao DY, Jia HY, Zhang Y, Zhang XX, Cheng SP. Prelim-inary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull Environ Contam Toxicol. 2009;82:405-409. google scholar
  • 19. Olayinka-Olagunju JO, Dosumu AA, Olatunji-Ojo AM. Bioac-cumulation of heavy metals in pelagic and benthic fishes of Ogbese River, Ondo State, South-Western Nigeria. Water Air Soil Pollut. 2021;232:1-19. google scholar
  • 20. Rouidi S, Hadef A, Dziri H. The state of metallic contami-nation of Saf-Saf river sediments (Skikda-Algeria). Pollution. 2022;8(3):717-728. google scholar
  • 21. Asiminicesei DM, Vasilachi IC, Gavrilescu MARIA. Heavy metal contamination of medicinal plants and potential impli-cations on human health. Revista de Chimie. 2020;71(7):16-36. google scholar
  • 22. Amari T, Ghnaya T, Abdelly C. Nickel, cadmium and lead phy-totoxicity and potential of halophytic plants in heavy metal ex-traction. SAfrJBot. 2017;111:99-110. google scholar
  • 23. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):65. doi: 10.3390/toxics6040065. google scholar
  • 24. Korfali SI, Hawi T, Mroueh M. Evaluation of heavy metal con-tent in dietary supplements in Lebanon. Chem Cent J. 2013;7:1-13. google scholar
  • 25. Korfali SI, Mroueh M, Al-Zein M, Salem R. Metal concen-tration in commonly used medicinal herbs and infusion by Lebanese population: health impact. J Food Res. 2013;2(2):70. doi: 10.5539/jfr.v2n2p70. google scholar
  • 26. Mahan L, Escott-Stump S, Raymond L. Krause’s Food and Nu-trition Care Process, edited by: Y. Alexopoulos, Saunders, St. Louis, Mo, USA, 2016. google scholar
  • 27. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian J Pharmacol. 2011;43(3):246. doi:10.4103/0253-7613.81505. google scholar
  • 28. Jolliffe DM, Budd AJ, Gwilt DJ. Massive acute arsenic poison-ing. Anaesthesia. 1991;46(4):288-290. google scholar
  • 29. Luo JH, Qiu ZQ, Zhang L, Shu WQ. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett. 2012;211(1):39-44. google scholar
  • 30. Shen S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev. 2013;113(10):7769-7792. google scholar
  • 31. Shaban NS, Abdou KA, Hassan NEHY. Impact of toxic heavy metals and pesticide residues in herbal products. Beni-suef Univ J Basic Appl Sci. 2016;5(1):102-106. google scholar
  • 32. Deng Y, Wang M, Tian T, et al. The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort stud-ies. Front Oncol. 2019;9:24. doi: 10.3389/fonc.2019.00024. google scholar
  • 33. Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):118-1197. google scholar
  • 34. Cheng JP, Wang WH, Jia JP, Zheng M, Shi W, Lin XY. Expres-sion of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation. Biomed Environ Sci. 2006;19(1):67-72. google scholar
  • 35. Bottino C, Vazquez M, Devesa V, Laforenza U. Impaired aqua-porins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol. 2016;36(1):113-120. google scholar
  • 36. Chen R, Xu Y, Xu C et al. Associations between mercury ex-posure and the risk of nonal fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res. 2019;26:31384-31391. google scholar
  • 37. Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol Environ Saf. 2020;189:109987. google scholar
  • 38. Schutte R, Nawrot TS, Richart T, et al. Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect. 2008;116(6):777-783. google scholar
  • 39. PanC, LiuHD, GongZ, YuX, HouXB, XieDD, etal. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep. 2013;3:2333. doi: 10.1038/s02333. google scholar
  • 40. Pi H, Xu S, Reiter RJ, et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037-1051. google scholar
  • 41. Fay MJ, Alt LA, Ryba D, et al. Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics. 2018;6(1):16. doi: 10.3390/toxics6010016. google scholar
  • 42. Wang Y, Mandal AK, Son YO, et al. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sul-foraphane. Toxicol Appl Pharmacol. 2018;353:23-30. google scholar
  • 43. Struzynska L, D^browska-Bouta B, Koza K, Sulkowski G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci. 2007;95(1):156-162. google scholar
  • 44. Dongre NN, Suryakar AN, Patil AJ, Ambekar JG, Rathi DB. Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parame-ters in automobile workers of north Karnataka (India). Indian J Clin Biochem. 2011;26:400-406. google scholar
  • 45. Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395. doi: 10.4103/0253-7613.115015. google scholar
  • 46. Boskabady MH, Tabatabai SA, Farkhondeh T. Inhaled lead af-fects lung pathology and inflammation in sensitized and control guinea pigs. Environ Toxicol. 2016;31(4):452-460. google scholar
  • 47. Dzomba P, Chayamiti T, Togarepi E. Heavy metal content of selected raw medicinal plant materials: implication for patient health. Bull. Environ. Pharmacol Life Sci. 2012;10(1):28- 33. google scholar
  • 48. Begum HA, Hamayun M, Zaman K, Shinwari ZK, Hussain A. Heavy metal analysis in frequently consumable medicinal Plants of khyber paktunkhwa, Pakistan. Pak J Bot. 2017;49(3):1155-1160. google scholar
  • 49. Gupta DK, Tiwari S, Razafindrabe BHN, Chatterjee S. Arsenic contamination from historical aspects to the present. In: Arsenic Contamination in the Environment: The Issues and Solutions. Elsevier; 2017:1-12. google scholar
  • 50. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res. 2014;24(4):378-399. google scholar
  • 51. Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395. doi: 10.4103/0253-7613.115003. google scholar
  • 52. Yao H, Guo L, Jiang BH, Luo J, Shi X. Oxidative stress and chromium (VI) carcinogenesis. J En Pathol Toxicol Oncol. 2008;27(2). doi: 10.1615/JEnvironPatholToxicolOn-col.v27.i2.10. google scholar
  • 53. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735. doi: 10.3390/biom9110735. google scholar
  • 54. Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P. Toxic effects of on the cardiovascular and central nervous systems. Biomed Res Int. 2012;949048. doi: 10.1155/2012949048. google scholar
  • 55. Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov. 2017;16(5):351-367. google scholar
  • 56. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cad-mium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):209-214. google scholar
  • 57. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of HM in the environment. Environ Sci Pollut Res. 2016;23:8244-8259. google scholar
  • 58. Hammoda HM, Ghazy NM, Harraz FM, Radwan MM, ElSohly MA, Abdallah II. Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry. 2013;92:153-159. google scholar
  • 59. Shawky E, Gabr N, El-gindi M, Mekky R. A comprehensive review on genus Zygophyllum. J Adv Pharm Res. 2019;3(1):1-16. google scholar
  • 60. Amini-Chermahini F, Ebrahimi M, Farajpour M, Taj Bordbar Z. Karyotype analysis and new chromosome number reports in Zygophyllum species. Caryologia. 2014;67(4):321-324. google scholar
  • 61. Bourgou S, Megdiche W, Ksouri R. The halophytic genus Zygo-phyllum and Nitraria from North Africa: A phytochemical and pharmacological overview. In: Medicinal and Aromatic Plants of the World-Africa Volume 3. Springer. 2017;345-356. google scholar
  • 62. Medjdoub H, Tabti B. Antidiabetic effect of the aerial part ethanolic extracts of Zygophyllum geslini Coss. in streptozotocin induced-diabetic rats. Met Funct Res Diab. 2012;5:17-20. google scholar
  • 63. Barzegar R, Safaei HR, Nemati Z, Ketabchi S, Talebi E. Green synthesis of silver nanoparticles using Zygophyllum qatarense Hadidi leaf extract and evaluation of their antifungal activities. J Appl Pharm Sci. 2018;8(3):168-171. google scholar
  • 64. Mnafgui K, Kchaou M, Hamden K, Derbali F, Slama S, Nasri M, et al. Inhibition of carbohydrate and lipid digestive enzymes activities by Zygophyllum album extracts: effect on blood and pancreas inflammatory biomarkers in alloxan-induced diabetic rats. J Physiol Biochem. 2014;70:93-106. google scholar
  • 65. Elbadry MA, Elaasser MM, Elshiekh HH, Sheriff MM. Eval-uation of antimicrobial, cytotoxic and larvicidal activity of Zygyllum coccineum North Sinai, Egypt. Med Aromat Plants. 2015;4(5):214. doi: 10.4172/2167-0412.1000214. google scholar
  • 66. Sharma V, Ramawat KG. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia. 2014;69:178-185. google scholar
  • 67. Emad MA, Gamal EG. Screening for antimicrobial activity of some plants from Saudi folk medicine. GJRMI. 2013;2(4):210-218. google scholar
  • 68. Zaki AA, Ali Z, El-Amier YA, Khan IA. A new lign from Zygophyllum aegyptium. Magn Reson Chem. 2016;54(9):771-773. google scholar
  • 69. He J, Lv X, Niu Y, et al. Four new compounds from Zygophyllum fabago L. Phytochem Lett. 2016;15:116-120. google scholar
  • 70. Ganbaatar C, Gruner M, Tunsag J, et al. Chemical constituents isolated from Zygophyllum melongena Bunge growing in Mon-golia. Nat Prod Res. 2016;30(14):1661-1664. google scholar
  • 71. Abdel-Hamid RA, Ross SA, Abilov ZA, Sultanova NA. Flavonoids and sterols from Zygophyllum fabago. Chem Nat Compd. 2016;52:318-319. google scholar
  • 72. Hassanean HA, Desoky EK. An acylated isorhamnetin glucoside from Zygophyllum simplex. Phytochemistry. 1992;31(9):3293-3294. google scholar
  • 73. Elgamal MHA, Shaker KH, Pöllmann K, Seifert K. Triter-penoid saponins from Zygophyllum species. Phytochemistry. 1995;40(4):1233-1236. google scholar
  • 74. Kaplan D, Maymon M, Agapakis CM, et al. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot. 2013;100(9):1713-1725. google scholar
  • 75. Belguidoum M, Dendougui H, Kendour Z, Belfar A, Bensaci C, Hadjadj M. Antioxidant activities, phenolic, flavonoid and tannin contents of endemic Zygophyllum cornutum Coss. from Algerian Sahara. Der Pharma Chemica. 2015;7(11):312-317. google scholar
  • 76. Boumaza A, Ferdi S, Sbayou H, Touhami FK, Belmahi MH, Benlatreche C. Therapeutic effect of Zygophyllum cornutum on metabolic disturbances, oxidative stress in heart tissue and his-tological changes in myocardium of streptozotocin-induced aia-betic rats. J Life Sci. 2016;10:192-197. google scholar
  • 77. Yaripour S, Delnavazi MR, Asgharian P, Valiyari S, Tavakoli S, Nazemiyeh H. A survey on phytochemical composition and biological activity of Zygophyllum fabago from Iran. Adv Pharm Bull. 2017;7(1):109. doi: 10.15171/apb.2017.014. google scholar
  • 78. AL-Qaissi E. Antimicrobial activity of petroleum ether extracts from leaves, seeds and roots of Zygophyllum fab L. towards some microorganisms. Ibn AL-Haitham J Pure Appl Sci. 2017;21(2):1-14. google scholar
  • 79. Khan SS, Khan A, Khan A, et al. Urease inhibitory activity of ur-sane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. Phytomedicine. 2014;21(3):379-382. google scholar
  • 80. Ksouri WM, Medini F, Mkadmini K, Legault J, Magne C, Ab-delly C, et al. LC-ESI-TOF-MS identification of bioactive sec-ondary metabol involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Zygophyllum album Desf. Food Chem. 2013;139(1-4):1073-1080. google scholar
  • 81. Kchaou M, Salah HB, Mhiri R, Allouche N. Anti-oxidant and anti-acetylcholinesterase activities of Zygophyllum album. Bangladesh J Pharmacol. 2016;11(1):5462. doi: 10.3329/bjp.v11i1.5462. google scholar
  • 82. Ghoul JE, Boughattas NA, Ben-Attia M. Antihyperglycemic and antihyperlipidemic activities of ethanolic extract of Zygophyllum album in streptozotocin-induced diabetic mice. Toxicol Ind Health. 2013;29(1):43-51. google scholar
  • 83. Mnafgui K, Hamden K, Ben Salah H, et al. Inhibitory activi-ties of Zygophyllum album: A natural weight-lowering plant on key enzymes in high-fat diet-fed rats. Evid Based Complement Alternat Med. 2012;620384. doi: oi:10.1155/2012/620384. google scholar
  • 84. MnafguiK, KchaouM, BenSalahH, HajjiR, KhabbabiG, Elfeki A, et al. Essential oil of Zygophyllum album inhibits keydigestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharm Biol. 2016;54(8):1326-1333. google scholar
  • 85. Kchaou M, Ben Salah H, Mnafgui K, Abdennabi R, Gharsallah N, Elfeki A, Allouche N. Chemical composition and activities of Zygophyllum album (L.) essential oil from Tunisia. J Essent Oil Res. 2018;30(6):401-408 google scholar
  • 86. El-Shora HM, El-Amier YA, Awad MH. Antioxidant activity of leaf extracts from Zygophyllum coccineum L. collected from desert and coastal habitats of Egypt.Int J Curr Microbiol App Sci. 2016;5(4):635-641. google scholar
  • 87. Gibbons S, Oriowo MA. Antihypertensive effect of an aque-ous extract Zygophyllum coccineum L. in rats. Phytother Res. 2001;15(5):452-455. google scholar
  • 88. Elbadry MA, Elaasser MM, Elshiekh HH, Sheriff MM. Evaluation of antimicrobial, cytotoxic and larvicidal activity of Zygophyllum coccineum North Sinai, Egypt. Med Aromat Plants. 2015;4(5):214. doi: 10.4172/2167-0412.1000214 google scholar
  • 89. Khafagi IK, Dewedar A. The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. J Ethnopharmacol. 2000;71(3):365-376. google scholar
  • 90. Guenzet A, Krouf D, Zennaki S, Berzou S. Zygophyllum gaetulum aqueous extract protects against di-abetic dyslipidemia and attenuates liver and kidney oxidative damage in streptozotocin induced-diabetic rats. Int J Pharm Sci Res. 2014;5(11):4709-4717. google scholar
  • 91. Jaouhari JT, Lazrek HB, Jana M. The hypoglycemic activity of Zygophyllum gaetulum extracts in alloxan-induced hyper-glycemic rats. J Ethnopharmacol. 2000;69(1):17-20. google scholar
  • 92. Ait El Cadi M, Makram S, Ansar M, Khabbal Y, Alaoui K, Faouzi MA, Taoufik J. Anti-inflammatory activity of aqueous and ethanolic extracts of Zygophy gaetulum. Ann Pharm Fr. 2011;70(2):113-116. google scholar
  • 93. Boudjelthia K, Hammadi K, Kouidri M, Djebli N. Evaluation of antidiabetic activity of two plants Berberis vulgaris and Zygo-phyllum geslini. J Phys Chem Biophys. 2017;7(1):1-7. google scholar
  • 94. Shehab NG, Abu-Gharbieh E, Bayoumi FA. Impact of pheno-lic composition on hepatoprotective and antioxidant effects of four desert medicinal plants. BMC Complement Altern Med. 2015;15:1-12. google scholar
  • 95. Yang XR, Zhang XF, Zhang XM, Gao HY. Analgesic and anti-inflammatory activities and mechanisms of 70% ethanol ex-tract of Zygophyllum macropodum in animals. Chin Herb Med. 2018;10(1):59-65. google scholar
  • 96. Barzegar R, Safaei HR, Nemati Z, Ketabchi S, Talebi E. Green synthesis of silver nanoparticles using Zygophyllum qatarense Hadidi leaf extract and evaluation of their antifungal activities. J Appl Pharm Sci. 2018;8(3):168-171. google scholar
  • 97. Abdallah HM, Esmat A. Antioxidant and anti-inflammatory ac-tivities of the major phenolics from Zygophyllum simplex L. J Ethnopharmacol. 2017;205:51-56. google scholar
  • 98. Kakrani HKN, Kakrani PH, Saluja AK. Evaluation of anal-gesic and anti-inflammatory activity of Ethyl acetate ex-tract of Zygophyllum simplex Linn. herb. Int J Res Phytochem Pharmacol. 2011;1(3):180-183. google scholar
  • 99. Abd El Kader MA, Mohamed NZ. Evaluation of protective and antioxidant activity of thyme (Thymus vulgaris) extract on paracetamol-induced toxicity in rats. Aust J Basic Appl Sci. 2012;6(7):467-474. google scholar
  • 100. Gharib FA, Mansour KH, Ahmed EZ, Galal TM. HM concen-tration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int J Phytoremediation. 2021;23(6):641-651. google scholar
  • 101. Stahl-Biskup E, Saez F, eds. Thyme: The Genus Thymus. CRC Press; 2002. google scholar
  • 102. Varga E, Bardocz A, Belak A, et al. Antimicrobial activity and chemical composition of thyme essential oils and the polypheno-lic content of different Thymus extracts. Farmacia. 2015;63(3). google scholar
  • 103. Aeschbach R, Löliger J, Scott BC, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol. 1994;32(1):31-36. google scholar
  • 104. Segvic Klaric M, Kosalec I, Mastelic J, Pieckova E, Pepeljnak S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol. 2007;44(1):36-42. google scholar
  • 105. Didry N, Dubreuil L, Pinkas M. Activity of thymol, carrol, cin-namaldehyde and eugenol on oral bacteria. Pharm Acta Helv. 1994;69(1):25-28. google scholar
  • 106. Suzuki Y, Furuta H. Stimulation of guinea pig neutrophil su-peroxide anion-producing system with thymol. Inflammation. 1988;12:575-584. google scholar
  • 107. Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Mara-bini L. Anti-inflammatory activity of thymol: İnhibitory effect on the release of human neutrophil elastase. Pharmacology. 2006;77(3):130-136. google scholar
  • 108. Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55(19):7879-7885. google scholar
  • 109. Horosova K, Bujnakova D, K( V. Effect of oregano essential oil on chicken lactobacilli and E. coli. Folia Microbiol(Praha). 2006;51(4):278-280. google scholar
  • 110. Alma MH, Mavi A, Yildirim A, Digrak M, Hirata T. Screening chemical composition and in vitro antioxidant and antimicro-bial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol Pharm Bull. 2003;26(12):1725-1729. google scholar
  • 111. Arcila-Lozano CC, Loarca-Pina G, Lecona-Uribe S, Gonzalez de Mej^a E. Oregano: Properties, composition and biological activity. Arch Latinoam Nutr. 2004;54(1):100-111. google scholar
  • 112. Patonay K, Korozs M, Muranyi Z, Konya EP. Polyphenols in northern Hungarian Mentha longifolia (L.) L. treated with ultra-sonic extraction for potential oenological uses. Turk J Agric For. 2017;41(3):208-217 google scholar
  • 113. Elansary HO, Szopa A, Kubica P, et al. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes. 2020;8(4):479. doi: 10.3390/pr8040479. google scholar
  • 114. Morsy AA, Ali Salama KH, Kamel HA, Fahim Mansour MM. Effect of HM on plasma membrane lipids and antioxidant en-zymes of Zygophyllum species. Eurasian J Biosci. 2012;6:1-8. doi: 10.5053/ejobios.2012.6.0.1. google scholar
  • 115. Smati D, Hammiche V, Azzouz M, Alamir B. Dosage des me-taux lourds dans les Zygophyllum reputes antidiabetiques. Ann Toxicol Anal. 2011;23(3):125-132. google scholar
  • 116. Saeed AZ, Zaki AH. Effect of discharged sewage water on ac-cumulation of HM in three plant species Zygophyllum album. Suaeda aegyptiaca and Cyprus rotundus. J Biosci Appl Res. 2017;3(4):181-190. google scholar
  • 117. Al-Qahtani KM. Assessment of HM accumulation in native plant species from soils contaminated in Riyadh City, Saudi Arabia. Life Sci J. 2012;9(2):384-392. google scholar
  • 118. Al-Sodany Y, El-Sheikh M, Baraka D, Shaltout K. Elements Accumulation and Nutritive Value of Phragmites Australis (Cav.) Trin. ex Steudel in Lake Burullus: A Ramsar site, Egypt. Catrina: The Int J Environ Sci. 2013;8(1):51-63. google scholar
  • 119. Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci. 1997;127(2):129-137. google scholar
  • 120. Sathiyamoorthy P, Van Damme P, Oven M, Golan-Goldhirsh A. HM in medicinal and plants of the Negev desert. J Environ Sci Health Part A. 1997;32(8):2111-2123. google scholar
  • 121. Lefevre I, Correal E, Lutts S. Cadmium tolerance and accu-mulation in the noxious weed Zygophyllum fabago. Botany. 2005;83(12):1655-1662. google scholar
  • 122. Hashem AR, Alfarhan AH. Minerals content of wild plants from Ashafa, Toroba, Wahat and Wehait (Saudi Arabia). JKS Unio Sci. 1993;5(2):101-106. google scholar
  • 123. Hashem. Mineral content of soil and wild plants from Saudi Arabia. 1996. google scholar
  • 124. Aloud SS, Alotaibi KD, Almutairi KF, Albarakah FN. As-sessment of HM accumulation in soil and native plants in an industrial environment, Saudi Arabia. Sustainability. 2022;14(10):5993. doi: 10.3390/su14105993. google scholar
  • 125. Abu-Darwish MS. Essential oils yield and HM content of some aromatic medicinal plants grown in Ash-Shoubak region, south of Jordan. Adv Environ Biol. 2009;3(3):296-301. google scholar
  • 126. Jaradat QM, Momani KA. Contamination of roadside soil, plants, and air with HM in Jordan, a comparative study. Turk J Chem. 1999;23(2):209-220. google scholar
  • 127. Al-Shayeb SM, Al-Rajhi MA, Seaward MRD. The date palm (Phoenix dactylifera L.) as a biomonitor of lead and other ele-ments in arid environments. Sci Total Environ. 1995;168(1):1-10. google scholar
  • 128. Ubavi M, Dozet D, Bogdanovi D. Te ki metali u zemlji tu. In: Kastori R, ed. Te ki metali i pesticidi u zemlji tu te ki metali ipesticidi uzemlji tima Vojvodine, Poljoprivredni fakultet Institut za ratarstvo i povrtar-stvo. Novi Sad. 1993:31-46. google scholar
  • 129. Meister A, Bernhardt G, Christoffel V, Buschauer A. Antispas-modic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Med. 1999;65(06):512-516. google scholar
  • 130. Özcan M. Mineral contents of some plants used as condiments in Turkey. Food Chem. 2004;84(3):437-440 google scholar
  • 131. Özcan MM, Ünver A, Uç T, Arslan D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 2008;106(3):1120-1127. google scholar
  • 132. Başgel S, Erdemoğlu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ. 2006;359(1-3):82-89. google scholar
  • 133. Nookabkaew S, Rangkadilok N, Satayavivad J. Determination of trace elements in herbal tea products and their infusions con-sumed in Thailand. J Agric Food Chem. 2006;54(18):6939-6944. google scholar
  • 134. alencic DP, Kevresan ZS, Popovic MT. Mineral composition of selected Sal species growing wild in the Vojvodina province. Zbornik Matice srpske za prirodne nauke. 2003; (105):25-33. google scholar
  • 135. Johnsson L. Selenium in Swedish soils. Factors influencing soil content and plant uptake. Ambio. 1992;21(4):292-296. google scholar
  • 136. Al-Khlaifat AL, Al-Khashman OA. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos Environ. 2007;41(39):8891-8897. google scholar
  • 137. Loranger S, Zayed J. Manganese and lead concentrations in am-bient air and emission rates from unleaded and leaded gasoline between 1981 and 1992 in Canada: a comparative study. Atmos Environ. 1994;28(9):1645-1651. google scholar
  • 138. Palit S, Sharma A, Talukder G. Effects of cobalt on plants. Bot Rev. 1994;60(2):149-181. google scholar
  • 139. Hlihor RM, Ros, ca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal plant growth in HM contaminated soils: Responses to metal stress and ınduced risks to human health. Toxics. 2022;10(9):499. doi: 10.3390/toxics10090499. google scholar
  • 140. Thabit TM, Elgeddawy DI, Shokr SA. Determination of some common HM and radionuclides in some medicinal herbs using ICP-MS/MS. J AOAC Int. 2020;103(5):1282-1287 google scholar
  • 141. Bennouna MA, Arjouni Y, Belaqziz R, Romane A. Assess-ment of some oligo-elements and HM in different parts of the Thymus broussonettii growing in Morocco. J Mater Environ Sci. 2014;5(1):293-297. google scholar
  • 142. Ciftci H, Caliskan CE, Cakar AE, Ramadan MS, Olcucu A. Determination of mineral and trace element in some medic-inal plants by spectroscopic method. Sigma J Eng Nat Sci. 2020;38(4):2133-2144. google scholar
  • 143. Alkherraz AM, Amer AM, Mlitan AM. Determination of some HM in four medicinal plants.World Acad Sci Eng Technol. 2013;78:1568-1570. google scholar
  • 144. Ravanbakhsh M, Mahernia S, Bagherzadeh K, Dadrass OG, Amanlou M. Determination of HM (Cd, Pb, Cu) in some herbal drops by Polarography. Iran J Pharmacol Ther. 2017;1:4-7. google scholar
  • 145. Jezler CN, Mangabeira PAO, Almeida AAFD, Jesus RMD, Oliveira RAD, Silva DDC, Costa LCDB. Pb and Cd on growth, leaf ultrastructure and essential oil yield mint (Mentha arvensis L.). Ciencia Rural. 2015;45:392-398. google scholar
  • 146. Rubio C, Lucas JRD, Gutierrez AJ, Glez-Weller D, Marrero BP, Caballero JM, Hardisson A. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry. J Pharm Biomed Anal. 2012;71:11-17. google scholar
  • 147. Yener İ. Trace element analysis in some plants species by induc-tively coupled plasma optical emission spectrometry (ICP-OES). J Inst Sci Technol. 2019;9(3):1492-1502. google scholar
  • 148. Kocevar Glavac N, Djogo S, Razic S, Kreft S, Veber M. Accu-mulation of HM from soil in medicinal plants. Arch Hig Rada Toksikol. 2017;68(3):236-244. google scholar
  • 149. Farrag HF, Al-Sodany YM, Otiby FG. Phoremediation and accu-mulation characteristics of HM by some plants in Wadi Alargy-Wetland, Taif-KSA. World Appl Sci J. 2013;28(5):644-653. google scholar
  • 150. Cardwell AJ, Hawker DW, Greenway M. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere. 2002;48(7):653-663. google scholar
  • 151. Deng H, Ye ZH, Wong MH. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut. 2004;132(1):29-40. google scholar
  • 152. Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Sakurai Y. Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various met-als in Acorus gramineus and Cyperus alternifolius. Ecol Eng. 2012;39:63-70. google scholar
  • 153. Shahnaz M, Khan B, Sardar Khan JI, Mian IA, Muhammad MW. Contamination and bioaccumulation of HM in medicinal plants of District Dir Upper, Khyber Pakhtunkhwa, Pakistan. Pak J Bot. 2021;53(6):2179-2186. google scholar
  • 154. Kastratc V, Blagojevic N, Vukasinovic-Pesic V. Bioaccu-mulation and translocation of some transition metals in Mentha spicata and Mentha longifolia. Pol J Environ Stud. 2022;31(5):4065-4073. google scholar

Impact of Toxic Heavy Metals and Their Concentration in Zygophyllum Species, Mentha longifolia, and Thymus vulgaris Traditional Medicinal Plants Consumed in Setif-Algeria

Year 2023, Volume: 82 Issue: 1, 109 - 123, 26.06.2023
https://doi.org/10.26650/EurJBiol.2023.1163155

Abstract

Heavy metals (HM) are essential for living cells to maintain their equilibrium. This survey focuses on the problem of medicinal plant contamination due to environmental pollution produced by many different industrial activities and the atmospheric deposition of some toxic compounds. This analysis is important since plants can easily absorb organic and inorganic compounds from all environmental compartments (water, soil, air), which can enter and be transferred in the trophic chain, up to humans. Medicinal plants are relevant for a study about their interactions with different contaminants, in particular those inorganic persistent as HM, because they are used in the entire world for their beneficial properties and represent a significant part of traditional medicine. This review was undertaken to give readers a comprehensive understanding of chemical contaminants, such as HM, which are significant and frequent pollutants of herbal medicines and pose considerable health concerns to the human body. The information was obtained from several sources to figure out the levels of HM in three traditional medicinal plants used in Algeria’s Setif region. The gathered data demonstrated that Zygophyllum species, Mentha longifolia, and Thymus vulgaris accumulate higher quantities of HM when cultivated in polluted soil as opposed to unpolluted soil. The data’s conclusions imply that these plants contained different hazardous concentrations of HM over the World Health Organization’s allowable limits. Rational herb consumption is necessary for a healthy diet. However, the exact mechanisms through which this HM affect human health are not well understood.

References

  • 1. Munir N, Jahangeer M, Bouyahya A, et al. Heavy metal con-tamination of natural foods is a serious health issue: a review. Sustainability. 2022;14(1):161. doi:10.3390/su14010161. google scholar
  • 2. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mer-cury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;227. doi:10.3389/fphar.2021.764227. google scholar
  • 3. Mandal S. Essential and heavy metal content in wild and culti-vated Mentha species from Bosnia and Herzegovina. Kemija u industriji. 2021;70(7-8):393. doi:10.15255/KUI.2021.093. google scholar
  • 4. Aouacheri O, Saka S. Cytoprotective effects of Zingiber offici-nale against the oxidative stress induced by lead acetate toxicity in rats. Phytotherapie. 2021;19(5-6):297-305. google scholar
  • 5. Dghaim R, Al Khatib S, Rasool H, Ali Khan M. Determination of heavy metal concentration in traditional herbs commonly con-sumed in the United Arab Emirates. J Environ Public Health. 2015;2015. doi:10.1155/2015/974256. google scholar
  • 6. Islam EU, Yang XE, He ZL, Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B. 2007;8(1):1-13. google scholar
  • 7. Asiminicesei DM, Vasilachi IC, Gavrilescu MARIA. Heavy metal contamination of medicinal plants and potential impli-cations on human health. Revista de Chimie. 2020;71(7):16-36. google scholar
  • 8. Zaynab M, Al-Yahyai R, Ameen A, et al. Health and en-vironmental effects of heavy metals. J King Saud Univ Sci. 2022;34(1):101653. doi: 10.1016/j.jksus.2021.101653. google scholar
  • 9. Kabata-Pandias A, Kabata-Pandias A, Pendias H. Trace elements in soils and plants. CRC Press, Incorporated; 1984. google scholar
  • 10. Salgarello M, Visconti G, Barone-Adesi L. Interlocking circum-areolar suture with undyed polyamide thread: a personal experi-ence. Aesthetic Plast Surg. 2013;37:1061-1062. google scholar
  • 11. Wedepohl KH. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59(7):1217-1232. google scholar
  • 12. Ball JW, Izbicki JA. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem. 2004;19(7):1123-1135. google scholar
  • 13. Viers J, Oliva P, Nonell A, Gelabert A, Sonke JE, Freydier R, Dupre B. Evidence of Zn isotopic fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol. 2007;239(1-2):124-137. google scholar
  • 14. Hüffmeyer N, Klasmeier J, Matthies M. Geo-referenced model-ing of zinc concentrations in the Ruhr river basin (Germany) us-ingthemodelGREAT-ER. Sci Total Environ. 2009;407(7):2296-2305. google scholar
  • 15. Ayandiran TA, Fawole OO, Adewoye SO, Ogundiran MA. Bio-concentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and de-tergent effluent. J Cell Anim Biol. 2009;3(8):113-118. google scholar
  • 16. Sonone SS, Jadhav S, Sankhla MS, Kumar R. Water contami-nation by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett Appl NanoBioScience. 2020;10(2):2148-2166. google scholar
  • 17. Means B. Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002). Environ-mental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response; 1989. google scholar
  • 18. Wu B, Zhao DY, Jia HY, Zhang Y, Zhang XX, Cheng SP. Prelim-inary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull Environ Contam Toxicol. 2009;82:405-409. google scholar
  • 19. Olayinka-Olagunju JO, Dosumu AA, Olatunji-Ojo AM. Bioac-cumulation of heavy metals in pelagic and benthic fishes of Ogbese River, Ondo State, South-Western Nigeria. Water Air Soil Pollut. 2021;232:1-19. google scholar
  • 20. Rouidi S, Hadef A, Dziri H. The state of metallic contami-nation of Saf-Saf river sediments (Skikda-Algeria). Pollution. 2022;8(3):717-728. google scholar
  • 21. Asiminicesei DM, Vasilachi IC, Gavrilescu MARIA. Heavy metal contamination of medicinal plants and potential impli-cations on human health. Revista de Chimie. 2020;71(7):16-36. google scholar
  • 22. Amari T, Ghnaya T, Abdelly C. Nickel, cadmium and lead phy-totoxicity and potential of halophytic plants in heavy metal ex-traction. SAfrJBot. 2017;111:99-110. google scholar
  • 23. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):65. doi: 10.3390/toxics6040065. google scholar
  • 24. Korfali SI, Hawi T, Mroueh M. Evaluation of heavy metal con-tent in dietary supplements in Lebanon. Chem Cent J. 2013;7:1-13. google scholar
  • 25. Korfali SI, Mroueh M, Al-Zein M, Salem R. Metal concen-tration in commonly used medicinal herbs and infusion by Lebanese population: health impact. J Food Res. 2013;2(2):70. doi: 10.5539/jfr.v2n2p70. google scholar
  • 26. Mahan L, Escott-Stump S, Raymond L. Krause’s Food and Nu-trition Care Process, edited by: Y. Alexopoulos, Saunders, St. Louis, Mo, USA, 2016. google scholar
  • 27. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian J Pharmacol. 2011;43(3):246. doi:10.4103/0253-7613.81505. google scholar
  • 28. Jolliffe DM, Budd AJ, Gwilt DJ. Massive acute arsenic poison-ing. Anaesthesia. 1991;46(4):288-290. google scholar
  • 29. Luo JH, Qiu ZQ, Zhang L, Shu WQ. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett. 2012;211(1):39-44. google scholar
  • 30. Shen S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev. 2013;113(10):7769-7792. google scholar
  • 31. Shaban NS, Abdou KA, Hassan NEHY. Impact of toxic heavy metals and pesticide residues in herbal products. Beni-suef Univ J Basic Appl Sci. 2016;5(1):102-106. google scholar
  • 32. Deng Y, Wang M, Tian T, et al. The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort stud-ies. Front Oncol. 2019;9:24. doi: 10.3389/fonc.2019.00024. google scholar
  • 33. Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):118-1197. google scholar
  • 34. Cheng JP, Wang WH, Jia JP, Zheng M, Shi W, Lin XY. Expres-sion of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation. Biomed Environ Sci. 2006;19(1):67-72. google scholar
  • 35. Bottino C, Vazquez M, Devesa V, Laforenza U. Impaired aqua-porins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol. 2016;36(1):113-120. google scholar
  • 36. Chen R, Xu Y, Xu C et al. Associations between mercury ex-posure and the risk of nonal fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res. 2019;26:31384-31391. google scholar
  • 37. Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol Environ Saf. 2020;189:109987. google scholar
  • 38. Schutte R, Nawrot TS, Richart T, et al. Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect. 2008;116(6):777-783. google scholar
  • 39. PanC, LiuHD, GongZ, YuX, HouXB, XieDD, etal. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep. 2013;3:2333. doi: 10.1038/s02333. google scholar
  • 40. Pi H, Xu S, Reiter RJ, et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037-1051. google scholar
  • 41. Fay MJ, Alt LA, Ryba D, et al. Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics. 2018;6(1):16. doi: 10.3390/toxics6010016. google scholar
  • 42. Wang Y, Mandal AK, Son YO, et al. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sul-foraphane. Toxicol Appl Pharmacol. 2018;353:23-30. google scholar
  • 43. Struzynska L, D^browska-Bouta B, Koza K, Sulkowski G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci. 2007;95(1):156-162. google scholar
  • 44. Dongre NN, Suryakar AN, Patil AJ, Ambekar JG, Rathi DB. Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parame-ters in automobile workers of north Karnataka (India). Indian J Clin Biochem. 2011;26:400-406. google scholar
  • 45. Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395. doi: 10.4103/0253-7613.115015. google scholar
  • 46. Boskabady MH, Tabatabai SA, Farkhondeh T. Inhaled lead af-fects lung pathology and inflammation in sensitized and control guinea pigs. Environ Toxicol. 2016;31(4):452-460. google scholar
  • 47. Dzomba P, Chayamiti T, Togarepi E. Heavy metal content of selected raw medicinal plant materials: implication for patient health. Bull. Environ. Pharmacol Life Sci. 2012;10(1):28- 33. google scholar
  • 48. Begum HA, Hamayun M, Zaman K, Shinwari ZK, Hussain A. Heavy metal analysis in frequently consumable medicinal Plants of khyber paktunkhwa, Pakistan. Pak J Bot. 2017;49(3):1155-1160. google scholar
  • 49. Gupta DK, Tiwari S, Razafindrabe BHN, Chatterjee S. Arsenic contamination from historical aspects to the present. In: Arsenic Contamination in the Environment: The Issues and Solutions. Elsevier; 2017:1-12. google scholar
  • 50. Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res. 2014;24(4):378-399. google scholar
  • 51. Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395. doi: 10.4103/0253-7613.115003. google scholar
  • 52. Yao H, Guo L, Jiang BH, Luo J, Shi X. Oxidative stress and chromium (VI) carcinogenesis. J En Pathol Toxicol Oncol. 2008;27(2). doi: 10.1615/JEnvironPatholToxicolOn-col.v27.i2.10. google scholar
  • 53. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735. doi: 10.3390/biom9110735. google scholar
  • 54. Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P. Toxic effects of on the cardiovascular and central nervous systems. Biomed Res Int. 2012;949048. doi: 10.1155/2012949048. google scholar
  • 55. Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov. 2017;16(5):351-367. google scholar
  • 56. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cad-mium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):209-214. google scholar
  • 57. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of HM in the environment. Environ Sci Pollut Res. 2016;23:8244-8259. google scholar
  • 58. Hammoda HM, Ghazy NM, Harraz FM, Radwan MM, ElSohly MA, Abdallah II. Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry. 2013;92:153-159. google scholar
  • 59. Shawky E, Gabr N, El-gindi M, Mekky R. A comprehensive review on genus Zygophyllum. J Adv Pharm Res. 2019;3(1):1-16. google scholar
  • 60. Amini-Chermahini F, Ebrahimi M, Farajpour M, Taj Bordbar Z. Karyotype analysis and new chromosome number reports in Zygophyllum species. Caryologia. 2014;67(4):321-324. google scholar
  • 61. Bourgou S, Megdiche W, Ksouri R. The halophytic genus Zygo-phyllum and Nitraria from North Africa: A phytochemical and pharmacological overview. In: Medicinal and Aromatic Plants of the World-Africa Volume 3. Springer. 2017;345-356. google scholar
  • 62. Medjdoub H, Tabti B. Antidiabetic effect of the aerial part ethanolic extracts of Zygophyllum geslini Coss. in streptozotocin induced-diabetic rats. Met Funct Res Diab. 2012;5:17-20. google scholar
  • 63. Barzegar R, Safaei HR, Nemati Z, Ketabchi S, Talebi E. Green synthesis of silver nanoparticles using Zygophyllum qatarense Hadidi leaf extract and evaluation of their antifungal activities. J Appl Pharm Sci. 2018;8(3):168-171. google scholar
  • 64. Mnafgui K, Kchaou M, Hamden K, Derbali F, Slama S, Nasri M, et al. Inhibition of carbohydrate and lipid digestive enzymes activities by Zygophyllum album extracts: effect on blood and pancreas inflammatory biomarkers in alloxan-induced diabetic rats. J Physiol Biochem. 2014;70:93-106. google scholar
  • 65. Elbadry MA, Elaasser MM, Elshiekh HH, Sheriff MM. Eval-uation of antimicrobial, cytotoxic and larvicidal activity of Zygyllum coccineum North Sinai, Egypt. Med Aromat Plants. 2015;4(5):214. doi: 10.4172/2167-0412.1000214. google scholar
  • 66. Sharma V, Ramawat KG. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia. 2014;69:178-185. google scholar
  • 67. Emad MA, Gamal EG. Screening for antimicrobial activity of some plants from Saudi folk medicine. GJRMI. 2013;2(4):210-218. google scholar
  • 68. Zaki AA, Ali Z, El-Amier YA, Khan IA. A new lign from Zygophyllum aegyptium. Magn Reson Chem. 2016;54(9):771-773. google scholar
  • 69. He J, Lv X, Niu Y, et al. Four new compounds from Zygophyllum fabago L. Phytochem Lett. 2016;15:116-120. google scholar
  • 70. Ganbaatar C, Gruner M, Tunsag J, et al. Chemical constituents isolated from Zygophyllum melongena Bunge growing in Mon-golia. Nat Prod Res. 2016;30(14):1661-1664. google scholar
  • 71. Abdel-Hamid RA, Ross SA, Abilov ZA, Sultanova NA. Flavonoids and sterols from Zygophyllum fabago. Chem Nat Compd. 2016;52:318-319. google scholar
  • 72. Hassanean HA, Desoky EK. An acylated isorhamnetin glucoside from Zygophyllum simplex. Phytochemistry. 1992;31(9):3293-3294. google scholar
  • 73. Elgamal MHA, Shaker KH, Pöllmann K, Seifert K. Triter-penoid saponins from Zygophyllum species. Phytochemistry. 1995;40(4):1233-1236. google scholar
  • 74. Kaplan D, Maymon M, Agapakis CM, et al. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot. 2013;100(9):1713-1725. google scholar
  • 75. Belguidoum M, Dendougui H, Kendour Z, Belfar A, Bensaci C, Hadjadj M. Antioxidant activities, phenolic, flavonoid and tannin contents of endemic Zygophyllum cornutum Coss. from Algerian Sahara. Der Pharma Chemica. 2015;7(11):312-317. google scholar
  • 76. Boumaza A, Ferdi S, Sbayou H, Touhami FK, Belmahi MH, Benlatreche C. Therapeutic effect of Zygophyllum cornutum on metabolic disturbances, oxidative stress in heart tissue and his-tological changes in myocardium of streptozotocin-induced aia-betic rats. J Life Sci. 2016;10:192-197. google scholar
  • 77. Yaripour S, Delnavazi MR, Asgharian P, Valiyari S, Tavakoli S, Nazemiyeh H. A survey on phytochemical composition and biological activity of Zygophyllum fabago from Iran. Adv Pharm Bull. 2017;7(1):109. doi: 10.15171/apb.2017.014. google scholar
  • 78. AL-Qaissi E. Antimicrobial activity of petroleum ether extracts from leaves, seeds and roots of Zygophyllum fab L. towards some microorganisms. Ibn AL-Haitham J Pure Appl Sci. 2017;21(2):1-14. google scholar
  • 79. Khan SS, Khan A, Khan A, et al. Urease inhibitory activity of ur-sane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. Phytomedicine. 2014;21(3):379-382. google scholar
  • 80. Ksouri WM, Medini F, Mkadmini K, Legault J, Magne C, Ab-delly C, et al. LC-ESI-TOF-MS identification of bioactive sec-ondary metabol involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Zygophyllum album Desf. Food Chem. 2013;139(1-4):1073-1080. google scholar
  • 81. Kchaou M, Salah HB, Mhiri R, Allouche N. Anti-oxidant and anti-acetylcholinesterase activities of Zygophyllum album. Bangladesh J Pharmacol. 2016;11(1):5462. doi: 10.3329/bjp.v11i1.5462. google scholar
  • 82. Ghoul JE, Boughattas NA, Ben-Attia M. Antihyperglycemic and antihyperlipidemic activities of ethanolic extract of Zygophyllum album in streptozotocin-induced diabetic mice. Toxicol Ind Health. 2013;29(1):43-51. google scholar
  • 83. Mnafgui K, Hamden K, Ben Salah H, et al. Inhibitory activi-ties of Zygophyllum album: A natural weight-lowering plant on key enzymes in high-fat diet-fed rats. Evid Based Complement Alternat Med. 2012;620384. doi: oi:10.1155/2012/620384. google scholar
  • 84. MnafguiK, KchaouM, BenSalahH, HajjiR, KhabbabiG, Elfeki A, et al. Essential oil of Zygophyllum album inhibits keydigestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharm Biol. 2016;54(8):1326-1333. google scholar
  • 85. Kchaou M, Ben Salah H, Mnafgui K, Abdennabi R, Gharsallah N, Elfeki A, Allouche N. Chemical composition and activities of Zygophyllum album (L.) essential oil from Tunisia. J Essent Oil Res. 2018;30(6):401-408 google scholar
  • 86. El-Shora HM, El-Amier YA, Awad MH. Antioxidant activity of leaf extracts from Zygophyllum coccineum L. collected from desert and coastal habitats of Egypt.Int J Curr Microbiol App Sci. 2016;5(4):635-641. google scholar
  • 87. Gibbons S, Oriowo MA. Antihypertensive effect of an aque-ous extract Zygophyllum coccineum L. in rats. Phytother Res. 2001;15(5):452-455. google scholar
  • 88. Elbadry MA, Elaasser MM, Elshiekh HH, Sheriff MM. Evaluation of antimicrobial, cytotoxic and larvicidal activity of Zygophyllum coccineum North Sinai, Egypt. Med Aromat Plants. 2015;4(5):214. doi: 10.4172/2167-0412.1000214 google scholar
  • 89. Khafagi IK, Dewedar A. The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. J Ethnopharmacol. 2000;71(3):365-376. google scholar
  • 90. Guenzet A, Krouf D, Zennaki S, Berzou S. Zygophyllum gaetulum aqueous extract protects against di-abetic dyslipidemia and attenuates liver and kidney oxidative damage in streptozotocin induced-diabetic rats. Int J Pharm Sci Res. 2014;5(11):4709-4717. google scholar
  • 91. Jaouhari JT, Lazrek HB, Jana M. The hypoglycemic activity of Zygophyllum gaetulum extracts in alloxan-induced hyper-glycemic rats. J Ethnopharmacol. 2000;69(1):17-20. google scholar
  • 92. Ait El Cadi M, Makram S, Ansar M, Khabbal Y, Alaoui K, Faouzi MA, Taoufik J. Anti-inflammatory activity of aqueous and ethanolic extracts of Zygophy gaetulum. Ann Pharm Fr. 2011;70(2):113-116. google scholar
  • 93. Boudjelthia K, Hammadi K, Kouidri M, Djebli N. Evaluation of antidiabetic activity of two plants Berberis vulgaris and Zygo-phyllum geslini. J Phys Chem Biophys. 2017;7(1):1-7. google scholar
  • 94. Shehab NG, Abu-Gharbieh E, Bayoumi FA. Impact of pheno-lic composition on hepatoprotective and antioxidant effects of four desert medicinal plants. BMC Complement Altern Med. 2015;15:1-12. google scholar
  • 95. Yang XR, Zhang XF, Zhang XM, Gao HY. Analgesic and anti-inflammatory activities and mechanisms of 70% ethanol ex-tract of Zygophyllum macropodum in animals. Chin Herb Med. 2018;10(1):59-65. google scholar
  • 96. Barzegar R, Safaei HR, Nemati Z, Ketabchi S, Talebi E. Green synthesis of silver nanoparticles using Zygophyllum qatarense Hadidi leaf extract and evaluation of their antifungal activities. J Appl Pharm Sci. 2018;8(3):168-171. google scholar
  • 97. Abdallah HM, Esmat A. Antioxidant and anti-inflammatory ac-tivities of the major phenolics from Zygophyllum simplex L. J Ethnopharmacol. 2017;205:51-56. google scholar
  • 98. Kakrani HKN, Kakrani PH, Saluja AK. Evaluation of anal-gesic and anti-inflammatory activity of Ethyl acetate ex-tract of Zygophyllum simplex Linn. herb. Int J Res Phytochem Pharmacol. 2011;1(3):180-183. google scholar
  • 99. Abd El Kader MA, Mohamed NZ. Evaluation of protective and antioxidant activity of thyme (Thymus vulgaris) extract on paracetamol-induced toxicity in rats. Aust J Basic Appl Sci. 2012;6(7):467-474. google scholar
  • 100. Gharib FA, Mansour KH, Ahmed EZ, Galal TM. HM concen-tration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int J Phytoremediation. 2021;23(6):641-651. google scholar
  • 101. Stahl-Biskup E, Saez F, eds. Thyme: The Genus Thymus. CRC Press; 2002. google scholar
  • 102. Varga E, Bardocz A, Belak A, et al. Antimicrobial activity and chemical composition of thyme essential oils and the polypheno-lic content of different Thymus extracts. Farmacia. 2015;63(3). google scholar
  • 103. Aeschbach R, Löliger J, Scott BC, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol. 1994;32(1):31-36. google scholar
  • 104. Segvic Klaric M, Kosalec I, Mastelic J, Pieckova E, Pepeljnak S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol. 2007;44(1):36-42. google scholar
  • 105. Didry N, Dubreuil L, Pinkas M. Activity of thymol, carrol, cin-namaldehyde and eugenol on oral bacteria. Pharm Acta Helv. 1994;69(1):25-28. google scholar
  • 106. Suzuki Y, Furuta H. Stimulation of guinea pig neutrophil su-peroxide anion-producing system with thymol. Inflammation. 1988;12:575-584. google scholar
  • 107. Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Mara-bini L. Anti-inflammatory activity of thymol: İnhibitory effect on the release of human neutrophil elastase. Pharmacology. 2006;77(3):130-136. google scholar
  • 108. Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55(19):7879-7885. google scholar
  • 109. Horosova K, Bujnakova D, K( V. Effect of oregano essential oil on chicken lactobacilli and E. coli. Folia Microbiol(Praha). 2006;51(4):278-280. google scholar
  • 110. Alma MH, Mavi A, Yildirim A, Digrak M, Hirata T. Screening chemical composition and in vitro antioxidant and antimicro-bial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol Pharm Bull. 2003;26(12):1725-1729. google scholar
  • 111. Arcila-Lozano CC, Loarca-Pina G, Lecona-Uribe S, Gonzalez de Mej^a E. Oregano: Properties, composition and biological activity. Arch Latinoam Nutr. 2004;54(1):100-111. google scholar
  • 112. Patonay K, Korozs M, Muranyi Z, Konya EP. Polyphenols in northern Hungarian Mentha longifolia (L.) L. treated with ultra-sonic extraction for potential oenological uses. Turk J Agric For. 2017;41(3):208-217 google scholar
  • 113. Elansary HO, Szopa A, Kubica P, et al. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes. 2020;8(4):479. doi: 10.3390/pr8040479. google scholar
  • 114. Morsy AA, Ali Salama KH, Kamel HA, Fahim Mansour MM. Effect of HM on plasma membrane lipids and antioxidant en-zymes of Zygophyllum species. Eurasian J Biosci. 2012;6:1-8. doi: 10.5053/ejobios.2012.6.0.1. google scholar
  • 115. Smati D, Hammiche V, Azzouz M, Alamir B. Dosage des me-taux lourds dans les Zygophyllum reputes antidiabetiques. Ann Toxicol Anal. 2011;23(3):125-132. google scholar
  • 116. Saeed AZ, Zaki AH. Effect of discharged sewage water on ac-cumulation of HM in three plant species Zygophyllum album. Suaeda aegyptiaca and Cyprus rotundus. J Biosci Appl Res. 2017;3(4):181-190. google scholar
  • 117. Al-Qahtani KM. Assessment of HM accumulation in native plant species from soils contaminated in Riyadh City, Saudi Arabia. Life Sci J. 2012;9(2):384-392. google scholar
  • 118. Al-Sodany Y, El-Sheikh M, Baraka D, Shaltout K. Elements Accumulation and Nutritive Value of Phragmites Australis (Cav.) Trin. ex Steudel in Lake Burullus: A Ramsar site, Egypt. Catrina: The Int J Environ Sci. 2013;8(1):51-63. google scholar
  • 119. Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci. 1997;127(2):129-137. google scholar
  • 120. Sathiyamoorthy P, Van Damme P, Oven M, Golan-Goldhirsh A. HM in medicinal and plants of the Negev desert. J Environ Sci Health Part A. 1997;32(8):2111-2123. google scholar
  • 121. Lefevre I, Correal E, Lutts S. Cadmium tolerance and accu-mulation in the noxious weed Zygophyllum fabago. Botany. 2005;83(12):1655-1662. google scholar
  • 122. Hashem AR, Alfarhan AH. Minerals content of wild plants from Ashafa, Toroba, Wahat and Wehait (Saudi Arabia). JKS Unio Sci. 1993;5(2):101-106. google scholar
  • 123. Hashem. Mineral content of soil and wild plants from Saudi Arabia. 1996. google scholar
  • 124. Aloud SS, Alotaibi KD, Almutairi KF, Albarakah FN. As-sessment of HM accumulation in soil and native plants in an industrial environment, Saudi Arabia. Sustainability. 2022;14(10):5993. doi: 10.3390/su14105993. google scholar
  • 125. Abu-Darwish MS. Essential oils yield and HM content of some aromatic medicinal plants grown in Ash-Shoubak region, south of Jordan. Adv Environ Biol. 2009;3(3):296-301. google scholar
  • 126. Jaradat QM, Momani KA. Contamination of roadside soil, plants, and air with HM in Jordan, a comparative study. Turk J Chem. 1999;23(2):209-220. google scholar
  • 127. Al-Shayeb SM, Al-Rajhi MA, Seaward MRD. The date palm (Phoenix dactylifera L.) as a biomonitor of lead and other ele-ments in arid environments. Sci Total Environ. 1995;168(1):1-10. google scholar
  • 128. Ubavi M, Dozet D, Bogdanovi D. Te ki metali u zemlji tu. In: Kastori R, ed. Te ki metali i pesticidi u zemlji tu te ki metali ipesticidi uzemlji tima Vojvodine, Poljoprivredni fakultet Institut za ratarstvo i povrtar-stvo. Novi Sad. 1993:31-46. google scholar
  • 129. Meister A, Bernhardt G, Christoffel V, Buschauer A. Antispas-modic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Med. 1999;65(06):512-516. google scholar
  • 130. Özcan M. Mineral contents of some plants used as condiments in Turkey. Food Chem. 2004;84(3):437-440 google scholar
  • 131. Özcan MM, Ünver A, Uç T, Arslan D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 2008;106(3):1120-1127. google scholar
  • 132. Başgel S, Erdemoğlu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ. 2006;359(1-3):82-89. google scholar
  • 133. Nookabkaew S, Rangkadilok N, Satayavivad J. Determination of trace elements in herbal tea products and their infusions con-sumed in Thailand. J Agric Food Chem. 2006;54(18):6939-6944. google scholar
  • 134. alencic DP, Kevresan ZS, Popovic MT. Mineral composition of selected Sal species growing wild in the Vojvodina province. Zbornik Matice srpske za prirodne nauke. 2003; (105):25-33. google scholar
  • 135. Johnsson L. Selenium in Swedish soils. Factors influencing soil content and plant uptake. Ambio. 1992;21(4):292-296. google scholar
  • 136. Al-Khlaifat AL, Al-Khashman OA. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos Environ. 2007;41(39):8891-8897. google scholar
  • 137. Loranger S, Zayed J. Manganese and lead concentrations in am-bient air and emission rates from unleaded and leaded gasoline between 1981 and 1992 in Canada: a comparative study. Atmos Environ. 1994;28(9):1645-1651. google scholar
  • 138. Palit S, Sharma A, Talukder G. Effects of cobalt on plants. Bot Rev. 1994;60(2):149-181. google scholar
  • 139. Hlihor RM, Ros, ca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal plant growth in HM contaminated soils: Responses to metal stress and ınduced risks to human health. Toxics. 2022;10(9):499. doi: 10.3390/toxics10090499. google scholar
  • 140. Thabit TM, Elgeddawy DI, Shokr SA. Determination of some common HM and radionuclides in some medicinal herbs using ICP-MS/MS. J AOAC Int. 2020;103(5):1282-1287 google scholar
  • 141. Bennouna MA, Arjouni Y, Belaqziz R, Romane A. Assess-ment of some oligo-elements and HM in different parts of the Thymus broussonettii growing in Morocco. J Mater Environ Sci. 2014;5(1):293-297. google scholar
  • 142. Ciftci H, Caliskan CE, Cakar AE, Ramadan MS, Olcucu A. Determination of mineral and trace element in some medic-inal plants by spectroscopic method. Sigma J Eng Nat Sci. 2020;38(4):2133-2144. google scholar
  • 143. Alkherraz AM, Amer AM, Mlitan AM. Determination of some HM in four medicinal plants.World Acad Sci Eng Technol. 2013;78:1568-1570. google scholar
  • 144. Ravanbakhsh M, Mahernia S, Bagherzadeh K, Dadrass OG, Amanlou M. Determination of HM (Cd, Pb, Cu) in some herbal drops by Polarography. Iran J Pharmacol Ther. 2017;1:4-7. google scholar
  • 145. Jezler CN, Mangabeira PAO, Almeida AAFD, Jesus RMD, Oliveira RAD, Silva DDC, Costa LCDB. Pb and Cd on growth, leaf ultrastructure and essential oil yield mint (Mentha arvensis L.). Ciencia Rural. 2015;45:392-398. google scholar
  • 146. Rubio C, Lucas JRD, Gutierrez AJ, Glez-Weller D, Marrero BP, Caballero JM, Hardisson A. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry. J Pharm Biomed Anal. 2012;71:11-17. google scholar
  • 147. Yener İ. Trace element analysis in some plants species by induc-tively coupled plasma optical emission spectrometry (ICP-OES). J Inst Sci Technol. 2019;9(3):1492-1502. google scholar
  • 148. Kocevar Glavac N, Djogo S, Razic S, Kreft S, Veber M. Accu-mulation of HM from soil in medicinal plants. Arch Hig Rada Toksikol. 2017;68(3):236-244. google scholar
  • 149. Farrag HF, Al-Sodany YM, Otiby FG. Phoremediation and accu-mulation characteristics of HM by some plants in Wadi Alargy-Wetland, Taif-KSA. World Appl Sci J. 2013;28(5):644-653. google scholar
  • 150. Cardwell AJ, Hawker DW, Greenway M. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere. 2002;48(7):653-663. google scholar
  • 151. Deng H, Ye ZH, Wong MH. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut. 2004;132(1):29-40. google scholar
  • 152. Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Sakurai Y. Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various met-als in Acorus gramineus and Cyperus alternifolius. Ecol Eng. 2012;39:63-70. google scholar
  • 153. Shahnaz M, Khan B, Sardar Khan JI, Mian IA, Muhammad MW. Contamination and bioaccumulation of HM in medicinal plants of District Dir Upper, Khyber Pakhtunkhwa, Pakistan. Pak J Bot. 2021;53(6):2179-2186. google scholar
  • 154. Kastratc V, Blagojevic N, Vukasinovic-Pesic V. Bioaccu-mulation and translocation of some transition metals in Mentha spicata and Mentha longifolia. Pol J Environ Stud. 2022;31(5):4065-4073. google scholar
There are 154 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Review
Authors

Djarmounı Merıem 0000-0003-0303-6263

Ilhem Sekıa 0000-0003-0303-6263

Djamila Ameni 0000-0003-0303-6263

Tassadit Ikessoulen 0000-0003-0303-6263

Abderrahmane Baghıanı 0000-0003-0303-6263

Publication Date June 26, 2023
Submission Date August 18, 2022
Published in Issue Year 2023 Volume: 82 Issue: 1

Cite

AMA Merıem D, Sekıa I, Ameni D, Ikessoulen T, Baghıanı A. Impact of Toxic Heavy Metals and Their Concentration in Zygophyllum Species, Mentha longifolia, and Thymus vulgaris Traditional Medicinal Plants Consumed in Setif-Algeria. Eur J Biol. June 2023;82(1):109-123. doi:10.26650/EurJBiol.2023.1163155