Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 173 - 178, 30.08.2022
https://doi.org/10.26650/IstanbulJPharm.2022.996448

Öz

Kaynakça

  • Allen, R. C., Popat, R., Diggle, S. P., & Brown, S. P. (2014). Targeting virulence: Can we make evolution-proof drugs? Nature reviews Microbiology, 12(4), 300–308. https://doi.org/10.1038/ nrmicro3232
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi:10.2147/IDR.S173867
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). (2003). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection, 9(8), 1-7. https://doi. org/10.1046/j.1469-0691.2003.00790.x
  • European Committee on Antimicrobial Susceptibility Testing. (2021). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. Retrieved from: http://www.eucast.org
  • Fröhlich, C., Gama, J. A., Harms, K., Hirvonen, V., Lund, B. A., van der Kamp, M. W., Johnsen, P. J., Samuelsen, Ø., &Leiros, H. S. (2021). Cryptic β-Lactamase Evolution Is Driven by Low β-Lactam Concentrations. mSphere, 6(2), e00108-21. https://doi. org/10.1128/mSphere.00108-21
  • Hassanzadeh, S., Mashhadi, R., Yousefi, M., Askari, E., Saniei, M., &Pourmand, M. R. (2017). Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin- resistant Staphylococcus aureus isolates. Microbial Pathogenesis, 111, 71–74. https://doi.org/10.1016/j.micpath.2017.08.026
  • Hitzenbichler, F., Simon, M., Holzmann, T., Iberer, M., Zimmermann, M., Salzberger, B., & Hanses, F. (2018). Antibiotic resistance in E. coli isolates from patients with urinary tract infections presenting to the emergency department. Infection, 46(3), 325–331. https://doi. org/10.1007/s15010-018-1117-5
  • Hong, T., Moland, E. S., Abdalhamid, B., Hanson, N. D., Wang, J., Sloan, C., Fabian, D., Farajallah, A., Levine, J., & Thomson, K. S. (2005). Escherichia coli: development of carbapenem resistance during therapy. Clinical Infectious Diseases, 40(10), e84–e86. https://doi.org/10.1086/429822
  • Hooper D. C. (2001). Emerging mechanisms of fluoroquinolone resistance. Emerging Infectious Diseases, 7(2), 337–341. https://doi. org/10.3201/eid0702.010239
  • Hu, Q., Zhou, M., & Wei, S. (2018). Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. Journal of food science, 83(6), 1476–1483. https://doi. org/10.1111/1750-3841.14180
  • Johnson, P. J., & Levin, B. R. (2013). Pharmaco-dynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLOS Genetics, 9(1), e1003123. https://doi.org/10.1371/ journal.pgen.1003123
  • Koksal, F., Ak, K., Kucukbasmaci, O., &Samasti, M. (2009). Prevalence and antimicrobial resistance patterns of extended- spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in an Istanbul University Hospital. Chemotherapy, 55(4), 293–297. https://doi. org/10.1159/000224657
  • Kunz, A. N., & Brook, I. (2010). Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy, 56(6), 492–500. https://doi.org/10.1159/000321018
  • Lemaire, S., Van Bambeke, F., Mingeot-Leclercq, M. P., Glupczynski, Y., &Tulkens, P. M. (2007). Role of acidic pH in the susceptibility of intraphagocytic methicillin-resistant Staphylococcus aureus strains to meropenem and cloxacillin. Antimicrobial Agents and Chemotherapy, 51(5), 1627–1632. https://doi.org/10.1128/ AAC.01192-06
  • Long, A., Liti, G., Luptak, A., & Tenaillon, O. (2015). Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nature Reviews Genetics, 16(10), 567–582. https:// doi.org/10.1038/nrg3937
  • Matange N, Hegde S &Bodkhe S. (2019). Adaptation through lifestyle switching sculpts the fitness landscape of evolving populations: implications for the selection of drug-resistant bacteria at low drug pressures. Genetics, 211, 1029–1044. https:// doi.org/10.1534/genetics.119.301834
  • McDonald M. J. (2019). Microbial Experimental Evolution - a proving ground for evolutionary theory and a tool for discovery. EMBO Reports, 20(8), e46992. https://doi.org/10.15252/ embr.201846992
  • Odds F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. The Journal of Antimicrobial Chemotherapy, 52(1), 1. https://doi.org/10.1093/jac/dkg301
  • Vasconcelos, N. G., Croda, J., &Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial pathogenesis, 120, 198–203. https://doi.org/10.1016/j. micpath.2018.04.036
  • Pan S. Y., Zhou S. F., Gao S. H., Yu Z. L., Zhang S. F., Tang M. K., Sun J. N., Ma D. L., Han Y. F., Fong W. F.,& Ko K. M. (2013). New
  • Perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine, 2013(1),1–25. https://doi.org/10.1155/2013/627375
  • Pillai, S.K., Moellering, R.C.,& Eliopoulos, G.M. (2005) Antimicrobial combinations. In V. Lorian (Ed.), Antibiotics in Laboratory Medicine(5th ed.) (pp. 365–440). Philadelphia, PA: The Lippincott Williams & Wilkins Co.
  • Renzetti, A., Betts, J. W., Fukumoto, K., & Rutherford, R. N., (2020). Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food & function, 11(11), 9370–9396. https://doi.org/10.1039/d0fo02054k
  • World Health Organization (2021). Antimicrobial resistance. Retrieved from: https://www.who.int/en/news-room/fact- sheets/detail/antimicrobial-resistance
  • Xu, Y., Shi, C., Wu, Q., Zheng, Z., Liu, P., Li, G., Peng, X.,& Xia, X. (2017).Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Foodborne pathogens and disease, 14(5), 282–287. https://doi.org/10.1089/ fpd.2016.2226
  • Yap, P. S., Yiap, B. C., Ping, H. C., & Lim, S. H. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal, 8, 6–14. https://doi. org/10.2174/1874285801408010006
  • Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, 17(8), e2000171. https://doi. org/10.1002/cbdv.202000171

Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances

Yıl 2022, , 173 - 178, 30.08.2022
https://doi.org/10.26650/IstanbulJPharm.2022.996448

Öz

Background and Aims: Recently, one of the biggest problems of the world is a bacterial antimicrobial resistance, that is de- veloping against most of the existing antibiotics. In addition to conducting studies that continue to discover new antimicrobial agents for combating multidrug resistant bacteria, steps should be taken for the protection of existing antibiotics. With this in mind, many modern and classical strategies have been developed, and among them, using essential oils or extracts obtained from plants, which may be a practical and effective alternative.
Methods: We used the experimental evolutionary microbiology method to determine the effects of herbal substances, such as cinnamaldehyde from cinnamon, epigallocatechin gallate from greentea, curcumin from turmeric, punicalagin from pome- granate, and clove oil from clove, on the prevention or delay of antimicrobial resistance. In this study, Staphylococcus aureus and Escherichia coli standard and clinical strains were gradually exposed to increasing sub-inhibitory concentrations of me- ropenem and ciprofloxacin with or without the presence of herbal substances.
Results: Resistance was developed in the E. coli and S. aureus control groups which were exposed only to ciprofloxacin, but, when herbal substances were included to the test, there was no resistance development. When the control groups were exposed only to meropenem, there was only an increase in the minimum inhibitory concentrations (MIC), but they did not become resistant, and we observed similar MIC values when we added the herbal substances to the test.
Conclusion: These results showed that herbal substances might contribute to lowering MIC values of antibiotics and may help prevent the development of resistance in the studied bacteria.

Kaynakça

  • Allen, R. C., Popat, R., Diggle, S. P., & Brown, S. P. (2014). Targeting virulence: Can we make evolution-proof drugs? Nature reviews Microbiology, 12(4), 300–308. https://doi.org/10.1038/ nrmicro3232
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi:10.2147/IDR.S173867
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). (2003). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clinical Microbiology and Infection, 9(8), 1-7. https://doi. org/10.1046/j.1469-0691.2003.00790.x
  • European Committee on Antimicrobial Susceptibility Testing. (2021). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. Retrieved from: http://www.eucast.org
  • Fröhlich, C., Gama, J. A., Harms, K., Hirvonen, V., Lund, B. A., van der Kamp, M. W., Johnsen, P. J., Samuelsen, Ø., &Leiros, H. S. (2021). Cryptic β-Lactamase Evolution Is Driven by Low β-Lactam Concentrations. mSphere, 6(2), e00108-21. https://doi. org/10.1128/mSphere.00108-21
  • Hassanzadeh, S., Mashhadi, R., Yousefi, M., Askari, E., Saniei, M., &Pourmand, M. R. (2017). Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin- resistant Staphylococcus aureus isolates. Microbial Pathogenesis, 111, 71–74. https://doi.org/10.1016/j.micpath.2017.08.026
  • Hitzenbichler, F., Simon, M., Holzmann, T., Iberer, M., Zimmermann, M., Salzberger, B., & Hanses, F. (2018). Antibiotic resistance in E. coli isolates from patients with urinary tract infections presenting to the emergency department. Infection, 46(3), 325–331. https://doi. org/10.1007/s15010-018-1117-5
  • Hong, T., Moland, E. S., Abdalhamid, B., Hanson, N. D., Wang, J., Sloan, C., Fabian, D., Farajallah, A., Levine, J., & Thomson, K. S. (2005). Escherichia coli: development of carbapenem resistance during therapy. Clinical Infectious Diseases, 40(10), e84–e86. https://doi.org/10.1086/429822
  • Hooper D. C. (2001). Emerging mechanisms of fluoroquinolone resistance. Emerging Infectious Diseases, 7(2), 337–341. https://doi. org/10.3201/eid0702.010239
  • Hu, Q., Zhou, M., & Wei, S. (2018). Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. Journal of food science, 83(6), 1476–1483. https://doi. org/10.1111/1750-3841.14180
  • Johnson, P. J., & Levin, B. R. (2013). Pharmaco-dynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLOS Genetics, 9(1), e1003123. https://doi.org/10.1371/ journal.pgen.1003123
  • Koksal, F., Ak, K., Kucukbasmaci, O., &Samasti, M. (2009). Prevalence and antimicrobial resistance patterns of extended- spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in an Istanbul University Hospital. Chemotherapy, 55(4), 293–297. https://doi. org/10.1159/000224657
  • Kunz, A. N., & Brook, I. (2010). Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy, 56(6), 492–500. https://doi.org/10.1159/000321018
  • Lemaire, S., Van Bambeke, F., Mingeot-Leclercq, M. P., Glupczynski, Y., &Tulkens, P. M. (2007). Role of acidic pH in the susceptibility of intraphagocytic methicillin-resistant Staphylococcus aureus strains to meropenem and cloxacillin. Antimicrobial Agents and Chemotherapy, 51(5), 1627–1632. https://doi.org/10.1128/ AAC.01192-06
  • Long, A., Liti, G., Luptak, A., & Tenaillon, O. (2015). Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nature Reviews Genetics, 16(10), 567–582. https:// doi.org/10.1038/nrg3937
  • Matange N, Hegde S &Bodkhe S. (2019). Adaptation through lifestyle switching sculpts the fitness landscape of evolving populations: implications for the selection of drug-resistant bacteria at low drug pressures. Genetics, 211, 1029–1044. https:// doi.org/10.1534/genetics.119.301834
  • McDonald M. J. (2019). Microbial Experimental Evolution - a proving ground for evolutionary theory and a tool for discovery. EMBO Reports, 20(8), e46992. https://doi.org/10.15252/ embr.201846992
  • Odds F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. The Journal of Antimicrobial Chemotherapy, 52(1), 1. https://doi.org/10.1093/jac/dkg301
  • Vasconcelos, N. G., Croda, J., &Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial pathogenesis, 120, 198–203. https://doi.org/10.1016/j. micpath.2018.04.036
  • Pan S. Y., Zhou S. F., Gao S. H., Yu Z. L., Zhang S. F., Tang M. K., Sun J. N., Ma D. L., Han Y. F., Fong W. F.,& Ko K. M. (2013). New
  • Perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine, 2013(1),1–25. https://doi.org/10.1155/2013/627375
  • Pillai, S.K., Moellering, R.C.,& Eliopoulos, G.M. (2005) Antimicrobial combinations. In V. Lorian (Ed.), Antibiotics in Laboratory Medicine(5th ed.) (pp. 365–440). Philadelphia, PA: The Lippincott Williams & Wilkins Co.
  • Renzetti, A., Betts, J. W., Fukumoto, K., & Rutherford, R. N., (2020). Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food & function, 11(11), 9370–9396. https://doi.org/10.1039/d0fo02054k
  • World Health Organization (2021). Antimicrobial resistance. Retrieved from: https://www.who.int/en/news-room/fact- sheets/detail/antimicrobial-resistance
  • Xu, Y., Shi, C., Wu, Q., Zheng, Z., Liu, P., Li, G., Peng, X.,& Xia, X. (2017).Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Foodborne pathogens and disease, 14(5), 282–287. https://doi.org/10.1089/ fpd.2016.2226
  • Yap, P. S., Yiap, B. C., Ping, H. C., & Lim, S. H. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal, 8, 6–14. https://doi. org/10.2174/1874285801408010006
  • Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, 17(8), e2000171. https://doi. org/10.1002/cbdv.202000171
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Original Article
Yazarlar

Cemre Özkanca 0000-0002-0342-2060

Sibel Döşler 0000-0001-5223-4755

Yayımlanma Tarihi 30 Ağustos 2022
Gönderilme Tarihi 16 Eylül 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özkanca, C., & Döşler, S. (2022). Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances. İstanbul Journal of Pharmacy, 52(2), 173-178. https://doi.org/10.26650/IstanbulJPharm.2022.996448
AMA Özkanca C, Döşler S. Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances. iujp. Ağustos 2022;52(2):173-178. doi:10.26650/IstanbulJPharm.2022.996448
Chicago Özkanca, Cemre, ve Sibel Döşler. “Prevention of Antibiotic Resistance Created by Experimental Evolutionary Microbiology in Staphylococcus Aureus and Escherichia Coli With Herbal Substances”. İstanbul Journal of Pharmacy 52, sy. 2 (Ağustos 2022): 173-78. https://doi.org/10.26650/IstanbulJPharm.2022.996448.
EndNote Özkanca C, Döşler S (01 Ağustos 2022) Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances. İstanbul Journal of Pharmacy 52 2 173–178.
IEEE C. Özkanca ve S. Döşler, “Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances”, iujp, c. 52, sy. 2, ss. 173–178, 2022, doi: 10.26650/IstanbulJPharm.2022.996448.
ISNAD Özkanca, Cemre - Döşler, Sibel. “Prevention of Antibiotic Resistance Created by Experimental Evolutionary Microbiology in Staphylococcus Aureus and Escherichia Coli With Herbal Substances”. İstanbul Journal of Pharmacy 52/2 (Ağustos 2022), 173-178. https://doi.org/10.26650/IstanbulJPharm.2022.996448.
JAMA Özkanca C, Döşler S. Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances. iujp. 2022;52:173–178.
MLA Özkanca, Cemre ve Sibel Döşler. “Prevention of Antibiotic Resistance Created by Experimental Evolutionary Microbiology in Staphylococcus Aureus and Escherichia Coli With Herbal Substances”. İstanbul Journal of Pharmacy, c. 52, sy. 2, 2022, ss. 173-8, doi:10.26650/IstanbulJPharm.2022.996448.
Vancouver Özkanca C, Döşler S. Prevention of antibiotic resistance created by experimental evolutionary microbiology in Staphylococcus aureus and Escherichia coli with herbal substances. iujp. 2022;52(2):173-8.