Research Article
BibTex RIS Cite

Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production

Year 2024, Volume: 54 Issue: 3, 350 - 358, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1424150

Abstract

Background and Aims: Mitragyna speciosa Korth. is a tropical plant native to Asia with various medicinal properties. This study examined the immunotherapeutic potential of M. speciosa methanolic extract (MSME) against lipopolysaccharide (LPS)- stimulated activation of macrophages via the expression of Toll-like receptor 4 (TLR-4) and CD14 and downstream signalling cascades leading to the activation of nuclear factor kappa B (NF-𝜅B), which potentially affects macrophage immune responses.
Methods: The expression of TLR-4/CD14 and NF-𝜅B genes in macrophages was determined in total RNA by qRT-PCR. Subsequently, the macrophage phagocytic activities and secretion of immune mediators such as reactive oxygen species (ROS) and cytokines were evaluated by fluorescent latex beads uptake assay, 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA), and cytometric bead array, respectively, in LPS-activated RAW264.7 cells.
Results: MSME significantly reduced macrophage-mediating inflammation by inhibiting TLR-4/CD14 signalling and subsequently suppressed the NF-𝜅B expression. Inhibition of TLR-4 by MSME attenuated macrophage phagocytic activity, which consequently reduced the production of ROS and pro-inflammatory cytokines such as IL-6, MCP-1, and TNF-α. Interestingly, MSME significantly increased the production of IL-10, which supports the anti-inflammatory properties of M. speciosa.
Conclusion: Our findings suggest the therapeutic potential of MSME through the suppression of macrophage inflammatory responses mediated by IL-10 secretion.

Supporting Institution

Universiti Putra Malaysia

Project Number

GP IPS/2022/9726100

Thanks

This research was financially supported by Geran Putra Siswazah (GP IPS/2022/9726100) of Universiti Putra Malaysia

References

  • Ahmad, W., Jantan, I., Kumolosasi, E., Haque, M. A., & Bukhari, S. N. A. (2018). Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. International Immunopharmacology, 60, 141-151. https://doi.org/10.1016/j.intimp.2018.04.046 google scholar
  • Annas, S., Mastura Shaik Mossadeq, W., & Abdul Kadir, A. (2020). TROPICAL AGRICULTURAL SCIENCE Antipyretic Effect of Mitragynine and Crude Methanolic Extract of Mitragyna speciosa google scholar
  • Korth. in Mice. Pertanika J. Trop. Agric. Sc, 43(2), 207-216. Retrieved from http://www.pertanika.upm.edu.my/ google scholar
  • Assanangkornchai, S., Muekthong, A., Sam-angsri, N., & Pat-tanasattayawong, U. (2007). The use of Mitragynine speciosa (‘Krathom’), an addictive plant, in Thailand. Substance Use & Misuse, 42(14), 2145-2157. https://doi.org/10.1080/ 10826080701205869 google scholar
  • Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Dis-eases. International Journal of Molecular Sciences, 19(6), 1801. https://doi.org/10.3390/ijms19061801 google scholar
  • Buckhalter, S., Soubeyrand, E., Ferrone, S. A. E., Rasmussen, D. J., Manduca, J. D., Al-Abdul-Wahid, M. S., . . . Perreault, M. L. (2021). The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscil-lations but not AFosB Accumulation. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.696461 google scholar
  • Dalmas, E., Tordjman, J., Guerre-Millo, M., & Clement, K. (2012). Macrophages and Inflammation. In Adipose Tissue Biology (pp. 167-193). New York, NY: Springer New York. https://doi.org/10. 1007/978-1-4614-0965-6_6 google scholar
  • Doyle, S. E., O’Connell, R. M., Miranda, G. A., Vaidya, S. A., Chow, E. K., Liu, P. T., . . . Cheng, G. (2004). Toll-like Receptors In-duce a Phagocytic Gene Program through p38. The Journal of Experimental Medicine, 199(1), 81-90. https://doi.org/10.1084/ jem.20031237 google scholar
  • Elisia, I., Pae, H. B., Lam, V., Cederberg, R., Hofs, E., & Krystal, G. (2018). Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. Journal of Im-munological Methods, 452, 26-31. https://doi.org/10.1016/j.jim. 2017.10.004 google scholar
  • Feng, G., Laijin, S., Chen, S., Teng, W., Dejian, Z., Yin, C., & Shoudong, G. (2021). In vitro and in vivo immunoregulatory ac-tivity of sulfated fucan from the sea cucumber A. leucoprocta. In-ternational Journal of Biological Macromolecules, 187(March), 931-938. https://doi.org/10.1016/j.ijbiomac.2021.08.008 google scholar
  • Finkel, T. (2011). Signal transduction by reactive oxygen species. Journal of Cell Biology, 194(1), 7-15. https://doi.org/10.1083/ jcb.201102095 google scholar
  • Firmansyah, A., Sundalian, M., & Taufiq, M. (2020). Kratom (Mi-tragyna speciosa Korth) for a New Medicinal: a Review of Phar-macological and Compound Analysis. Biointerface Research in Applied Chemistry, 11(2), 9704-9718. https://doi.org/10.33263/ BRIAC112.97049718 google scholar
  • Franchimont, D., Martens, H., Hagelstein, M.-T., Louis, E., Dewe, W., Chrousos, G. P., . . . Geenen, V. (1999). Tumor Necrosis Factor a Decreases, and Interleukin-10 Increases, the Sensitivity of Hu-man Monocytes to Dexamethasone: Potential Regulation of the Glucocorticoid Receptor. The Journal of Clinical Endocrinology & Metabolism, 84(8), 2834-2839. https://doi.org/10.1210/jcem. 84.8.5931 google scholar
  • Fushimi, T., Okayama, H., Seki, T., Shimura, S., & Shirato, K. (1997). Dexamethasone Suppressed Gene Expression and Production of lnterleukin-10 by Human Peripheral Blood Mononuclear Cells and Monocytes. International Archives of Allergy and Immunology, 112(1), 13-18. https://doi.org/10.1159/000237425 google scholar
  • Gao, W., Xiong, Y., Li, Q., & Yang, H. (2017). Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Dis-eases: A Journey from Molecular to Nano Therapeutics. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00508 google scholar
  • George, G., Shyni, G. L., Abraham, B., Nisha, P., & Raghu, K. G. (2021). Downregulation of TLR4/MyD88/p38MAPK and JAK/STAT pathway in RAW 264.7 cells by Alpinia galanga reveals its beneficial effects in inflammation. Journal of Ethnopharmacology, 275, 114132. https://doi.org/10.1016/j.jep. 2021.114132 google scholar
  • Gu, B. J., Sun, C., Fuller, S., Skarratt, K. K., Petrou, S., & Wiley, James. S. (2014). A quantitative method for measuring innate phagocyto-sis by human monocytes using real-time flow cytometry. Cytome-try Part A, 85(4), 313-321. https://doi.org/10.1002/cyto.a.22400 google scholar
  • Jansen, K. L. R., & Prast, C. J. (1988). Psychoactive Properties of Mitragynine (Kratom). Journal of Psychoactive Drugs, 20(4), 455-457. https://doi.org/10.1080/02791072.1988.10472519 google scholar
  • Jantan, I., Ilangkovan, M., Yuandani, & Mohamad, H. F. (2014). Cor-relation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic ac-tivity of human neutrophils. BMC Complementary and Alternative Medicine, 14(1), 429. https://doi.org/10.1186/1472-6882-14-429 google scholar
  • Juanda, E., Andayani, S., & Maftuch, M. (2019). Phytochemical Screening and Antibacterial Activity of Kratom Leaf (Mitrag-yna speciosa Korth.) Against Aeromonas hydrophilla. The Journal of Experimental Life Sciences, 9(3), 155-158. https://doi.org/10. 21776/ub.jels.2019.009.03.02 google scholar
  • Kafo, A. S. K., Elsalami, R. M. A., Zailan, N. F. Z., Mahayidin, H., Ramasamy, R., Zaidan, U. H., & Hassan, M. (2023). Effects of Mi-tragyna Speciosa (Korth.) on macrophage immune responses. Cur-rent Trends in Biotechnology and Pharmacy, 17(4A), 121-130. https://doi.org/10.5530/ctbp.2023.4s.99 google scholar
  • Kafo, A. S. K., Mahayidin, H., Zailan, N. F. Z., Zaidan, U. H., Syed Azhar, S. N. A., Ramasamy, R., & Hassan, M. (2023). Isolation of Phytochemical and Pharmacological Bioactive Com-pounds From Mitragyna speciosa (Korth.): A Scoping Review. Malaysian Journal of Medicine and Health Sciences, 19(s16), 38-47. https://doi.org/10.47836/mjmhs.19.s16.7 google scholar
  • Kawasaki, T., & Kawai, T. (2014). Toll-Like Receptor Signaling Path-ways. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu. 2014.00461 google scholar
  • Kim, E.-A., Kim, S.-Y., Ye, B.-R., Kim, J., Ko, S.-C., Lee, W. W., . . . Heo, S.-J. (2018). Anti-inflammatory effect of Apo-9-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and ze-brafish model. International Immunopharmacology, 59, 339-346. https://doi.org/10.1016/j.intimp.2018.03.034 google scholar
  • Kruegel, A. C., Uprety, R., Grinnell, S. G., Langreck, C., Pekarskaya, E. A., Le Rouzic, V., . . . Sames, D. (2019). 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992-1001. https: //doi.org/10.1021/acscentsci.9b00141 google scholar
  • Liao, J., Xie, X., Wang, W., Gao, Y., Cai, Y., Peng, J., . . . Wang, L. (2021). Anti-inflammatory Activity of Essential Oil from Leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB Signaling Pathways and NLRP3 Inflammasome Activation in LPS-induced RAW264.7 Macrophage Cells. Journal of Essen-tial Oil Bearing Plants, 24(2), 160-176. https://doi.org/10.1080/ 0972060X.2021.1912645 google scholar
  • Limtrakul, P., Yodkeeree, S., Pitchakarn, P., & Punfa, W. (2015). Sup-pression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways. Asian Pacific Journal of Cancer Prevention, 16(10), 4277-4283. https://doi.org/10.7314/APJCP. 2015.16.10.4277 google scholar
  • Liu, Y., Chen, W., Zheng, F., Yu, H., & Wei, K. (2022). Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-kB, MAPK and STATs Activation. Molecules, 27(14), 4603. https://doi.org/10.3390/molecules27144603 google scholar
  • Meng, Z., Yan, C., Deng, Q., Gao, D., & Niu, X. (2013). Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kB pathways. Acta Pharmacologica Sinica, 34(7), 901-911. https://doi.org/10. 1038/aps.2013.24 google scholar
  • Parthasarathy, S., Bin Azizi, J., Ramanathan, S., Ismail, S., Sasid-haran, S., Said, M. I. Mohd., & Mansor, S. M. (2009). Eval-uation of Antioxidant and Antibacterial Activities of Aqueous, Methanolic and Alkaloid Extracts from Mitragyna Speciosa (Ru-biaceae Family) Leaves. Molecules, 14(10), 3964-3974. https: //doi.org/10.3390/molecules14103964 google scholar
  • Qi, Z., Yin, F., Lu, L., Shen, L., Qi, S., Lan, L., . . . Yin, Z. (2013). Baicalein reduces lipopolysaccharide-induced inflamma-tion via suppressing JAK/STATs activation and ROS production. Inflammation Research, 62(9), 845-855. https://doi.org/10.1007/ s00011-013-0639-7 google scholar
  • Ryu, J. H., Sung, J., Xie, C., Shin, M.-K., Kim, C.-W., Kim, N.-G., . . . Kang, D. (2016). Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. Journal of Functional Foods, 27, 122-130. https://doi.org/10.1016/j.jff.2016.08.059 google scholar
  • Shaik Mossadeq, W. M., Sulaiman, M. R., Tengku Mohamad, T. A., Chiong, H. S., Zakaria, Z. A., Jabit, M. L., . . . Israf, D. A. (2009). Anti-inflammatory and antinociceptive effects of Mitrag-yna speciosa Korth methanolic extract. Medical Principles and Practice, 18(5), 378-384. https://doi.org/10.1159/000226292 google scholar
  • Shin, K.-M., Kim, Y.-H., Park, W.-S., Kang, I., Ha, J., Choi, J.-W., . . . Lee, K.-T. (2004). Inhibition of Methanol Extract from the Fruits of Kochia scoparia on Lipopolysaccharide-Induced Nitric Oxide, Prostagladin E2, and Tumor Necrosis Factor-.ALPHA. Production from Murine Macrophage RAW 264.7 Cells. Bi-ological and Pharmaceutical Bulletin, 27(4), 538-543. https: //doi.org/10.1248/bpb.27.538 google scholar
  • Sornsenee, P., Chimplee, S., & Romyasamit, C. (2023). Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermen-tation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/ s12602-023-10142-x google scholar
  • Srisuwan, S., Tongtawe, P., Srimanote, P., & Voravuthikunchai, S. P. (2014). Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS ONE, 9(10), 1-11. https://doi.org/ 10.1371/journal.pone.0110321 google scholar
  • Tan, W. S., Arulselvan, P., Karthivashan, G., & Fakurazi, S. (2015). Moringa oleifera flower extract suppresses the activation of inflam-matory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-kB pathway. Mediators of Inflammation, 2015(1). https://doi.org/10.1155/2015/720171 google scholar
  • Tohar, N., Shilpi, J. A., Sivasothy, Y., Ahmad, S., & Awang, K. (2019). Chemical constituents and nitric oxide inhibitory ac-tivity of supercritical carbon dioxide extracts from Mitragyna speciosa leaves. Arabian Journal of Chemistry, 12(3), 350-359. https://doi.org/10.1016/j.arabjc.2016.09.005 google scholar
  • Utar, Z., Majid, M. I. A., Adenan, M. I., Jamil, M. F. A., & Lan, T. M. (2011). Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E2 production induced by lipopolysaccharide in RAW264.7 macrophage cells. Journal of Ethnopharmacology, 136(1), 75-82. https://doi.org/10.1016/j.jep.2011.04.011 google scholar
  • Wang, N., Xu, C., Li, N., Wang, F., Wang, F., Li, Z., . . . Zhang, G. (2022). Synergistic anti-inflammatory effects of resveratrol and vitamin E in lipopolysaccharide-induced RAW264.7 cells. Food Science and Technology, 42. https://doi.org/10.1590/fst.24122 google scholar
  • Wang, Y., Smith, W., Hao, D., He, B., & Kong, L. (2019). M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. International Immunopharmacology, 70, 459-466. https://doi.org/10.1016/j.intimp.2019.02.050 google scholar
  • Wickramasinghe, R., Kumara, R. R., De Silva, E. D., Ratnasooriya, W. D., & Handunnetti, S. (2014). Inhibition of phagocytic and intracellular killing activity of human neutrophils by aqueous and methanolic leaf extracts of Ixora coccinea. Journal of Ethnopharmacology, 153(3), 900–907. https://doi.org/10.1016/j.jep.2014.03.064 google scholar
  • Zailan, N. F. Z., Sarchio, S. N. E., & Hassan, M. (2022). Evaluation of Phytochemical Composition, Antioxidant and anti-Diabetic Activities of Mitragyna speciosa Methanolic Extract (MSME). Malaysian Journal of Medicine and Health Sciences, 18(s21), 93-100. https://doi.org/10.47836/mjmhs.18.s21.15 google scholar
Year 2024, Volume: 54 Issue: 3, 350 - 358, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1424150

Abstract

Project Number

GP IPS/2022/9726100

References

  • Ahmad, W., Jantan, I., Kumolosasi, E., Haque, M. A., & Bukhari, S. N. A. (2018). Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. International Immunopharmacology, 60, 141-151. https://doi.org/10.1016/j.intimp.2018.04.046 google scholar
  • Annas, S., Mastura Shaik Mossadeq, W., & Abdul Kadir, A. (2020). TROPICAL AGRICULTURAL SCIENCE Antipyretic Effect of Mitragynine and Crude Methanolic Extract of Mitragyna speciosa google scholar
  • Korth. in Mice. Pertanika J. Trop. Agric. Sc, 43(2), 207-216. Retrieved from http://www.pertanika.upm.edu.my/ google scholar
  • Assanangkornchai, S., Muekthong, A., Sam-angsri, N., & Pat-tanasattayawong, U. (2007). The use of Mitragynine speciosa (‘Krathom’), an addictive plant, in Thailand. Substance Use & Misuse, 42(14), 2145-2157. https://doi.org/10.1080/ 10826080701205869 google scholar
  • Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Dis-eases. International Journal of Molecular Sciences, 19(6), 1801. https://doi.org/10.3390/ijms19061801 google scholar
  • Buckhalter, S., Soubeyrand, E., Ferrone, S. A. E., Rasmussen, D. J., Manduca, J. D., Al-Abdul-Wahid, M. S., . . . Perreault, M. L. (2021). The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscil-lations but not AFosB Accumulation. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.696461 google scholar
  • Dalmas, E., Tordjman, J., Guerre-Millo, M., & Clement, K. (2012). Macrophages and Inflammation. In Adipose Tissue Biology (pp. 167-193). New York, NY: Springer New York. https://doi.org/10. 1007/978-1-4614-0965-6_6 google scholar
  • Doyle, S. E., O’Connell, R. M., Miranda, G. A., Vaidya, S. A., Chow, E. K., Liu, P. T., . . . Cheng, G. (2004). Toll-like Receptors In-duce a Phagocytic Gene Program through p38. The Journal of Experimental Medicine, 199(1), 81-90. https://doi.org/10.1084/ jem.20031237 google scholar
  • Elisia, I., Pae, H. B., Lam, V., Cederberg, R., Hofs, E., & Krystal, G. (2018). Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. Journal of Im-munological Methods, 452, 26-31. https://doi.org/10.1016/j.jim. 2017.10.004 google scholar
  • Feng, G., Laijin, S., Chen, S., Teng, W., Dejian, Z., Yin, C., & Shoudong, G. (2021). In vitro and in vivo immunoregulatory ac-tivity of sulfated fucan from the sea cucumber A. leucoprocta. In-ternational Journal of Biological Macromolecules, 187(March), 931-938. https://doi.org/10.1016/j.ijbiomac.2021.08.008 google scholar
  • Finkel, T. (2011). Signal transduction by reactive oxygen species. Journal of Cell Biology, 194(1), 7-15. https://doi.org/10.1083/ jcb.201102095 google scholar
  • Firmansyah, A., Sundalian, M., & Taufiq, M. (2020). Kratom (Mi-tragyna speciosa Korth) for a New Medicinal: a Review of Phar-macological and Compound Analysis. Biointerface Research in Applied Chemistry, 11(2), 9704-9718. https://doi.org/10.33263/ BRIAC112.97049718 google scholar
  • Franchimont, D., Martens, H., Hagelstein, M.-T., Louis, E., Dewe, W., Chrousos, G. P., . . . Geenen, V. (1999). Tumor Necrosis Factor a Decreases, and Interleukin-10 Increases, the Sensitivity of Hu-man Monocytes to Dexamethasone: Potential Regulation of the Glucocorticoid Receptor. The Journal of Clinical Endocrinology & Metabolism, 84(8), 2834-2839. https://doi.org/10.1210/jcem. 84.8.5931 google scholar
  • Fushimi, T., Okayama, H., Seki, T., Shimura, S., & Shirato, K. (1997). Dexamethasone Suppressed Gene Expression and Production of lnterleukin-10 by Human Peripheral Blood Mononuclear Cells and Monocytes. International Archives of Allergy and Immunology, 112(1), 13-18. https://doi.org/10.1159/000237425 google scholar
  • Gao, W., Xiong, Y., Li, Q., & Yang, H. (2017). Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Dis-eases: A Journey from Molecular to Nano Therapeutics. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00508 google scholar
  • George, G., Shyni, G. L., Abraham, B., Nisha, P., & Raghu, K. G. (2021). Downregulation of TLR4/MyD88/p38MAPK and JAK/STAT pathway in RAW 264.7 cells by Alpinia galanga reveals its beneficial effects in inflammation. Journal of Ethnopharmacology, 275, 114132. https://doi.org/10.1016/j.jep. 2021.114132 google scholar
  • Gu, B. J., Sun, C., Fuller, S., Skarratt, K. K., Petrou, S., & Wiley, James. S. (2014). A quantitative method for measuring innate phagocyto-sis by human monocytes using real-time flow cytometry. Cytome-try Part A, 85(4), 313-321. https://doi.org/10.1002/cyto.a.22400 google scholar
  • Jansen, K. L. R., & Prast, C. J. (1988). Psychoactive Properties of Mitragynine (Kratom). Journal of Psychoactive Drugs, 20(4), 455-457. https://doi.org/10.1080/02791072.1988.10472519 google scholar
  • Jantan, I., Ilangkovan, M., Yuandani, & Mohamad, H. F. (2014). Cor-relation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic ac-tivity of human neutrophils. BMC Complementary and Alternative Medicine, 14(1), 429. https://doi.org/10.1186/1472-6882-14-429 google scholar
  • Juanda, E., Andayani, S., & Maftuch, M. (2019). Phytochemical Screening and Antibacterial Activity of Kratom Leaf (Mitrag-yna speciosa Korth.) Against Aeromonas hydrophilla. The Journal of Experimental Life Sciences, 9(3), 155-158. https://doi.org/10. 21776/ub.jels.2019.009.03.02 google scholar
  • Kafo, A. S. K., Elsalami, R. M. A., Zailan, N. F. Z., Mahayidin, H., Ramasamy, R., Zaidan, U. H., & Hassan, M. (2023). Effects of Mi-tragyna Speciosa (Korth.) on macrophage immune responses. Cur-rent Trends in Biotechnology and Pharmacy, 17(4A), 121-130. https://doi.org/10.5530/ctbp.2023.4s.99 google scholar
  • Kafo, A. S. K., Mahayidin, H., Zailan, N. F. Z., Zaidan, U. H., Syed Azhar, S. N. A., Ramasamy, R., & Hassan, M. (2023). Isolation of Phytochemical and Pharmacological Bioactive Com-pounds From Mitragyna speciosa (Korth.): A Scoping Review. Malaysian Journal of Medicine and Health Sciences, 19(s16), 38-47. https://doi.org/10.47836/mjmhs.19.s16.7 google scholar
  • Kawasaki, T., & Kawai, T. (2014). Toll-Like Receptor Signaling Path-ways. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu. 2014.00461 google scholar
  • Kim, E.-A., Kim, S.-Y., Ye, B.-R., Kim, J., Ko, S.-C., Lee, W. W., . . . Heo, S.-J. (2018). Anti-inflammatory effect of Apo-9-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and ze-brafish model. International Immunopharmacology, 59, 339-346. https://doi.org/10.1016/j.intimp.2018.03.034 google scholar
  • Kruegel, A. C., Uprety, R., Grinnell, S. G., Langreck, C., Pekarskaya, E. A., Le Rouzic, V., . . . Sames, D. (2019). 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992-1001. https: //doi.org/10.1021/acscentsci.9b00141 google scholar
  • Liao, J., Xie, X., Wang, W., Gao, Y., Cai, Y., Peng, J., . . . Wang, L. (2021). Anti-inflammatory Activity of Essential Oil from Leaves of Blumea balsamifera (L.) DC through Inhibiting TLR4/NF-kB Signaling Pathways and NLRP3 Inflammasome Activation in LPS-induced RAW264.7 Macrophage Cells. Journal of Essen-tial Oil Bearing Plants, 24(2), 160-176. https://doi.org/10.1080/ 0972060X.2021.1912645 google scholar
  • Limtrakul, P., Yodkeeree, S., Pitchakarn, P., & Punfa, W. (2015). Sup-pression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways. Asian Pacific Journal of Cancer Prevention, 16(10), 4277-4283. https://doi.org/10.7314/APJCP. 2015.16.10.4277 google scholar
  • Liu, Y., Chen, W., Zheng, F., Yu, H., & Wei, K. (2022). Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-kB, MAPK and STATs Activation. Molecules, 27(14), 4603. https://doi.org/10.3390/molecules27144603 google scholar
  • Meng, Z., Yan, C., Deng, Q., Gao, D., & Niu, X. (2013). Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kB pathways. Acta Pharmacologica Sinica, 34(7), 901-911. https://doi.org/10. 1038/aps.2013.24 google scholar
  • Parthasarathy, S., Bin Azizi, J., Ramanathan, S., Ismail, S., Sasid-haran, S., Said, M. I. Mohd., & Mansor, S. M. (2009). Eval-uation of Antioxidant and Antibacterial Activities of Aqueous, Methanolic and Alkaloid Extracts from Mitragyna Speciosa (Ru-biaceae Family) Leaves. Molecules, 14(10), 3964-3974. https: //doi.org/10.3390/molecules14103964 google scholar
  • Qi, Z., Yin, F., Lu, L., Shen, L., Qi, S., Lan, L., . . . Yin, Z. (2013). Baicalein reduces lipopolysaccharide-induced inflamma-tion via suppressing JAK/STATs activation and ROS production. Inflammation Research, 62(9), 845-855. https://doi.org/10.1007/ s00011-013-0639-7 google scholar
  • Ryu, J. H., Sung, J., Xie, C., Shin, M.-K., Kim, C.-W., Kim, N.-G., . . . Kang, D. (2016). Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. Journal of Functional Foods, 27, 122-130. https://doi.org/10.1016/j.jff.2016.08.059 google scholar
  • Shaik Mossadeq, W. M., Sulaiman, M. R., Tengku Mohamad, T. A., Chiong, H. S., Zakaria, Z. A., Jabit, M. L., . . . Israf, D. A. (2009). Anti-inflammatory and antinociceptive effects of Mitrag-yna speciosa Korth methanolic extract. Medical Principles and Practice, 18(5), 378-384. https://doi.org/10.1159/000226292 google scholar
  • Shin, K.-M., Kim, Y.-H., Park, W.-S., Kang, I., Ha, J., Choi, J.-W., . . . Lee, K.-T. (2004). Inhibition of Methanol Extract from the Fruits of Kochia scoparia on Lipopolysaccharide-Induced Nitric Oxide, Prostagladin E2, and Tumor Necrosis Factor-.ALPHA. Production from Murine Macrophage RAW 264.7 Cells. Bi-ological and Pharmaceutical Bulletin, 27(4), 538-543. https: //doi.org/10.1248/bpb.27.538 google scholar
  • Sornsenee, P., Chimplee, S., & Romyasamit, C. (2023). Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermen-tation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/ s12602-023-10142-x google scholar
  • Srisuwan, S., Tongtawe, P., Srimanote, P., & Voravuthikunchai, S. P. (2014). Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS ONE, 9(10), 1-11. https://doi.org/ 10.1371/journal.pone.0110321 google scholar
  • Tan, W. S., Arulselvan, P., Karthivashan, G., & Fakurazi, S. (2015). Moringa oleifera flower extract suppresses the activation of inflam-matory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-kB pathway. Mediators of Inflammation, 2015(1). https://doi.org/10.1155/2015/720171 google scholar
  • Tohar, N., Shilpi, J. A., Sivasothy, Y., Ahmad, S., & Awang, K. (2019). Chemical constituents and nitric oxide inhibitory ac-tivity of supercritical carbon dioxide extracts from Mitragyna speciosa leaves. Arabian Journal of Chemistry, 12(3), 350-359. https://doi.org/10.1016/j.arabjc.2016.09.005 google scholar
  • Utar, Z., Majid, M. I. A., Adenan, M. I., Jamil, M. F. A., & Lan, T. M. (2011). Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E2 production induced by lipopolysaccharide in RAW264.7 macrophage cells. Journal of Ethnopharmacology, 136(1), 75-82. https://doi.org/10.1016/j.jep.2011.04.011 google scholar
  • Wang, N., Xu, C., Li, N., Wang, F., Wang, F., Li, Z., . . . Zhang, G. (2022). Synergistic anti-inflammatory effects of resveratrol and vitamin E in lipopolysaccharide-induced RAW264.7 cells. Food Science and Technology, 42. https://doi.org/10.1590/fst.24122 google scholar
  • Wang, Y., Smith, W., Hao, D., He, B., & Kong, L. (2019). M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. International Immunopharmacology, 70, 459-466. https://doi.org/10.1016/j.intimp.2019.02.050 google scholar
  • Wickramasinghe, R., Kumara, R. R., De Silva, E. D., Ratnasooriya, W. D., & Handunnetti, S. (2014). Inhibition of phagocytic and intracellular killing activity of human neutrophils by aqueous and methanolic leaf extracts of Ixora coccinea. Journal of Ethnopharmacology, 153(3), 900–907. https://doi.org/10.1016/j.jep.2014.03.064 google scholar
  • Zailan, N. F. Z., Sarchio, S. N. E., & Hassan, M. (2022). Evaluation of Phytochemical Composition, Antioxidant and anti-Diabetic Activities of Mitragyna speciosa Methanolic Extract (MSME). Malaysian Journal of Medicine and Health Sciences, 18(s21), 93-100. https://doi.org/10.47836/mjmhs.18.s21.15 google scholar
There are 43 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Original Article
Authors

Anwar Salm Kalifa Kafo 0000-0002-2245-8720

Rabia Mrehil Elsalami 0000-0001-5331-0545

Masriana Hassan 0000-0001-5926-0737

Project Number GP IPS/2022/9726100
Publication Date December 30, 2024
Submission Date January 24, 2024
Acceptance Date July 14, 2024
Published in Issue Year 2024 Volume: 54 Issue: 3

Cite

APA Kafo, A. S. K., Elsalami, R. M., & Hassan, M. (2024). Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy, 54(3), 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150
AMA Kafo ASK, Elsalami RM, Hassan M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. iujp. December 2024;54(3):350-358. doi:10.26650/IstanbulJPharm.2024.1424150
Chicago Kafo, Anwar Salm Kalifa, Rabia Mrehil Elsalami, and Masriana Hassan. “Mitragyna Speciosa Korth. Downregulates Macrophage Inflammatory Responses by Inhibiting TLR-4 and Increasing IL-10 Production”. İstanbul Journal of Pharmacy 54, no. 3 (December 2024): 350-58. https://doi.org/10.26650/IstanbulJPharm.2024.1424150.
EndNote Kafo ASK, Elsalami RM, Hassan M (December 1, 2024) Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. İstanbul Journal of Pharmacy 54 3 350–358.
IEEE A. S. K. Kafo, R. M. Elsalami, and M. Hassan, “Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production”, iujp, vol. 54, no. 3, pp. 350–358, 2024, doi: 10.26650/IstanbulJPharm.2024.1424150.
ISNAD Kafo, Anwar Salm Kalifa et al. “Mitragyna Speciosa Korth. Downregulates Macrophage Inflammatory Responses by Inhibiting TLR-4 and Increasing IL-10 Production”. İstanbul Journal of Pharmacy 54/3 (December 2024), 350-358. https://doi.org/10.26650/IstanbulJPharm.2024.1424150.
JAMA Kafo ASK, Elsalami RM, Hassan M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. iujp. 2024;54:350–358.
MLA Kafo, Anwar Salm Kalifa et al. “Mitragyna Speciosa Korth. Downregulates Macrophage Inflammatory Responses by Inhibiting TLR-4 and Increasing IL-10 Production”. İstanbul Journal of Pharmacy, vol. 54, no. 3, 2024, pp. 350-8, doi:10.26650/IstanbulJPharm.2024.1424150.
Vancouver Kafo ASK, Elsalami RM, Hassan M. Mitragyna speciosa Korth. downregulates macrophage inflammatory responses by inhibiting TLR-4 and increasing IL-10 production. iujp. 2024;54(3):350-8.