Adler, A., Shaw, E., Stokes, T., & Ruiz, F. (2009). Newer agents for blood glucose control in type 2 diabetes: summary of NICE guid- ance. BMJ, 338, b1668-b1668. https://doi.org/10.1136/bmj.b1668
Athyros, V. G., Doumas, M., Imprialos, K. P., Stavropoulos, K., Geor- gianou, E., Katsimardou, A., & Karagiannis, A. (2018). Diabetes and lipid metabolism. Hormones (Athens, Greece), 17(1), 61–67. https:// doi.org/10.1007/s42000-018-0014-8
Bangert, S. (2008). Hyperlipidaemia: Diagnosis and Management (3rd edn.). Annals of Clinical Biochemistry, 45(6), 619–619. https:// doi.org/10.1258/acb.2008.200814
Berkowitz, S. A., Krumme, A. A., Avorn, J., Brennan, T., Matlin, O. S., Spettell, C. M., Pezalla, E. J., Brill, G., Shrank, W. H., & Choudhry,
N. ,. (2014). Initial choice of oral glucose-lowering medication for diabetes mellitus: a patient-centered comparative effectiveness study. JAMA internal medicine, 174(12), 1955–1962. https://doi. org/10.1001/jamainternmed.2014.5294
Brunton, L., Lazo J, Buxton I, Blumenthal D, Akil H, Amrein P. (2005). Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill
Busti, A. J. (2015). The Mechanism for Metformin’s (Glucophage) Im- provement in the Lipid Profile Beyond its Glucose Lowering Effects in Diabetes Mellitus. Ebmconsult.com. Retrieved 8 March 2018, from https://www.ebmconsult.com/articles/metformin-glucophage- diabetes-lipid-cholesterol-lowering.
Chapman, M. J., Ginsberg, H. N., Amarenco, P., Andreotti, F., Borén, J., et al European Atherosclerosis Society Consensus Panel. (2011). Triglyceride-rich lipoproteins and high-density lipoprotein cho- lesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. European Heart Journal, 32(11), 1345–1361. https://doi.org/10.1093/eurheartj/ehr112
Chen, Y. H., Du, L., Geng, X. Y., Peng, Y. L., Shen, J. N., Zhang, Y. G., Liu, G. J., & Sun, X. (2015). Effects of sulfonylureas on lipids in type 2 diabetes mellitus: a meta-analysis of randomized controlled tri- als. Journal of Evidence-Based Medicine, 8(3), 134–148. https://doi. org/10.1111/jebm.12157
Davies, M., D’Alessio, D., Fradkin, J., Kernan, W., Mathieu, C., Min- grone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycaemia in type 2 diabetes, 2018. A con- sensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Dia- betologia, 61(12), 2461-2498. https://doi.org/10.1007/s00125-018-4729-5
Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice, 93 Suppl 1, S52–S59. https://doi. org/10.1016/S0168-8227(11)70014-6
Florkowski C. (2013). HbA1c as a Diagnostic Test for Diabetes Mellitus - Reviewing the Evidence. The Clinical Biochemist. Re- views, 34(2), 75–83.
Hussain, A., Ali, I., Ijaz, M., & Rahim, A. (2017). Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipid- emia. Therapeutic Advances in Endocrinology and Metabolism, 8(4), 51–57. https://doi.org/10.1177/2042018817692296
Indonesian Endocrinologist Association (PERKENI). (2015). The consensus in management and prevention of type 2 diabetes mellitus for 2015 Jakarta: Perkeni. https://pbperkeni.or.id/undu- han
Jaiswal, M., Schinske, A., & Pop-Busui, R. (2014). Lipids and lipid management in diabetes. Best Practice & Research Clinical Endo- crinology & Metabolism, 28(3), 325-338. https://doi.org/10.1016/j. beem.2013.12.001
Kashi, Z., Mahrooz, A., Kianmehr, A., & Alizadeh, A. (2016). The Role of Metformin Response in Lipid Metabolism in Patients with Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Met- formin. PloS one, 11(3), e0151543. https://doi.org/10.1371/journal. pone.0151543
Laisupasin, P., Thompat, W., Sukarayodhin, S., Sornprom, A., & Sudjaroen, Y. (2013). Comparison of Serum Lipid Profiles be- tween Normal Controls and Breast Cancer Patients. Journal of Laboratory Physicians, 5(1), 38–41. https://doi.org/10.4103/0974-2727.115934
Li, Y., Hu, Y., Ley, S. H., Rajpathak, S., & Hu, F. B. (2014). Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women. Dia- betes care, 37(11), 3106–3113. https://doi.org/10.2337/dc14-1306
Madsen, A., Bozickovic, O., Bjune, J.I., Mellgren. G., Sagen, J. V. (2015). Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppress- ing steroid receptor coactivator 2 (SRC-2). Sci Rep. doi: 10.1038/ srep16430. PMID: 26548416; PMCID: PMC4637908.
Middleton, T. L., Wong, J., Molyneaux, L., Brooks, B. A., Yue, D. K., Twigg, S. M., & Wu, T. (2017). Cardiac Effects of Sulfonylurea-Re- lated Hypoglycemia. Diabetes Care, 40(5), 663–670. https://doi. org/10.2337/dc16-1972
Ministry of Health. (2013). Basic Health Research 2013. Jakarta: Ministry of Health Republic of Indonesia. https://www.litbang. kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/
Natali, A., & Ferrannini, E. (2006). Effects of metformin and thia- zolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a system- atic review. Diabetologia, 49(3), 434–441. https://doi.org/10.1007/ s00125-006-0141-7
Nuttall, F. Q. (2015). Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutrition today, 50 (3), 117–128. https://doi. org/10.1097/NT.0000000000000092
Rao, A. D., Kuhadiya, N., Reynolds, K., & Fonseca, V. A. (2008). Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality?: a meta-analysis of observational studies. Diabetes Care, 31(8), 1672– 1678. https://doi.org/10.2337/dc08-0167
Sauriasari, R., Andriany, R., Sekar, A., & Azizahwati, A. (2017). Com- parison of Antioxidative Effect of Metformin and Combination of Metformin-Sulfonylurea in Type 2 Diabetes Mellitus Patients. Journal of Young Pharmacists, 9(1), 39-42. https://doi.org/10.5530/ jyp.2017.1s.10
Sauriasari, R., Aristia H., Azizahwati (2020). Urine albumin-to-cre- atinine ratio and estimated glomerular filtration rate in matched groups of type 2 diabetes mellitus patients receiving metformin and metformin-sulfonylurea. International Journal of Applied Phar- maceutics. 12(Special Issue I), 257-259. DOI: 10.22159/ijap.2020. v12s1.FF056
Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes Dyslipidemia. Diabetes therapy: research, treat-
ment and education of diabetes and related disorders, 7(2), 203– 219. https://doi.org/10.1007/s13300-016-0167-x
Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., De- pinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.), 310(5754), 1642–1646. https:// doi.org/10.1126/science.1120781
Sola, D., Rossi, L., Schianca, G., Maffioli, P., Bigliocca, M., & Mella, R. et al. (2015). State of the art paper Sulfonylureas and their use in clinical practice. Archives Of Medical Science, 4, 840-848. https:// doi.org/10.5114/aoms.2015.53304
Tsimihodimos, V., Gonzalez-Villalpando, C., Meigs, J., & Ferrannini, E. (2018). Hypertension and Diabetes Mellitus. Hypertension, 71(3), 422-428. https://doi.org/10.1161/hypertensionaha.117.10546
WHO. Diabetes. Who.int. (2021). Retrieved 10 November 2021, from http://www.who.int/news-room/fact-sheets/detail/diabe- tes.
Zhang, F., Xiang, H., Fan, Y., Ganchuluun, T. A., Kong, W., Ouyang, Q., Sun, J., Cao, B., Jiang, H., & Nie, S. (2013). The effects of sulfo- nylureas plus metformin on lipids, blood pressure, and adverse events in type 2 diabetes: a meta-analysis of randomized con- trolled trials. Endocrine, 44(3), 648–658. https://doi.org/10.1007/ s12020-013-9970-6
Zhang, X., Song, Y., Feng, M., Zhou, X., Lu, Y., Gao, L., Yu, C., Jiang, X., & Zhao, J. (2015). Thyroid-stimulating hormone decreases HMG- CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi. org/10.1194/jlr.M047654
Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study
Year 2022,
Volume: 52 Issue: 2, 114 - 120, 30.08.2022
Background and Aims: In addition to lowering blood glucose levels, metformin also has a positive effect on the lipid profile by affecting gluconeogenesis and lipogenesis in the liver. Conversely, sulfonylurea is reported to possibly worsen the lipid profile and increase the risk of cardiovascular disease. Therefore, we would like to know whether there is a significant differ- ence in the lipid profile of type 2 diabetes mellitus patients taking metformin as monotherapy and metformin-sulfonylurea as a combination since these two medicines are very commonly used in Indonesia. Methods: A cross-sectional study was performed on 88 patients with type 2 diabetes mellitus who were restricted on metfor- min or metformin-sulfonylurea for equal to or more than 1 year. Subjects on metformin (n=37) and metformin-sulfonylurea (n=51) were asked to fast for at least 8 hours before blood sampling. We measured the lipid parameters from subjects’ blood samples using a standardized enzymatic method. Results: All basic characteristics of the study subjects in these two groups were matched. We found that total cholesterol, LDL-cholesterol, and triglyceride were lower and HDL-cholesterol was higher in the metformin group than the metformin- sulfonylurea group but not statistically significant (p>0.05). Multivariate analysis showed no significant differences for both therapies in any parameters before and after being adjusted by confounders. Only the increase in BMI contributed signifi- cantly to the increase in triglyceride. Conclusion: This study presents no statistical differences in lipid profile after ≥1 year consumption of metformin and metfor- min-sulfonylurea combination.
Adler, A., Shaw, E., Stokes, T., & Ruiz, F. (2009). Newer agents for blood glucose control in type 2 diabetes: summary of NICE guid- ance. BMJ, 338, b1668-b1668. https://doi.org/10.1136/bmj.b1668
Athyros, V. G., Doumas, M., Imprialos, K. P., Stavropoulos, K., Geor- gianou, E., Katsimardou, A., & Karagiannis, A. (2018). Diabetes and lipid metabolism. Hormones (Athens, Greece), 17(1), 61–67. https:// doi.org/10.1007/s42000-018-0014-8
Bangert, S. (2008). Hyperlipidaemia: Diagnosis and Management (3rd edn.). Annals of Clinical Biochemistry, 45(6), 619–619. https:// doi.org/10.1258/acb.2008.200814
Berkowitz, S. A., Krumme, A. A., Avorn, J., Brennan, T., Matlin, O. S., Spettell, C. M., Pezalla, E. J., Brill, G., Shrank, W. H., & Choudhry,
N. ,. (2014). Initial choice of oral glucose-lowering medication for diabetes mellitus: a patient-centered comparative effectiveness study. JAMA internal medicine, 174(12), 1955–1962. https://doi. org/10.1001/jamainternmed.2014.5294
Brunton, L., Lazo J, Buxton I, Blumenthal D, Akil H, Amrein P. (2005). Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill
Busti, A. J. (2015). The Mechanism for Metformin’s (Glucophage) Im- provement in the Lipid Profile Beyond its Glucose Lowering Effects in Diabetes Mellitus. Ebmconsult.com. Retrieved 8 March 2018, from https://www.ebmconsult.com/articles/metformin-glucophage- diabetes-lipid-cholesterol-lowering.
Chapman, M. J., Ginsberg, H. N., Amarenco, P., Andreotti, F., Borén, J., et al European Atherosclerosis Society Consensus Panel. (2011). Triglyceride-rich lipoproteins and high-density lipoprotein cho- lesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. European Heart Journal, 32(11), 1345–1361. https://doi.org/10.1093/eurheartj/ehr112
Chen, Y. H., Du, L., Geng, X. Y., Peng, Y. L., Shen, J. N., Zhang, Y. G., Liu, G. J., & Sun, X. (2015). Effects of sulfonylureas on lipids in type 2 diabetes mellitus: a meta-analysis of randomized controlled tri- als. Journal of Evidence-Based Medicine, 8(3), 134–148. https://doi. org/10.1111/jebm.12157
Davies, M., D’Alessio, D., Fradkin, J., Kernan, W., Mathieu, C., Min- grone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycaemia in type 2 diabetes, 2018. A con- sensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Dia- betologia, 61(12), 2461-2498. https://doi.org/10.1007/s00125-018-4729-5
Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice, 93 Suppl 1, S52–S59. https://doi. org/10.1016/S0168-8227(11)70014-6
Florkowski C. (2013). HbA1c as a Diagnostic Test for Diabetes Mellitus - Reviewing the Evidence. The Clinical Biochemist. Re- views, 34(2), 75–83.
Hussain, A., Ali, I., Ijaz, M., & Rahim, A. (2017). Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipid- emia. Therapeutic Advances in Endocrinology and Metabolism, 8(4), 51–57. https://doi.org/10.1177/2042018817692296
Indonesian Endocrinologist Association (PERKENI). (2015). The consensus in management and prevention of type 2 diabetes mellitus for 2015 Jakarta: Perkeni. https://pbperkeni.or.id/undu- han
Jaiswal, M., Schinske, A., & Pop-Busui, R. (2014). Lipids and lipid management in diabetes. Best Practice & Research Clinical Endo- crinology & Metabolism, 28(3), 325-338. https://doi.org/10.1016/j. beem.2013.12.001
Kashi, Z., Mahrooz, A., Kianmehr, A., & Alizadeh, A. (2016). The Role of Metformin Response in Lipid Metabolism in Patients with Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Met- formin. PloS one, 11(3), e0151543. https://doi.org/10.1371/journal. pone.0151543
Laisupasin, P., Thompat, W., Sukarayodhin, S., Sornprom, A., & Sudjaroen, Y. (2013). Comparison of Serum Lipid Profiles be- tween Normal Controls and Breast Cancer Patients. Journal of Laboratory Physicians, 5(1), 38–41. https://doi.org/10.4103/0974-2727.115934
Li, Y., Hu, Y., Ley, S. H., Rajpathak, S., & Hu, F. B. (2014). Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women. Dia- betes care, 37(11), 3106–3113. https://doi.org/10.2337/dc14-1306
Madsen, A., Bozickovic, O., Bjune, J.I., Mellgren. G., Sagen, J. V. (2015). Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppress- ing steroid receptor coactivator 2 (SRC-2). Sci Rep. doi: 10.1038/ srep16430. PMID: 26548416; PMCID: PMC4637908.
Middleton, T. L., Wong, J., Molyneaux, L., Brooks, B. A., Yue, D. K., Twigg, S. M., & Wu, T. (2017). Cardiac Effects of Sulfonylurea-Re- lated Hypoglycemia. Diabetes Care, 40(5), 663–670. https://doi. org/10.2337/dc16-1972
Ministry of Health. (2013). Basic Health Research 2013. Jakarta: Ministry of Health Republic of Indonesia. https://www.litbang. kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/
Natali, A., & Ferrannini, E. (2006). Effects of metformin and thia- zolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a system- atic review. Diabetologia, 49(3), 434–441. https://doi.org/10.1007/ s00125-006-0141-7
Nuttall, F. Q. (2015). Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutrition today, 50 (3), 117–128. https://doi. org/10.1097/NT.0000000000000092
Rao, A. D., Kuhadiya, N., Reynolds, K., & Fonseca, V. A. (2008). Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality?: a meta-analysis of observational studies. Diabetes Care, 31(8), 1672– 1678. https://doi.org/10.2337/dc08-0167
Sauriasari, R., Andriany, R., Sekar, A., & Azizahwati, A. (2017). Com- parison of Antioxidative Effect of Metformin and Combination of Metformin-Sulfonylurea in Type 2 Diabetes Mellitus Patients. Journal of Young Pharmacists, 9(1), 39-42. https://doi.org/10.5530/ jyp.2017.1s.10
Sauriasari, R., Aristia H., Azizahwati (2020). Urine albumin-to-cre- atinine ratio and estimated glomerular filtration rate in matched groups of type 2 diabetes mellitus patients receiving metformin and metformin-sulfonylurea. International Journal of Applied Phar- maceutics. 12(Special Issue I), 257-259. DOI: 10.22159/ijap.2020. v12s1.FF056
Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes Dyslipidemia. Diabetes therapy: research, treat-
ment and education of diabetes and related disorders, 7(2), 203– 219. https://doi.org/10.1007/s13300-016-0167-x
Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., De- pinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.), 310(5754), 1642–1646. https:// doi.org/10.1126/science.1120781
Sola, D., Rossi, L., Schianca, G., Maffioli, P., Bigliocca, M., & Mella, R. et al. (2015). State of the art paper Sulfonylureas and their use in clinical practice. Archives Of Medical Science, 4, 840-848. https:// doi.org/10.5114/aoms.2015.53304
Tsimihodimos, V., Gonzalez-Villalpando, C., Meigs, J., & Ferrannini, E. (2018). Hypertension and Diabetes Mellitus. Hypertension, 71(3), 422-428. https://doi.org/10.1161/hypertensionaha.117.10546
WHO. Diabetes. Who.int. (2021). Retrieved 10 November 2021, from http://www.who.int/news-room/fact-sheets/detail/diabe- tes.
Zhang, F., Xiang, H., Fan, Y., Ganchuluun, T. A., Kong, W., Ouyang, Q., Sun, J., Cao, B., Jiang, H., & Nie, S. (2013). The effects of sulfo- nylureas plus metformin on lipids, blood pressure, and adverse events in type 2 diabetes: a meta-analysis of randomized con- trolled trials. Endocrine, 44(3), 648–658. https://doi.org/10.1007/ s12020-013-9970-6
Zhang, X., Song, Y., Feng, M., Zhou, X., Lu, Y., Gao, L., Yu, C., Jiang, X., & Zhao, J. (2015). Thyroid-stimulating hormone decreases HMG- CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi. org/10.1194/jlr.M047654
Sauriasari, R., Syawalia, F., & Azizahwati, A. (2022). Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. İstanbul Journal of Pharmacy, 52(2), 114-120. https://doi.org/10.26650/IstanbulJPharm.2022.957738
AMA
Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. August 2022;52(2):114-120. doi:10.26650/IstanbulJPharm.2022.957738
Chicago
Sauriasari, Rani, Fitriani Syawalia, and Azizahwati Azizahwati. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy 52, no. 2 (August 2022): 114-20. https://doi.org/10.26650/IstanbulJPharm.2022.957738.
EndNote
Sauriasari R, Syawalia F, Azizahwati A (August 1, 2022) Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. İstanbul Journal of Pharmacy 52 2 114–120.
IEEE
R. Sauriasari, F. Syawalia, and A. Azizahwati, “Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study”, iujp, vol. 52, no. 2, pp. 114–120, 2022, doi: 10.26650/IstanbulJPharm.2022.957738.
ISNAD
Sauriasari, Rani et al. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy 52/2 (August 2022), 114-120. https://doi.org/10.26650/IstanbulJPharm.2022.957738.
JAMA
Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. 2022;52:114–120.
MLA
Sauriasari, Rani et al. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy, vol. 52, no. 2, 2022, pp. 114-20, doi:10.26650/IstanbulJPharm.2022.957738.
Vancouver
Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. 2022;52(2):114-20.