Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 50 Sayı: 3, 202 - 210, 30.12.2020

Öz

Kaynakça

  • • Abdel-Lateef, E., Mahmoud, F., Hammam, O., El-Ahwany, E., El- Wakıl, E., Kandil, S. … Hassenein H. (2016). Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta pharmaceutica (Zagreb, Croatia), 66, 387–398.
  • • Adahoun, M. A., Al-Akhras, M. H., Jaafar, M. S., & Bououdina, M. (2017). Enhanced anti- cancer and antimicrobial activities of curcumin nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 45(1), 98–107.
  • • Aggarwal, B., Prasad, S., Sung, B., Krishnan, S., & Guha, S. (2013). Prevention and treatment of colorectal cancer by agents from mother nature. Current Colorectal Cancer Reports, 9(1), 37–56.
  • • Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23, 363–398.
  • • Anand, P., Kunnumakkara, A. B., Newman, R. A. & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4, 807-818.
  • • Baharuddin, P., Satar, N., Fakiruddin. K. S., Zakaria, N., Lim, M. N., Yusoff, N. M. … Yahaya, B.H. (2016). Curcumin improves the efficacy of cisplatin by targeting cancer stem- like cells through p21 and cyclin D1-mediated tumour cell inhibition in non- small cell lng cancer cell lines. Oncology Reports, 35, 13-25.
  • • Bansal, S. S., Goel, M., Aqil, F., Vadhanam, M. V. & Gupta, R. C. (2011). Advanced drug- delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research, 4(8), 1158-1171.
  • • Bulboacă, A. E., Porfire, A. S., Tefas, L. R., Boarescu, P. M., Bolboacă, S. D., Stănescu, I. C., Bulboacă, A. C., Dogaru G. (2009). Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules, 24(5), 846.
  • • Cao, H., Diao, L. M., & Xia, D. (2008). Effects of curcumin combined with cisplatin on the proliferation and apoptosis of human lung cancer cell line A549 in vitro. Medical Journal of Wuhan University, 29, 213–217.
  • • Chen, J., Xu, T., & Chen, C. (2015). The critical roles of miR-21 in anti-cancer effects of curcumin. Annals of Translational Medicine, 3(21), 330–337.
  • • Cheng, Y., Zhao P., Wu, S., Yang, T., Chen, Y., Zhang, X. … Xiang, G. (2018). Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. International Journal of Pharmaceutics, 545(1-2), 261–273.
  • • Çıkrıkçı, S., Mozioğlu, E., & Yılmaz, H. (2008). Biological activity of curcuminoids isolated from Curcuma longa. Records of Natural Products, 2(1), 19–24.
  • • Ding, L., Ma, S., Lou, H., Sun, L., & Ji, M. (2015). Synthesis and biological evaluation of curcumin derivatives with water-soluble groups as potential antitumor agents: An in vitro investigation using tumor cell lines. Molecules, 20, 21501–21512.
  • • Dugbartey, G. J., Peppone, L. J., & de Graaf, I. A. (2016). An integrative view of cisplatin- induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 371, 58–66.
  • • Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1300–1326.
  • • Florea, A. M., & Busselberg, D. (2011). Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 3(1), 1351–1371.
  • • Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. American Association of Pharmaceutical Scientists journal, 15, 195–218.
  • • Guzman, M. N. (2019). Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. European Journal of Pharmacology, 859, 172513.
  • • Hansen, S. E., & Nielsen, K. B. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210.
  • • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its' effects on human health. Foods, 6(10), 92–103.
  • • Koohpar, Z. K., Entezari, M., Movafagh, A., & Hashemi, M. (2015). Anticancer activity of curcumin on human breast adenocarcinoma: role of Mcl-1 gene. Iranian Journal of Cancer Prevention, 8(3), 2331–2335.
  • • Kunnumakkara, A. B., Bordoloi, D., Harsha, C., Banik, K., Gupta, S. C., & Aggarwal, B.B. (2017a). Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical science (London, England : 1979), 131(15), 1781–1799.
  • • Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017b). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174, 1325–1348.
  • • Li, P., Qin, H., & Li, X-J. (2019). The effect of curcumin on the apoptosis of lung cancer cells by regulating DJ-1-PTEN/PI3K/AKT signaling. International journal of Clinical and Experimental Medicine, 12(7), 8739–8745.
  • • Ma, Y., Wang, X., Zong, S., Zhang, Z., Xi.e Z., Huang. Y. … Jing, X. (2015). Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 5, 106325–106332.
  • • Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105-125.
  • • Moron, B. E., Montano, J. M. C., Salvador, J., Robles, A., & Lazaro, M. L. (2010). The dark side of curcumin. International Journal of Cancer, 126, 1771–1775.
  • • Mosalam, E. M., Zidan, A. A. A., Mehanna, E. T., Mesbah, N. M., & Abo-Elmatty, D. M. (2020). Thymoquinone and pentoxifylline enhance the chemotherapeutic effect of cisplatin by targeting Notch signaling pathway in mice. Life Sciences, 244, 117299.
  • • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.
  • • Nagpal, M., & Sood, D. (2013). Role of curcumin in systemic and oral health: An overview. Journal of Natural Science, Biology and Medicine, 4(1), 3–7.
  • • Nurcahyanti, A. D. R., & Wink, M. (2016). L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. PeerJ. 4, 1542–1560.
  • • Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Russo, L. L. … Lo Muzio L. (2015). Biological and therapeutic activities and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615-1623.
  • • Rosenberg, B. (1985). Fundamental studies with cisplatin. Cancer, 55, 2303–2316.
  • • Roy, M., & Mukherjee, S. (2014). Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pacific Journal of Cancer Prevention (APJCP), 15, 1403–1410.
  • • Shehzad, A., Lee, J., & Lee, Y. S. (2013). Curcumin in various cancers. Biofactors, 39(1), 56–68.
  • • Sukumari-Ramesh, S., Bentley, J. N., Laird, M. D., Singh, N., Vender, J. R., Dhandapani, K. M. (2011). Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. International Journal of Developmental Neuroscience, 29, 701–710.
  • • Taner, G., Aydin, S., Bacanli, M., Sarigol, Z., Sahin, T., Basaran, A. A., & Basaran, N. (2014). Modulating effects of pycnogenol(R) on oxidative stress and DNA damage induced by sepsis in rats. Phytotherapy Research, 28(11), 1692–1700.
  • • Toric, J., Markovic, A. K., Brala, C. J., & Barbaric, M. (2019). Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. Acta pharmaceutica (Zagreb, Croatia), 69, 461–482.
  • • Wang, Y.-T., Liu, H.-S., & Su, C.-L. (2014). Curcumin-enhanced chemosensitivity of FDA-approved platinum (II)-based anti-cancer drugs involves downregulation of nuclear endonuclease G and NF-κB as well as induction of apoptosis and G2/M arrest. International Journal of Food Sciences and Nutrition, 65, 368–374.
  • • Yang, I. H., Shin, J. A., & Cho, S. D. (2014). Pycnogenol induces nuclear translocation of apoptosis-inducing factor and caspaseindependent apoptosis in MC-3 human mucoepidermoid carcinoma cell line. Journal of Cancer Prevention, 19(4), 265–272.
  • • Zhang, H., Tianyu, Y., Lianji, W., Hui, W., Dan, F., & Chunshun, J. (2013). Curcumin enhances the effectiveness of cisplatin by suppressing CD133+cancer stem cells in laryngeal carcinoma treatment. Experimental and Therapeutic Medicine, 6, 1317–1321.
  • • Zhang, J. R., Lu, F., Lu, T., Dong, W. H., Li, P., Liu, N. ... Ji, C. Y. (2014). Inactivation of FoxM1 transcription factor contributes to curcumininduced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukaemia cells. Journal of Molecular Medicine, 92, 1319–1330.
  • • Zhang, S., Yong, Q., Wu, X., & Liu, X. (2014). [Synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells and its related mechanism]. Zhong Yao Cai, 37, 2043–2046.
  • • Zou, J., Zhu, L., Jiang, X., Wang, Yang, Wang, Yue, Wang, X., & Chen, B. (2018). Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget, 9, 11268– 11278.

Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells

Yıl 2020, Cilt: 50 Sayı: 3, 202 - 210, 30.12.2020

Öz

Background and Aims: Our study aimed to evaluate how curcumin affect cisplatin cytotoxicity in human cervical carcinoma (HeLa), human hepatocellular carcinoma (HepG2), and Chinese hamster lung fibroblast (V79) cells. Methods: The cytotoxicity was evaluated by MTT assay. Results: The IC50 values of curcumin were 404 μM and 320 μM in HeLa cells; 236 μM and 98.3 μM in HepG2 cells; 877 μM and 119 μM in V79 cells; for 24 h and 48 h, respectively. The IC50 values of cisplatin were 22.4 μM and 12.3 μM in HeLa cells; 25.5 μM and 7.7 μM in HepG2 cells; 15.4 μM and 4.9 μM in V79 cells; for 24 h and 48 h, respectively. Curcumin significantly decreased cisplatin cytotoxicity at 500 μM in HeLa cells and above 250 μM and 125 μM in HepG2 cells, for 24 h and 48 h, respectively. In V79 cells, curcumin significantly decreased the IC50 values of cisplatin above 500 μM and 125 μM for 24 h and 48 h. Conclusion: The results might contribute to the anticancer effect of the curcumin-cisplatin combination in cervical and hepatocellular carcinoma, but in order to support this result and determine its interactions with antineoplastic drugs, further studies are needed.

Kaynakça

  • • Abdel-Lateef, E., Mahmoud, F., Hammam, O., El-Ahwany, E., El- Wakıl, E., Kandil, S. … Hassenein H. (2016). Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta pharmaceutica (Zagreb, Croatia), 66, 387–398.
  • • Adahoun, M. A., Al-Akhras, M. H., Jaafar, M. S., & Bououdina, M. (2017). Enhanced anti- cancer and antimicrobial activities of curcumin nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 45(1), 98–107.
  • • Aggarwal, B., Prasad, S., Sung, B., Krishnan, S., & Guha, S. (2013). Prevention and treatment of colorectal cancer by agents from mother nature. Current Colorectal Cancer Reports, 9(1), 37–56.
  • • Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23, 363–398.
  • • Anand, P., Kunnumakkara, A. B., Newman, R. A. & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4, 807-818.
  • • Baharuddin, P., Satar, N., Fakiruddin. K. S., Zakaria, N., Lim, M. N., Yusoff, N. M. … Yahaya, B.H. (2016). Curcumin improves the efficacy of cisplatin by targeting cancer stem- like cells through p21 and cyclin D1-mediated tumour cell inhibition in non- small cell lng cancer cell lines. Oncology Reports, 35, 13-25.
  • • Bansal, S. S., Goel, M., Aqil, F., Vadhanam, M. V. & Gupta, R. C. (2011). Advanced drug- delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research, 4(8), 1158-1171.
  • • Bulboacă, A. E., Porfire, A. S., Tefas, L. R., Boarescu, P. M., Bolboacă, S. D., Stănescu, I. C., Bulboacă, A. C., Dogaru G. (2009). Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules, 24(5), 846.
  • • Cao, H., Diao, L. M., & Xia, D. (2008). Effects of curcumin combined with cisplatin on the proliferation and apoptosis of human lung cancer cell line A549 in vitro. Medical Journal of Wuhan University, 29, 213–217.
  • • Chen, J., Xu, T., & Chen, C. (2015). The critical roles of miR-21 in anti-cancer effects of curcumin. Annals of Translational Medicine, 3(21), 330–337.
  • • Cheng, Y., Zhao P., Wu, S., Yang, T., Chen, Y., Zhang, X. … Xiang, G. (2018). Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. International Journal of Pharmaceutics, 545(1-2), 261–273.
  • • Çıkrıkçı, S., Mozioğlu, E., & Yılmaz, H. (2008). Biological activity of curcuminoids isolated from Curcuma longa. Records of Natural Products, 2(1), 19–24.
  • • Ding, L., Ma, S., Lou, H., Sun, L., & Ji, M. (2015). Synthesis and biological evaluation of curcumin derivatives with water-soluble groups as potential antitumor agents: An in vitro investigation using tumor cell lines. Molecules, 20, 21501–21512.
  • • Dugbartey, G. J., Peppone, L. J., & de Graaf, I. A. (2016). An integrative view of cisplatin- induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 371, 58–66.
  • • Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1300–1326.
  • • Florea, A. M., & Busselberg, D. (2011). Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 3(1), 1351–1371.
  • • Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. American Association of Pharmaceutical Scientists journal, 15, 195–218.
  • • Guzman, M. N. (2019). Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. European Journal of Pharmacology, 859, 172513.
  • • Hansen, S. E., & Nielsen, K. B. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210.
  • • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its' effects on human health. Foods, 6(10), 92–103.
  • • Koohpar, Z. K., Entezari, M., Movafagh, A., & Hashemi, M. (2015). Anticancer activity of curcumin on human breast adenocarcinoma: role of Mcl-1 gene. Iranian Journal of Cancer Prevention, 8(3), 2331–2335.
  • • Kunnumakkara, A. B., Bordoloi, D., Harsha, C., Banik, K., Gupta, S. C., & Aggarwal, B.B. (2017a). Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical science (London, England : 1979), 131(15), 1781–1799.
  • • Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017b). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174, 1325–1348.
  • • Li, P., Qin, H., & Li, X-J. (2019). The effect of curcumin on the apoptosis of lung cancer cells by regulating DJ-1-PTEN/PI3K/AKT signaling. International journal of Clinical and Experimental Medicine, 12(7), 8739–8745.
  • • Ma, Y., Wang, X., Zong, S., Zhang, Z., Xi.e Z., Huang. Y. … Jing, X. (2015). Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 5, 106325–106332.
  • • Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105-125.
  • • Moron, B. E., Montano, J. M. C., Salvador, J., Robles, A., & Lazaro, M. L. (2010). The dark side of curcumin. International Journal of Cancer, 126, 1771–1775.
  • • Mosalam, E. M., Zidan, A. A. A., Mehanna, E. T., Mesbah, N. M., & Abo-Elmatty, D. M. (2020). Thymoquinone and pentoxifylline enhance the chemotherapeutic effect of cisplatin by targeting Notch signaling pathway in mice. Life Sciences, 244, 117299.
  • • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.
  • • Nagpal, M., & Sood, D. (2013). Role of curcumin in systemic and oral health: An overview. Journal of Natural Science, Biology and Medicine, 4(1), 3–7.
  • • Nurcahyanti, A. D. R., & Wink, M. (2016). L-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. PeerJ. 4, 1542–1560.
  • • Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Russo, L. L. … Lo Muzio L. (2015). Biological and therapeutic activities and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615-1623.
  • • Rosenberg, B. (1985). Fundamental studies with cisplatin. Cancer, 55, 2303–2316.
  • • Roy, M., & Mukherjee, S. (2014). Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pacific Journal of Cancer Prevention (APJCP), 15, 1403–1410.
  • • Shehzad, A., Lee, J., & Lee, Y. S. (2013). Curcumin in various cancers. Biofactors, 39(1), 56–68.
  • • Sukumari-Ramesh, S., Bentley, J. N., Laird, M. D., Singh, N., Vender, J. R., Dhandapani, K. M. (2011). Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. International Journal of Developmental Neuroscience, 29, 701–710.
  • • Taner, G., Aydin, S., Bacanli, M., Sarigol, Z., Sahin, T., Basaran, A. A., & Basaran, N. (2014). Modulating effects of pycnogenol(R) on oxidative stress and DNA damage induced by sepsis in rats. Phytotherapy Research, 28(11), 1692–1700.
  • • Toric, J., Markovic, A. K., Brala, C. J., & Barbaric, M. (2019). Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. Acta pharmaceutica (Zagreb, Croatia), 69, 461–482.
  • • Wang, Y.-T., Liu, H.-S., & Su, C.-L. (2014). Curcumin-enhanced chemosensitivity of FDA-approved platinum (II)-based anti-cancer drugs involves downregulation of nuclear endonuclease G and NF-κB as well as induction of apoptosis and G2/M arrest. International Journal of Food Sciences and Nutrition, 65, 368–374.
  • • Yang, I. H., Shin, J. A., & Cho, S. D. (2014). Pycnogenol induces nuclear translocation of apoptosis-inducing factor and caspaseindependent apoptosis in MC-3 human mucoepidermoid carcinoma cell line. Journal of Cancer Prevention, 19(4), 265–272.
  • • Zhang, H., Tianyu, Y., Lianji, W., Hui, W., Dan, F., & Chunshun, J. (2013). Curcumin enhances the effectiveness of cisplatin by suppressing CD133+cancer stem cells in laryngeal carcinoma treatment. Experimental and Therapeutic Medicine, 6, 1317–1321.
  • • Zhang, J. R., Lu, F., Lu, T., Dong, W. H., Li, P., Liu, N. ... Ji, C. Y. (2014). Inactivation of FoxM1 transcription factor contributes to curcumininduced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukaemia cells. Journal of Molecular Medicine, 92, 1319–1330.
  • • Zhang, S., Yong, Q., Wu, X., & Liu, X. (2014). [Synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells and its related mechanism]. Zhong Yao Cai, 37, 2043–2046.
  • • Zou, J., Zhu, L., Jiang, X., Wang, Yang, Wang, Yue, Wang, X., & Chen, B. (2018). Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget, 9, 11268– 11278.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri, Sağlık Kurumları Yönetimi
Bölüm Original Article
Yazarlar

Merve Becit Bu kişi benim 0000-0002-8084-4419

Sevtap Aydın Dilsiz Bu kişi benim 0000-0002-6368-2745

Nurşen Başaran Bu kişi benim 0000-0001-8581-8933

Yayımlanma Tarihi 30 Aralık 2020
Gönderilme Tarihi 29 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 50 Sayı: 3

Kaynak Göster

APA Becit, M., Aydın Dilsiz, S., & Başaran, N. (2020). Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. İstanbul Journal of Pharmacy, 50(3), 202-210.
AMA Becit M, Aydın Dilsiz S, Başaran N. Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. iujp. Aralık 2020;50(3):202-210.
Chicago Becit, Merve, Sevtap Aydın Dilsiz, ve Nurşen Başaran. “Interaction of Curcumin on Cisplatin Cytotoxicity in HeLa and HepG2 Carcinoma Cells”. İstanbul Journal of Pharmacy 50, sy. 3 (Aralık 2020): 202-10.
EndNote Becit M, Aydın Dilsiz S, Başaran N (01 Aralık 2020) Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. İstanbul Journal of Pharmacy 50 3 202–210.
IEEE M. Becit, S. Aydın Dilsiz, ve N. Başaran, “Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells”, iujp, c. 50, sy. 3, ss. 202–210, 2020.
ISNAD Becit, Merve vd. “Interaction of Curcumin on Cisplatin Cytotoxicity in HeLa and HepG2 Carcinoma Cells”. İstanbul Journal of Pharmacy 50/3 (Aralık 2020), 202-210.
JAMA Becit M, Aydın Dilsiz S, Başaran N. Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. iujp. 2020;50:202–210.
MLA Becit, Merve vd. “Interaction of Curcumin on Cisplatin Cytotoxicity in HeLa and HepG2 Carcinoma Cells”. İstanbul Journal of Pharmacy, c. 50, sy. 3, 2020, ss. 202-10.
Vancouver Becit M, Aydın Dilsiz S, Başaran N. Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. iujp. 2020;50(3):202-10.