Review
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 1, 131 - 139, 07.05.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1592251
https://izlik.org/JA38HD87HT

Abstract

References

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & BegleY, D. J. (2010). Struc-ture and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13-25. https://doi.Org/10.1016/j.nbd.2009.07.030 google scholar
  • BreijYeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules (Basel, Switzerland), 25(24), 5789. https://doi. org/10.3390/molecules25245789 google scholar
  • Cai, Q., Wang, L., Deng, G., Liu, J., Chen, Q., & Chen, Z. (2016). SYstemic deliverY to central nervous sYstem bY engineered PLGA nanoparticles. American Journal of Translational Research, 8(2), 749-764. google scholar
  • Carvalho, A., Fernandes, A. R., & Baptista, P. V. (2018). Nanoparticles as DeliverY SYstems in Cancer TherapY: Focus on Gold Nanoparticles and Drugs. İn Appli-cations of Targeted Nano Drugs and Delivery Systems: Nanoscience and Nanotechnology İn Drug Delivery (pp. 257-295). Elsevier. https://doi.org/10. 1016/B978-0-12-814029-1.00010-7 google scholar
  • Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). AmYloid beta: Structure, biology and structure-based therapeutic development. Açta Pharmacotogica Sinica, 38(9), 1205-1235. https://doi.org/10.1038/aps.2017.28 google scholar
  • Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845-875. https://doi. org/101007/s00418-008-0511-Y google scholar
  • Dereli, N., Gün, Ö., & Hasçiçek, C. (2016). Alzheimer Hastalığı Tedavisinde Nano BoYutlu İlaç Taşıyıcı Sistemlerin Kullanımı. [Nanosızed Drug Delıvery Systems For Alzheımer Dısease Treatment]. Journal of Faculty of Pharmacy of Ankara University 40(1), 54-73. https://doi.org/10.1501/Eczfak_0000000579 google scholar
  • Duan, H., lagaru, A., & Aparici, C. M. (2022). Radiotheranostics - Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics, 6(1), 103-117. https://doi.org/10.7150/ntno.64141 google scholar
  • Durak, H. (2015). Onkolojide Kişiselleştirilmiş Tedavi ve Teranostik Yaklaşımlar. [Personalized Therapy and Theranostic Approaches in Oncology]. Nuclear MeDicine Seminars, 1(2), 80-84. doi:10.4274/nts.2015.014. google scholar
  • ElezabY, R. S., Gad, H. A., Metwally, A. A., Geneidi, A. S., & Awad, G. A. (2017). Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain deliverY. Journal of ControlleD Release: Official Journal of the ControlleD Release Society, 261, 43-61. https://doi.org/10.1016/j.jconrel. 2017.06.019 google scholar
  • Emerce, E., Ghosh, M., Öner, D., Duca, R. C., Vanoirbeek, J., Bekaert, B., Hoet, P. H. M., & Godderis, L. (2019). Carbon Nanotube- and Asbestos-lnduced DNA and RNA MethYlation Changes in Bronchial Epithelial Cells. Chemical Research in Toxicology, 32(5), 850-860. https://doi.org/10.1021/acs.chemrestox.8b00406 google scholar
  • Funkhouser, J. (2002). Reinventing pharma: The theranostic revolution. Current Drug Discovery, 2, 17-19. google scholar
  • Georganopoulou, D. G., Chang, L., Nam, J. M., Thaxton, C. S., Mufson, E. J., Klein, W. L., & Mirkin, C. A. (2005). Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. ProceeDings of the National AcaDemy of Sciences of the UniteD States of America, 102(7), 22732276. https://doi.org/10.1073/pnas.0409336102 google scholar
  • Gupta, J., Fatima, M. T., Islam, Z., Khan, R. H., UverskY, V. N., & Salahuddin, P. (2019). Nanoparticle formulations in the diagnosis and therapY of Alzheimer's dis-ease. International Journal of Biological Macromolecules, 130, 515-526. https:// doi.org/10.1016/j.ijbiomac.2019.02.156 google scholar
  • Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q., & Zhang, X. (2015). Nanotheranostics: Congo Red/Rutin-MNPs with Enhanced Magnetic Resonance Imaging and H2O2-Responsive TherapY of Alzheimer's Disease in APPswe/PS1dE9 Transgenic Mice. Advanced Materials (Deerfield Beach, Fla.), 27(37), 5499-5505. https://doi.org/10.1002/adma.201502227 google scholar
  • Jana, N. R., Earhart, C., & Ying, J. Y. (2007). SYnthesis of water-soluble and functional-ized nanoparticles by silica coating. Chemistry of Materials, 19(21), 5074-5082. https://doi.org/10.1021/cm071368z google scholar
  • Jokerst, J. V., & Gambhir, S. S. (2011). Molecular imaging with theranostic nanopar-ticles. Accounts of Chemical Research, 44(10), 1050-1060. https://doi.org/10. 1021/ar200106e google scholar
  • Kim, S. J., & Chung, B. H. (2016). Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate Polymers, 150, 400-407. https://doi.org/10.1016/j. carbpol.2016.05.021 google scholar
  • Landrigan, J., Dwyer, Z., Beauchamp, S., Rodriguez, R., Fortin, T., & Hayley, S. (2020). Quantum dot conjugated saporin activates microglia and induces selective substantia nigra degeneration. Neurotoxicology, 76, 153-161. https://doi.org/ 10.1016/j.neuro.2019.11.007 google scholar
  • Liang, F., Zhang, Y., Hong, W., Dong, Y., Xie, Z., & Quan, Q. (2016). Direct Tracking of Amyloid and Tu Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Letters, 16(7), 3989-3994. https://doi.org/10.1021/acs.nanolett. 6b00320 google scholar
  • Mc Carthy, D. J., Malhotra, M., O'Mahony, A. M., Cryan, J. F., & O'Driscoll, C. M. (2015). Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharmaceutical Research, 32(4), 1161-1185. https://doi.org/10.1007/s11095-014-1545-6 google scholar
  • Nesterov, E. E., Skoch, J., Hyman, B. T., Klunk, W. E., Bacskai, B. J., & Swager, T. M. (2005). In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angewandte Chemie (International ed. in English), 44(34), 5452-5456. https://doi.org/10.1002/anie.200500845 google scholar
  • Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, func-tionalization strategies and biomedical applications of targeted biodegrad-able/biocompatible polYmer-based nanocarriers for drug delivery. Chemical Society Reviews, 42(3), 1147-1235. https://doi.org/10.1039/c2cs35265f google scholar
  • Pansieri, J., Plissonneau, M., Stransky-Heilkron, N., Dumoulin, M., Heinrich-Balard, L., Rivory, P., Morfin, J. F., et al. (2017). Multimodal imaging Gd-nanoparticles func-tionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (London, England), 12(14), 1675-1687. https://doi.org/ 10.2217/nnm-2017-0079 google scholar
  • Pelley, J. L., Daar, A. S., & Saner, M. A. (2009). State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Sciences : An Official Journal of the Society of Toxicology, 112(2), 276-296. https://doi.org/10.1093/ toxsci/kfp188 google scholar
  • Rafiyath, S. M., Rasul, M., Lee, B., Wei, G., Lamba, G., & Liu, D. (2012). Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Experimental Hematology & Oncology, 1 (1), 10. https://doi. org/101186/2162-3619-1-10 google scholar
  • Ramanathan, S., Archunan, G., Sivakumar, M., Tamil Selvan, S., Fred, A. L., Kumar, S., Gulyas, B., et al. (2018). Theranostic applications of nanoparticles in neurode-generative disorders. International Journal of Nanomedicine, 13, 5561-5576. https://doi.org/10.2147/IJN.S149022 google scholar
  • Ranjbar, A., Soleimani Asl, S., Firozian, F., Heidary Dartoti, H., Seyedabadi, S., Taheri Azandariani, M., & Ganji, M. (2018). Role of Cerium Oxide Nanoparticles in a Paraquat-lnduced Model of Oxidative Stress: Emergence of Neuroprotective Results in the Brain. Journal of Molecular Neuroscience: MN, 66(3), 420-427. https://doi.org/10.1007/s12031-018-1191-2 google scholar
  • Ricciarelli, R., & Fedele, E. (2017). The Amyloid Cascade Hypothesis in Alzheimer's Disease: lt's Time to Change Our Mind. Current Neuropharmacology, 15(6), 926935. https://doi.org/10.2174/1570159X15666170116143743 google scholar
  • Saenz del Burgo, L., Hernandez, R. M., Orive, G., & Pedraz, J. L. (2014). Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(5), 905-919. https://doi.org/10.1016/j.nano.2013.10. 001 google scholar
  • Satapathy, M. K., Yen, T. L., Jan, J. S., Tang, R. D., Wang, J. Y., Taliyan, R., & Yang, C. H. (2021). Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics, 13(8), 1183. https://doi.org/10. 3390/pharmaceutics13081183 google scholar
  • Shen, Y., Sun, Y., Yan, R., Chen, E., Wang, H., Ye, D., Xu, J. J., et al. (2017). Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials, 148, 31-40. https://doi. org/10.1016/j.biomaterials.2017.09.026 google scholar
  • Sillerud, L. O., Solberg, N. O., Chamberlain, R., Orlando, R. A., Heidrich, J. E., Brown, D. C., Brady, C. I., et al. (2013). SPİON-enhanced magnetic resonance imaging of Alzheimer's disease plaques in ApPP/PS-1 transgenic mouse brain. Journal of Alzheimer's Disease: JAD, 34(2), 349-365. https://doi.org/10.3233/JAD-121171 google scholar
  • Spillantini, M. G., & Goedert, M. (2013). Tau pathology and neurodegenera-tion. The Lancet. Neurology, 12(6), 609-622. https://doi.org/10.1016/S1474-4422 (13)70090-5 google scholar
  • Stone, N. R., Bicanic, T., Salim, R., & Hope, W. (2016). Liposomal Amphotericin B (AmBisome(®)): A Review of the Pharmacokinetics, Pharmacodynamics, Clini-cal Experience and Future Directions. Drugs, 76(4), 485-500. https://doi.org/ 101007/s40265-016-0538-7 google scholar
  • Thangam, R., Paulmurugan, R., & Kang, H. (2021). Functionalized Nanomaterials as Tailored Theranostic Agents in Brain İmaging. Nanomaterials (Basel, Switzer-land), 12(1), 18. https://doi.org/10.3390/nano12010018 google scholar
  • Vural, G.U., Özer, A.Y (2015). Nükleer Tıpta ilaç Taşıyıcı Sistemler ve Teranostik Kullanımları. (Drug Delivery Systems and Theranostic use in Nuclear Medicine). Nuclear Medicine Seminars, 1(2), 109-119. doi:10.4274/nts.2015.018. google scholar
  • Viegas, C., Seck, F., & Fonte, P. (2022). An insight on lipid nanoparticles for therapeutic proteins delivery. Journal of Drug Delivery Science and Technol-ogy, 77, 103839. https://doi.org/10.1016/j.jddst.2022.103839 google scholar
  • Vinhas, R., Cordeiro, M., Ferreira Carlos, F., Mendo, S., Fernandes, A. R., Figueiredo, S., & Baptista P. (2015). Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial. NanoBiosensors in Disease Diag-nosis, 4, 11-23. https://doi.org/10.2147/NDD.S60285 google scholar
  • Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/ bioglass composites for tissue engineering applications. Materials Science and Engineering: C, 96, 955-967. https://doi.Org/10.1016/j.msec.2018.12.026 google scholar
  • Wang, X., Wang, C., Chan, H. N., Ashok, I., Krishnamoorthi, S. K., Li, M., Li, H. W., et al. (2021). Amyloid-p oligomer targeted theranostic probes for in vivo NIR imaging and inhibition of self-aggregation and amyloid-p induced ROS gener-ation. Talanta, 224, 121830. https://doi.org/10.1016/j.talanta.2020.121830 google scholar
  • Wilson, A. J., Devasia, D., & Jain, P. K. (2020). Nanoscale optical imaging in chem-istry. Chemical Society Reviews, 49(16), 6087-6112. https://doi.org/10.1039/D0 CS00338G google scholar
  • Xia, Y, Yang, P., Sun, Y., Wu, Y, Mayers, B., Gates, B., Yin, Y, et al. (2003). One-Di-mensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353-389. https://doi.org/10.1002/adma.200390087 google scholar
  • Xie, J., Lee, S., & Chen, X. (2010 a). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. https://doi.org/10.1016/j.addr.2010.07. 009 google scholar
  • Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X. et al. (2010b). PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 31(11), 3016-3022. https:// doi.org/10.1016/j.biomaterials.2010.01.010 google scholar
  • Xu, Y, Zhao, M., Zhou, D., Zheng, T., & Zhang, H. (2021). The Application of multi-functional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomedicine & Pharmacotherapy = Biomedecine & pharmacothera-pie, 137, 111360. https://doi.org/10.1016/j.biopha.2021.111360 google scholar
  • Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanopar-ticles in cancer imaging and therapy. Theranostics, 2(1), 3-44. https://doi.org/ 10.7150/thno.3463 google scholar
  • Yu, Y., Sun, X., Tang, D., Li, C., Zhang, L., Nie, D., Yin, X., et al. (2015). Gelsolin bound p-amyloid peptides(l-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer's disease. Biosensors & Bioelectronics, 68, 115-121. https://doi.org/10.1016/j.bios.2014.12.041 google scholar
  • Zenaro, E., Piacentino, G., & Constantin, G. (2017). The blood-brain barrier in Alzheimer's disease. Neurobiology of Disease, 107, 41-56. https://doi.org/10. 1016/j.nbd.2016.07.007 google scholar
  • Zhu, Y., Liu, C., & Pang, Z. (2019). Dendrimer-Based Drug Delivery Systems for Brain google scholar

Theranostic nanoparticles and their applications in Alzheimer’s disease

Year 2025, Volume: 55 Issue: 1, 131 - 139, 07.05.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1592251
https://izlik.org/JA38HD87HT

Abstract

Nanotechnology is the field of science that investigates materials at the atomic scale and designs mate5 rials with unique qualities via changes in their molecular features. Nanomaterials, which can participate actively in several industrial sectors, provide numerous advantages across every field. Nanomedicine is a medical application of nanotechnology to improve health. It aims to provide an early diagnosis and targeted treatment of diseases with high efficacy. Theranostic nanoparticles are established by combining diagnostic and therapeutic agents within the same nanoparticle. The imaging agent (diagnostic) offers insights into the location and severity of the pathological cells, while the therapeutic agent (therapy) administers lethal medication dosages to the same affected cells. Theranostic nanoparticles, which can be prepared in many types (iron oxide nanoparticles, polymeric nanoparticles, quantum dots, carbon nanotubes, etc.), can be used in compatibility with imaging devices (Positron Emission Tomography (PET), magnetic resonance imaging (MRI) etc.). These nanoparticles constitute an important target for the treatment of many diseases, such as neurodegenerative disorders, where organ pathology is out of reach without invasive methods. Therefore, this innovative technology, which is capable of diagnosing and predicting illnesses at the molecular level, facilitates early diagnosis and treatment, prevents patients from undergoing unneeded interventions, and diminishes superfluous pharmaceutical expenditures within the healthcare system, thus yielding more effective clinical outcomes. The design of theranostic nanoparticles according to the context5dependent necessities is crucial and valuable for the effectiveness of targeted and personalised medicine. In this review, we discuss the types and properties of theranostic nanoparticles, imaging technologies, and their applications in Alzheimer's Disease treatment.

References

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & BegleY, D. J. (2010). Struc-ture and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13-25. https://doi.Org/10.1016/j.nbd.2009.07.030 google scholar
  • BreijYeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules (Basel, Switzerland), 25(24), 5789. https://doi. org/10.3390/molecules25245789 google scholar
  • Cai, Q., Wang, L., Deng, G., Liu, J., Chen, Q., & Chen, Z. (2016). SYstemic deliverY to central nervous sYstem bY engineered PLGA nanoparticles. American Journal of Translational Research, 8(2), 749-764. google scholar
  • Carvalho, A., Fernandes, A. R., & Baptista, P. V. (2018). Nanoparticles as DeliverY SYstems in Cancer TherapY: Focus on Gold Nanoparticles and Drugs. İn Appli-cations of Targeted Nano Drugs and Delivery Systems: Nanoscience and Nanotechnology İn Drug Delivery (pp. 257-295). Elsevier. https://doi.org/10. 1016/B978-0-12-814029-1.00010-7 google scholar
  • Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., & Xu, H. E. (2017). AmYloid beta: Structure, biology and structure-based therapeutic development. Açta Pharmacotogica Sinica, 38(9), 1205-1235. https://doi.org/10.1038/aps.2017.28 google scholar
  • Debbage, P., & Jaschke, W. (2008). Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 130(5), 845-875. https://doi. org/101007/s00418-008-0511-Y google scholar
  • Dereli, N., Gün, Ö., & Hasçiçek, C. (2016). Alzheimer Hastalığı Tedavisinde Nano BoYutlu İlaç Taşıyıcı Sistemlerin Kullanımı. [Nanosızed Drug Delıvery Systems For Alzheımer Dısease Treatment]. Journal of Faculty of Pharmacy of Ankara University 40(1), 54-73. https://doi.org/10.1501/Eczfak_0000000579 google scholar
  • Duan, H., lagaru, A., & Aparici, C. M. (2022). Radiotheranostics - Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics, 6(1), 103-117. https://doi.org/10.7150/ntno.64141 google scholar
  • Durak, H. (2015). Onkolojide Kişiselleştirilmiş Tedavi ve Teranostik Yaklaşımlar. [Personalized Therapy and Theranostic Approaches in Oncology]. Nuclear MeDicine Seminars, 1(2), 80-84. doi:10.4274/nts.2015.014. google scholar
  • ElezabY, R. S., Gad, H. A., Metwally, A. A., Geneidi, A. S., & Awad, G. A. (2017). Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain deliverY. Journal of ControlleD Release: Official Journal of the ControlleD Release Society, 261, 43-61. https://doi.org/10.1016/j.jconrel. 2017.06.019 google scholar
  • Emerce, E., Ghosh, M., Öner, D., Duca, R. C., Vanoirbeek, J., Bekaert, B., Hoet, P. H. M., & Godderis, L. (2019). Carbon Nanotube- and Asbestos-lnduced DNA and RNA MethYlation Changes in Bronchial Epithelial Cells. Chemical Research in Toxicology, 32(5), 850-860. https://doi.org/10.1021/acs.chemrestox.8b00406 google scholar
  • Funkhouser, J. (2002). Reinventing pharma: The theranostic revolution. Current Drug Discovery, 2, 17-19. google scholar
  • Georganopoulou, D. G., Chang, L., Nam, J. M., Thaxton, C. S., Mufson, E. J., Klein, W. L., & Mirkin, C. A. (2005). Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. ProceeDings of the National AcaDemy of Sciences of the UniteD States of America, 102(7), 22732276. https://doi.org/10.1073/pnas.0409336102 google scholar
  • Gupta, J., Fatima, M. T., Islam, Z., Khan, R. H., UverskY, V. N., & Salahuddin, P. (2019). Nanoparticle formulations in the diagnosis and therapY of Alzheimer's dis-ease. International Journal of Biological Macromolecules, 130, 515-526. https:// doi.org/10.1016/j.ijbiomac.2019.02.156 google scholar
  • Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q., & Zhang, X. (2015). Nanotheranostics: Congo Red/Rutin-MNPs with Enhanced Magnetic Resonance Imaging and H2O2-Responsive TherapY of Alzheimer's Disease in APPswe/PS1dE9 Transgenic Mice. Advanced Materials (Deerfield Beach, Fla.), 27(37), 5499-5505. https://doi.org/10.1002/adma.201502227 google scholar
  • Jana, N. R., Earhart, C., & Ying, J. Y. (2007). SYnthesis of water-soluble and functional-ized nanoparticles by silica coating. Chemistry of Materials, 19(21), 5074-5082. https://doi.org/10.1021/cm071368z google scholar
  • Jokerst, J. V., & Gambhir, S. S. (2011). Molecular imaging with theranostic nanopar-ticles. Accounts of Chemical Research, 44(10), 1050-1060. https://doi.org/10. 1021/ar200106e google scholar
  • Kim, S. J., & Chung, B. H. (2016). Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydrate Polymers, 150, 400-407. https://doi.org/10.1016/j. carbpol.2016.05.021 google scholar
  • Landrigan, J., Dwyer, Z., Beauchamp, S., Rodriguez, R., Fortin, T., & Hayley, S. (2020). Quantum dot conjugated saporin activates microglia and induces selective substantia nigra degeneration. Neurotoxicology, 76, 153-161. https://doi.org/ 10.1016/j.neuro.2019.11.007 google scholar
  • Liang, F., Zhang, Y., Hong, W., Dong, Y., Xie, Z., & Quan, Q. (2016). Direct Tracking of Amyloid and Tu Dynamics in Neuroblastoma Cells Using Nanoplasmonic Fiber Tip Probes. Nano Letters, 16(7), 3989-3994. https://doi.org/10.1021/acs.nanolett. 6b00320 google scholar
  • Mc Carthy, D. J., Malhotra, M., O'Mahony, A. M., Cryan, J. F., & O'Driscoll, C. M. (2015). Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharmaceutical Research, 32(4), 1161-1185. https://doi.org/10.1007/s11095-014-1545-6 google scholar
  • Nesterov, E. E., Skoch, J., Hyman, B. T., Klunk, W. E., Bacskai, B. J., & Swager, T. M. (2005). In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angewandte Chemie (International ed. in English), 44(34), 5452-5456. https://doi.org/10.1002/anie.200500845 google scholar
  • Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, func-tionalization strategies and biomedical applications of targeted biodegrad-able/biocompatible polYmer-based nanocarriers for drug delivery. Chemical Society Reviews, 42(3), 1147-1235. https://doi.org/10.1039/c2cs35265f google scholar
  • Pansieri, J., Plissonneau, M., Stransky-Heilkron, N., Dumoulin, M., Heinrich-Balard, L., Rivory, P., Morfin, J. F., et al. (2017). Multimodal imaging Gd-nanoparticles func-tionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (London, England), 12(14), 1675-1687. https://doi.org/ 10.2217/nnm-2017-0079 google scholar
  • Pelley, J. L., Daar, A. S., & Saner, M. A. (2009). State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Sciences : An Official Journal of the Society of Toxicology, 112(2), 276-296. https://doi.org/10.1093/ toxsci/kfp188 google scholar
  • Rafiyath, S. M., Rasul, M., Lee, B., Wei, G., Lamba, G., & Liu, D. (2012). Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Experimental Hematology & Oncology, 1 (1), 10. https://doi. org/101186/2162-3619-1-10 google scholar
  • Ramanathan, S., Archunan, G., Sivakumar, M., Tamil Selvan, S., Fred, A. L., Kumar, S., Gulyas, B., et al. (2018). Theranostic applications of nanoparticles in neurode-generative disorders. International Journal of Nanomedicine, 13, 5561-5576. https://doi.org/10.2147/IJN.S149022 google scholar
  • Ranjbar, A., Soleimani Asl, S., Firozian, F., Heidary Dartoti, H., Seyedabadi, S., Taheri Azandariani, M., & Ganji, M. (2018). Role of Cerium Oxide Nanoparticles in a Paraquat-lnduced Model of Oxidative Stress: Emergence of Neuroprotective Results in the Brain. Journal of Molecular Neuroscience: MN, 66(3), 420-427. https://doi.org/10.1007/s12031-018-1191-2 google scholar
  • Ricciarelli, R., & Fedele, E. (2017). The Amyloid Cascade Hypothesis in Alzheimer's Disease: lt's Time to Change Our Mind. Current Neuropharmacology, 15(6), 926935. https://doi.org/10.2174/1570159X15666170116143743 google scholar
  • Saenz del Burgo, L., Hernandez, R. M., Orive, G., & Pedraz, J. L. (2014). Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(5), 905-919. https://doi.org/10.1016/j.nano.2013.10. 001 google scholar
  • Satapathy, M. K., Yen, T. L., Jan, J. S., Tang, R. D., Wang, J. Y., Taliyan, R., & Yang, C. H. (2021). Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics, 13(8), 1183. https://doi.org/10. 3390/pharmaceutics13081183 google scholar
  • Shen, Y., Sun, Y., Yan, R., Chen, E., Wang, H., Ye, D., Xu, J. J., et al. (2017). Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials, 148, 31-40. https://doi. org/10.1016/j.biomaterials.2017.09.026 google scholar
  • Sillerud, L. O., Solberg, N. O., Chamberlain, R., Orlando, R. A., Heidrich, J. E., Brown, D. C., Brady, C. I., et al. (2013). SPİON-enhanced magnetic resonance imaging of Alzheimer's disease plaques in ApPP/PS-1 transgenic mouse brain. Journal of Alzheimer's Disease: JAD, 34(2), 349-365. https://doi.org/10.3233/JAD-121171 google scholar
  • Spillantini, M. G., & Goedert, M. (2013). Tau pathology and neurodegenera-tion. The Lancet. Neurology, 12(6), 609-622. https://doi.org/10.1016/S1474-4422 (13)70090-5 google scholar
  • Stone, N. R., Bicanic, T., Salim, R., & Hope, W. (2016). Liposomal Amphotericin B (AmBisome(®)): A Review of the Pharmacokinetics, Pharmacodynamics, Clini-cal Experience and Future Directions. Drugs, 76(4), 485-500. https://doi.org/ 101007/s40265-016-0538-7 google scholar
  • Thangam, R., Paulmurugan, R., & Kang, H. (2021). Functionalized Nanomaterials as Tailored Theranostic Agents in Brain İmaging. Nanomaterials (Basel, Switzer-land), 12(1), 18. https://doi.org/10.3390/nano12010018 google scholar
  • Vural, G.U., Özer, A.Y (2015). Nükleer Tıpta ilaç Taşıyıcı Sistemler ve Teranostik Kullanımları. (Drug Delivery Systems and Theranostic use in Nuclear Medicine). Nuclear Medicine Seminars, 1(2), 109-119. doi:10.4274/nts.2015.018. google scholar
  • Viegas, C., Seck, F., & Fonte, P. (2022). An insight on lipid nanoparticles for therapeutic proteins delivery. Journal of Drug Delivery Science and Technol-ogy, 77, 103839. https://doi.org/10.1016/j.jddst.2022.103839 google scholar
  • Vinhas, R., Cordeiro, M., Ferreira Carlos, F., Mendo, S., Fernandes, A. R., Figueiredo, S., & Baptista P. (2015). Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial. NanoBiosensors in Disease Diag-nosis, 4, 11-23. https://doi.org/10.2147/NDD.S60285 google scholar
  • Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/ bioglass composites for tissue engineering applications. Materials Science and Engineering: C, 96, 955-967. https://doi.Org/10.1016/j.msec.2018.12.026 google scholar
  • Wang, X., Wang, C., Chan, H. N., Ashok, I., Krishnamoorthi, S. K., Li, M., Li, H. W., et al. (2021). Amyloid-p oligomer targeted theranostic probes for in vivo NIR imaging and inhibition of self-aggregation and amyloid-p induced ROS gener-ation. Talanta, 224, 121830. https://doi.org/10.1016/j.talanta.2020.121830 google scholar
  • Wilson, A. J., Devasia, D., & Jain, P. K. (2020). Nanoscale optical imaging in chem-istry. Chemical Society Reviews, 49(16), 6087-6112. https://doi.org/10.1039/D0 CS00338G google scholar
  • Xia, Y, Yang, P., Sun, Y., Wu, Y, Mayers, B., Gates, B., Yin, Y, et al. (2003). One-Di-mensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353-389. https://doi.org/10.1002/adma.200390087 google scholar
  • Xie, J., Lee, S., & Chen, X. (2010 a). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. https://doi.org/10.1016/j.addr.2010.07. 009 google scholar
  • Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X. et al. (2010b). PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 31(11), 3016-3022. https:// doi.org/10.1016/j.biomaterials.2010.01.010 google scholar
  • Xu, Y, Zhao, M., Zhou, D., Zheng, T., & Zhang, H. (2021). The Application of multi-functional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomedicine & Pharmacotherapy = Biomedecine & pharmacothera-pie, 137, 111360. https://doi.org/10.1016/j.biopha.2021.111360 google scholar
  • Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanopar-ticles in cancer imaging and therapy. Theranostics, 2(1), 3-44. https://doi.org/ 10.7150/thno.3463 google scholar
  • Yu, Y., Sun, X., Tang, D., Li, C., Zhang, L., Nie, D., Yin, X., et al. (2015). Gelsolin bound p-amyloid peptides(l-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer's disease. Biosensors & Bioelectronics, 68, 115-121. https://doi.org/10.1016/j.bios.2014.12.041 google scholar
  • Zenaro, E., Piacentino, G., & Constantin, G. (2017). The blood-brain barrier in Alzheimer's disease. Neurobiology of Disease, 107, 41-56. https://doi.org/10. 1016/j.nbd.2016.07.007 google scholar
  • Zhu, Y., Liu, C., & Pang, Z. (2019). Dendrimer-Based Drug Delivery Systems for Brain google scholar
There are 50 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology
Journal Section Review
Authors

Derya Akyüz Şengün 0000-0002-0160-3722

Nagehan Ersoy Tunali 0000-0001-5460-3569

Submission Date November 27, 2024
Acceptance Date January 27, 2025
Publication Date May 7, 2025
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1592251
IZ https://izlik.org/JA38HD87HT
Published in Issue Year 2025 Volume: 55 Issue: 1

Cite

APA Akyüz Şengün, D., & Ersoy Tunali, N. (2025). Theranostic nanoparticles and their applications in Alzheimer’s disease. İstanbul Journal of Pharmacy, 55(1), 131-139. https://doi.org/10.26650/IstanbulJPharm.2025.1592251
AMA 1.Akyüz Şengün D, Ersoy Tunali N. Theranostic nanoparticles and their applications in Alzheimer’s disease. iujp. 2025;55(1):131-139. doi:10.26650/IstanbulJPharm.2025.1592251
Chicago Akyüz Şengün, Derya, and Nagehan Ersoy Tunali. 2025. “Theranostic Nanoparticles and Their Applications in Alzheimer’s Disease”. İstanbul Journal of Pharmacy 55 (1): 131-39. https://doi.org/10.26650/IstanbulJPharm.2025.1592251.
EndNote Akyüz Şengün D, Ersoy Tunali N (May 1, 2025) Theranostic nanoparticles and their applications in Alzheimer’s disease. İstanbul Journal of Pharmacy 55 1 131–139.
IEEE [1]D. Akyüz Şengün and N. Ersoy Tunali, “Theranostic nanoparticles and their applications in Alzheimer’s disease”, iujp, vol. 55, no. 1, pp. 131–139, May 2025, doi: 10.26650/IstanbulJPharm.2025.1592251.
ISNAD Akyüz Şengün, Derya - Ersoy Tunali, Nagehan. “Theranostic Nanoparticles and Their Applications in Alzheimer’s Disease”. İstanbul Journal of Pharmacy 55/1 (May 1, 2025): 131-139. https://doi.org/10.26650/IstanbulJPharm.2025.1592251.
JAMA 1.Akyüz Şengün D, Ersoy Tunali N. Theranostic nanoparticles and their applications in Alzheimer’s disease. iujp. 2025;55:131–139.
MLA Akyüz Şengün, Derya, and Nagehan Ersoy Tunali. “Theranostic Nanoparticles and Their Applications in Alzheimer’s Disease”. İstanbul Journal of Pharmacy, vol. 55, no. 1, May 2025, pp. 131-9, doi:10.26650/IstanbulJPharm.2025.1592251.
Vancouver 1.Akyüz Şengün D, Ersoy Tunali N. Theranostic nanoparticles and their applications in Alzheimer’s disease. iujp [Internet]. 2025 May 1;55(1):131-9. Available from: https://izlik.org/JA38HD87HT