Research Article
BibTex RIS Cite

Hastane enfeksiyonlarının gizli örüntülerinin bulunması: Bir veri madenciliği yaklaşımı

Year 2010, Volume: 39 Issue: 2, 210 - 226, 02.12.2009

Abstract

Her geçen gün görülme sıklığı artan hastane enfeksiyonları, önemli derecede morbidite, mortalite ve ekonomik yüklere neden olmakta ve yalnızca sağlık sektörünü değil, tüm toplumu ilgilendirmektedir. Bu çalışmada, yenidoğan yoğun bakım ünitesindeki hastane enfeksiyonlarının tespit edilmesi için veri madenciliği yöntemlerinin uygulaması sunulmaktadır. Veri seti Eskişehir Osmangazi Üniversitesi, Tıp Fakültesi, Klinik Mikrobiyoloji ve Enfeksiyon Hastalıkları Bölümü tarafından hazırlanmıştır. Karar ağaçları ve yapay sinir ağları sınıflandırma modelleri basit ve çapraz doğrulama yöntemleri ile kurulmuştur. Model karşılaştırmada doğruluk ve duyarlılık oranları öncelikli olarak dikkate alınmıştır. Bu çalışmada antibiyotik ve üriner kateter kullanımı, periferik kateter kullanım süresi, enteral ve total parenteral beslenme süreleri ve doğum ağırlığının gestasyonel yaşa oranı önemli risk faktörleri olarak bulunmuştur. Yapay sinir ağları ve CHAID karar ağaçları hastane enfeksiyonlarının tespitinde başarılı olmuştur. 

References

  • M. Ertek, Hastane Enfeksiyonları: Türkiye Verileri. Hastane Enfeksiyonları Koruma ve Kontrol Sempozyum Dizisi. 60, 9-14 (2008).
  • Y. Perk, Yenidoğan Yoğun Bakım Enfeksiyonları; Koruma ve Kontrol. Hastane Enfeksiyonları Koruma ve Kontrol Sempozyum Dizisi. 60, 137-141 (2008).
  • D. Pittet, Infection Control and Quality Health Care in the New Millennium. American Journal of Infection Control. 33, 5, June, 258-267 (2005).
  • D. Breaux, et al., Using Automated Surveillance to Trace Evidence-Based Practices: Reducing Infection Outcomes when Escherichia Coli is Your Most Common Uropathogen. American Journal of Infection Control. 33, 5, June, (2005).
  • E. Lamma, et al., A System for Monitoring Nosocomial Infections, in Medical Data Analysis ISMDA 2000 (Brause, R.W., Hanisch, E. Eds.). Springer, Berlin, 2000.
  • U.M. Fayyad, et al. (Eds.), Advances in Knowledge Discovery and Data Mining. The MIT Press, Cambridge, Massachusetts, 1996, p.6.
  • J. Han, Kamber, M., Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco, 2006, p.24, 291, 327, 360, 372.
  • R.O. Duda, et al., Pattern Classification. Wiley, New York, 2001, p.398.
  • O. Maimon, L. Rokach, Decision trees, in The Data Mining and Knowledge Discovery Handbook (O. Maimon, L.Rokach Eds.), Springer Science+Business Media Inc., New York, 2005.
  • L. Breiman, et al., Classification and Regression Trees. Chapman & Hall, New York, 1984, p.30, 66.
  • G.V. Kass, An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of Applied Statistics. 29, 2, 119-127 (1980).
  • C.M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, New York, 1995, p.117, 140. [13] P.N. Tan, et al., Introduction to Data Mining. Pearson Addison-Wesley, Boston, 2006, p.296.
  • R. Dybowski, S. Roberts, An anthology of probabilistic models for medical informatics, in probabilistic modeling in Bioinformatics and Medical Informatics. (Husmeier, D., Dybowski, R., Roberts, S. Eds.), Springer-Verlag, London, 2005.
  • E.A. Braithwaite, et al., Artificial Neural Networks for Neonatal Intensive Care, in Clinical Applications of Artificial Neural Networks (Dybowski, R., Gant, V. Eds.), Cambridge University Press, Cambridge, 2001.
  • G.E.P. Box, D.R. Cox, An Analysis of Transformations. Journal of the Royal Statistical Society. Series B, 26, 2, 211-252 (1964).
  • S.M. Weiss, C.A. Kulikowski, Computer Systems That Learn. Morgan Kaufmann Publishers Inc., San Mateo, California, 1991, p.30.

Finding hidden patterns of hospital infections on newborn: A data mining approach

Year 2010, Volume: 39 Issue: 2, 210 - 226, 02.12.2009

Abstract

The increasing number of hospital infections with considerable morbidity, mortality and economic burden attracts the attention of not only the health-care environment, but also the whole society. This study presents an application of data mining methods for hospital infection detection in a newborn intensive care unit. The data set is provided by Department of Clinical Microbiology and Infectious Diseases, Eskişehir Osmangazi University, Faculty of Medicine. Decision tree and neural network classification models are built using accuracy estimation methods; holdout sampling and cross validation. In model comparison, accuracy and sensitivity measures are taken into consideration primarily. The study highlights that antibiotics and urinary catheter usage, peripheral catheter duration, enteral and total parenteral nutrition durations, and birth weight for gestational age are considerable risk factors. Among the models, neural network and CHAID decision tree perform better on hospital infections detection. 

References

  • M. Ertek, Hastane Enfeksiyonları: Türkiye Verileri. Hastane Enfeksiyonları Koruma ve Kontrol Sempozyum Dizisi. 60, 9-14 (2008).
  • Y. Perk, Yenidoğan Yoğun Bakım Enfeksiyonları; Koruma ve Kontrol. Hastane Enfeksiyonları Koruma ve Kontrol Sempozyum Dizisi. 60, 137-141 (2008).
  • D. Pittet, Infection Control and Quality Health Care in the New Millennium. American Journal of Infection Control. 33, 5, June, 258-267 (2005).
  • D. Breaux, et al., Using Automated Surveillance to Trace Evidence-Based Practices: Reducing Infection Outcomes when Escherichia Coli is Your Most Common Uropathogen. American Journal of Infection Control. 33, 5, June, (2005).
  • E. Lamma, et al., A System for Monitoring Nosocomial Infections, in Medical Data Analysis ISMDA 2000 (Brause, R.W., Hanisch, E. Eds.). Springer, Berlin, 2000.
  • U.M. Fayyad, et al. (Eds.), Advances in Knowledge Discovery and Data Mining. The MIT Press, Cambridge, Massachusetts, 1996, p.6.
  • J. Han, Kamber, M., Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco, 2006, p.24, 291, 327, 360, 372.
  • R.O. Duda, et al., Pattern Classification. Wiley, New York, 2001, p.398.
  • O. Maimon, L. Rokach, Decision trees, in The Data Mining and Knowledge Discovery Handbook (O. Maimon, L.Rokach Eds.), Springer Science+Business Media Inc., New York, 2005.
  • L. Breiman, et al., Classification and Regression Trees. Chapman & Hall, New York, 1984, p.30, 66.
  • G.V. Kass, An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of Applied Statistics. 29, 2, 119-127 (1980).
  • C.M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, New York, 1995, p.117, 140. [13] P.N. Tan, et al., Introduction to Data Mining. Pearson Addison-Wesley, Boston, 2006, p.296.
  • R. Dybowski, S. Roberts, An anthology of probabilistic models for medical informatics, in probabilistic modeling in Bioinformatics and Medical Informatics. (Husmeier, D., Dybowski, R., Roberts, S. Eds.), Springer-Verlag, London, 2005.
  • E.A. Braithwaite, et al., Artificial Neural Networks for Neonatal Intensive Care, in Clinical Applications of Artificial Neural Networks (Dybowski, R., Gant, V. Eds.), Cambridge University Press, Cambridge, 2001.
  • G.E.P. Box, D.R. Cox, An Analysis of Transformations. Journal of the Royal Statistical Society. Series B, 26, 2, 211-252 (1964).
  • S.M. Weiss, C.A. Kulikowski, Computer Systems That Learn. Morgan Kaufmann Publishers Inc., San Mateo, California, 1991, p.30.
There are 16 citations in total.

Details

Primary Language English
Journal Section Operations Research
Authors

Sona Mardikyan

İnci Aksoy This is me

Bertan Badur This is me

Publication Date December 2, 2009
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Mardikyan, S., Aksoy, İ., & Badur, B. (2009). Finding hidden patterns of hospital infections on newborn: A data mining approach. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 39(2), 210-226.
AMA Mardikyan S, Aksoy İ, Badur B. Finding hidden patterns of hospital infections on newborn: A data mining approach. İstanbul Üniversitesi İşletme Fakültesi Dergisi. December 2009;39(2):210-226.
Chicago Mardikyan, Sona, İnci Aksoy, and Bertan Badur. “Finding Hidden Patterns of Hospital Infections on Newborn: A Data Mining Approach”. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, no. 2 (December 2009): 210-26.
EndNote Mardikyan S, Aksoy İ, Badur B (December 1, 2009) Finding hidden patterns of hospital infections on newborn: A data mining approach. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39 2 210–226.
IEEE S. Mardikyan, İ. Aksoy, and B. Badur, “Finding hidden patterns of hospital infections on newborn: A data mining approach”, İstanbul Üniversitesi İşletme Fakültesi Dergisi, vol. 39, no. 2, pp. 210–226, 2009.
ISNAD Mardikyan, Sona et al. “Finding Hidden Patterns of Hospital Infections on Newborn: A Data Mining Approach”. İstanbul Üniversitesi İşletme Fakültesi Dergisi 39/2 (December 2009), 210-226.
JAMA Mardikyan S, Aksoy İ, Badur B. Finding hidden patterns of hospital infections on newborn: A data mining approach. İstanbul Üniversitesi İşletme Fakültesi Dergisi. 2009;39:210–226.
MLA Mardikyan, Sona et al. “Finding Hidden Patterns of Hospital Infections on Newborn: A Data Mining Approach”. İstanbul Üniversitesi İşletme Fakültesi Dergisi, vol. 39, no. 2, 2009, pp. 210-26.
Vancouver Mardikyan S, Aksoy İ, Badur B. Finding hidden patterns of hospital infections on newborn: A data mining approach. İstanbul Üniversitesi İşletme Fakültesi Dergisi. 2009;39(2):210-26.