Research Article
BibTex RIS Cite

Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles

Year 2024, Volume: 54 Issue: 3, 435 - 445, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1425586

Abstract

Background and Aims: In recent years, metal nanoparticles have been extensively synthesized for a variety of applications and have been used in large-scale research in various fields, such as chemistry, physics, life science, material science, medical science, and engineering, depending on their size and shape adjustment properties. In this study, we aimed to compare the effects of silver nanoparticles synthesized using two different methods on DNA damage and cell viability in human lymphocyte cultures.
Methods: We introduced a green and simple method for the synthesis of AgNPs using endemic Onosma papillosa Riedl leaf extract as a reducing agent for the first time. Blood samples were collected in heparinized tubes from four healthy males, non-smokers, and healthy male. In this study, we used comet assay [Genetic Damage Index (GDI) and Damaged Cell Percentage (DCP)] and flow cytometry methods for genotoxicity and cytotoxicity. For comparison, commercially obtained AgNPs synthesized by chemical methods were used, with consideration given to the size of AgNPs synthesized via the green method.
Results: Based on the results, it was determined that DNA damage caused by AgNPs synthesized through the green method in human lymphocyte cultures was not statistically significant compared with the negative control. AgNPs obtained by chemical synthesis caused, however, a statistically significant increase in the frequency of DNA damage compared with the negative control (p<0.001). The percentage of necrotic cells was 13.55±3.37 and 25.37±14.53 in cultures obtained by green and chemically synthesized AgNPs, respectively.
Conclusion: Essentially, green synthesis can be recommended for use because of its lower toxicity compared with chemical synthesis.

Ethical Statement

Mersin University Ethical Committee approved the experiments described in this study (06.04.2022-2022/241).

Supporting Institution

Mersin Üniversitesi Bilimsel Araştırma Projeler Birimi

Project Number

2018-2-TP3-2989

Thanks

This study was supported by the Scientific Research Projects Coordination Center of Mersin University (Project number: 2018-2-TP3-2989).

References

  • Alexandridis, P., (2011). Gold Nanoparticle Synthesis, Mor-phology Control, and Stabilization Facilitated by Func-tional Polymers. Chemical Engineering Technology, 34, 15-28.https://doi.org/10.1002/ceat.201000335 google scholar
  • Arya, A., Mishra, V., & Chundawat, T.S., (2019). Green syn-thesis of silver nanoparticles from green algae (Botryococ-cus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chemical Data Collections, 20,100190. https://doi.org/10.1016/j.cdc.2019.100190 google scholar
  • Avalos, A., Haza, A.I., Mateo, D., & Morales, P.(2014). Cytotoxic-ity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells, Journal . Applied Toxicology, 34 (4). 413-423, https://doi.org/10.1002/jat.2957. google scholar
  • Battal, D., Celik, A., Güler, G., Aktaş, A., Yildirimcan, S., Ocakoglu, K., & Çömelekoglu, Ü., (2015). SiO2 Nanoparticule-induced size-dependent genotoxicity-an in vitro study us-ing sister chromatid exchange, micronucleus and comet assay. Drug and Chemical Toxicology, 38(2), 196-204. https://doi.org/10.3109/01480545.2014.928721 google scholar
  • Bharathi, D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti- biofilm and photo catalytic activity. Materials Research Express, 5(5), 055404. https://doi.org/10.1088/2053-1591/aac2ef google scholar
  • Buzea, C., Pacheco, I.I., & Robbie, K., (2007). Nanomaterials & nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71. https://doi.org/10.1116/1.2815690 google scholar
  • Das, C. A., Kumar, V. G., Dhas, T. S., Karthick, V. Govindaraju, K., Joselin J. M., & Baalamurugan, J., (2020). Antibacterial ac-tivity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 27, 101593.https://doi.org/10.1016/j.bcab.2020.101593 google scholar
  • Dobrzynska, M.M., Gajowik, A., Radzikowska, J., Lankoff, A., Dusin-ska, M., & Kruszewski, M., (2014). Genotoxicity of silver and ti-tanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology, 315, 86-91. https://doi.org/10.1016/j.tox.2013.11.012 google scholar
  • Francisco, V.F., & Garcia-Estepa, R.M., (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238, 1-11. https://doi.org/10.1016/j.jfoodeng.2018.05.024 google scholar
  • Ghosh, M., Manivannan, J., Sinha, S., Chakraborty, A., Mallick, S.K., Bandyopadhyay, M., & Mukherjee, A., (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 749(1-2), 60-69. https://doi.org/10.1016/j.mrgentox.2012.08.007 google scholar
  • Gkika, D.A., Vordos, N., Magafas, L., Mitropoulos, A.C., & Kyzas, G.Z. (2021). Risk return profile of nanoma-terials. Journal of Molecular Structure, 1228, 129740. https://doi.org/10.1016/j.molstruc.2020.129740 google scholar
  • Hawar, S.N., Al-Shmgani, H.S., Al-Kubaisi, Z.A., Sulaiman, G.M., Dewir, Y.H., & Rikisahedew, J.J., (2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanoma-terials, 2022, 1-8 https://doi.org/10.1155/2022/10581192 google scholar
  • Heydari, R. (2017). Biological applications of biosynthesized silver nanoparticles through the utilization of plant extracts. Herbal Medicines Journal, 87-95. https://doi.org/10.22087/hmj.v2i2.618 google scholar
  • Heydari, R., & Rashidipour, M. (2015). Green synthesis of sil-ver nanoparticles using extract of oak fruit hull (Jaft): syn-thesis and in vitro cytotoxic effect on MCF-7 cells. Interna-tional Journal of Breast Cancer, Article ID 846743, 6 pages https://doi.org/10.1155/2015/846743 google scholar
  • Heydari, R., Koudehi, M.F., & Pourmortazavi, S.M. (2019). Antibac-terial activity of Fe3O4/Cu nanocomposite: green synthesis using Carum carvi L. seeds aqueous extract. Chemistry Select, 4(2), 531-535. https://doi.org/10.1002/slct.201803431 google scholar
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B., (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385. google scholar
  • Jiravova, J., Tomankova, K.B., Harvanova, M., Malina, L., Mal-ohlava, J., Luhova, L., & Kolarova, H., (2016). The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food and Chemical Toxicology, 96, 50-61. https://doi.org/10.1016/j.fct.2016.07.015 google scholar
  • Johannes, C., & Obe, G., (2019). Chromosomal Aberration Test in Hu-man Lymphocytes. In: Dhawan, A., Bajpayee, M. (eds) Genotox-icity Assessment. Methods in Molecular Biology, vol 2031. Hu-mana, New York, NY. https://doi.org/10.1007/978-1-4939-9646-9_6 google scholar
  • Joksic, G., Stasic, J. Filipovic, J., Sobot, A.V., & Trtica, M., (2016). Size of silver nanoparticles determines proliferation ability of hu-man circulating lymphocytes in vitro. Toxicology Letters, 247, 29-34. https://doi.org/10.1016/j.toxlet.2016.02.007 google scholar
  • Kahraman, O., Binzet, R., Turunc, E., Dogen, A., & Arslan, H., (2018). Synthesis, characterization, antimicrobial and electrochemical ac-tivities of zinc oxide nanoparticles obtained from sarcopoterium spinosum (L.) spach leaf extract. Materials Research Express, 5(11), 115017. https://doi.org/10.1088/2053-1591/aad953 google scholar
  • Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abo-mughaid, M. M., Al Ali, A., ... Dizge,N. (2022). Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxi-dant and antimicrobial properties. Nanomaterials, 12(12), 2013 https://doi.org/10.3390/nano12122013 google scholar
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cecillon, L., Bureau, S., Barthes, V., & Sarret G., (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98-106. https://doi.org/10.1016/j.jhazmat.2013.10.053 google scholar
  • Li, Y., Chen, D.H., Yan, J., Chen, Y., Mittelstaedt, R.A., Zhang, Y., & Chen, T., (2012). Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 4-10.. https://doi.org/10.1016/j.mrgentox.2011.11.0103 google scholar
  • Mikhailova, E.O., (2020). Silver nanoparticles: mechanism of action and probable bio- application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084 google scholar
  • Moorhead, P.S,. Nowell, P.C., Mellman, W.J., Battips, D.T., & Hunger-ford, D.A., (1960). Chromosome preparations of leukocytes cul-tured from human peripheral blood. Experimental Cell Research, 20(3), 613-616. https://doi.org/10.1016/0014-4827(60)90138-5 google scholar
  • Nakkala, J.R., Mata, R., & Sadras, S.R. (2017). (2017). Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo tox-icity. Journal of Colloid and Interface Science, 499, 33-45. https://doi.org/10.1016/j.jcis.2017.03.090 google scholar
  • Nandana, C.N., Christeena, M., & Bharathi, D.(2022). Syn-thesis and characterization of chitosan/silver nanocompos-ite using rutin for antibacterial, antioxidant and photocat-alytic applications. Journal of Cluster Science, 33(1), 269-279. https://doi.org/10.1007/s10876-020-01947-9 google scholar
  • Nikalje, A.P., (2015). Nanotechnology and its Applications in Medicine. Medicinal Chemistry, 5(2) 081-089. https://doi.org/10.4172/2161-0444.1000247 google scholar
  • Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M., (2013). Green synthesis of silver nanoparticles, their characteri-zation, application and antibacterial activity. International Jour-nal of Environmental Research and Public Health, 10(10), 52215238.. https://doi.org/10.3390/ijerph10105221 google scholar
  • Palencia, M.S., Berrio, M.E., & Palencia, S.L., (2017). Effect of cap-ping agent and diffusivity of different silver nanoparticles on their antibacterial properties. Journal of Nanoscience and Nanotechnol-ogy, 17(8), 5197-5204. https://doi.org/10.1166/jnn.2017.13850 google scholar
  • Rajanahalli, P., Stucke, C.J., & Hong, Y., (2015). The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation. Toxicology Reports, 2, 758-764. https://doi.org/10.1016/j.toxrep.2015.05.005 google scholar
  • Rashidipour, M., & Heydari, R., (2014). Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. Journal of Nanostructure in Chemistry, 4(3), 1-6. https://doi.org/ 10.1007/s40097-014-0112-3 google scholar
  • Sınacı, C., Çelik, A., Yetkin, D., Çevik, S., & Güler, G.,(2023). Sul-foxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug and Chemical Toxicology, 46(5):972-983,. https://doi.org/10.1080/01480545.2022.2114006 google scholar
  • Singh, N.P., McCoy, M.T., Tice, R.R., & Schneider, E.L., (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184-191. https://doi.org/10.1016/0014-4827(88)90265-0 google scholar
  • Sliwinska, A., Kwiatkowski, D., Czarny, P., Milczarek, J., Toma, M., Korycinska, A., & Sliwinski, T., (2015). Geno-toxicity and cytotoxicity of ZnO and Al2O3 nanoparti-cles. Toxicology Mechanisms and Methods 25(3), 176-183. https://doi.org/10.3109/15376516.2015.1006509 google scholar
  • Tharani, S., Bharathi, D., & Ranjithkumar, R. (2020). (2020). Extracellular green synthesis of chitosan-silver nanoparti-cles using Lactobacillus reuteri for antibacterial applica-tions. Biocatalysis and Agricultural Biotechnology, 30, 101838. https://doi.org/10.1016/j.bcab.2020.101838 google scholar
  • Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E.F.C., Jeyakumar, N., & Dhanaraj, S.A., (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evalua-tion of their antimicrobial activities. Journal of Saudi Chemical Society, 15, 113-120. https://doi.org/10.1016/j.jscs.2010.06.004 google scholar
Year 2024, Volume: 54 Issue: 3, 435 - 445, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1425586

Abstract

Project Number

2018-2-TP3-2989

References

  • Alexandridis, P., (2011). Gold Nanoparticle Synthesis, Mor-phology Control, and Stabilization Facilitated by Func-tional Polymers. Chemical Engineering Technology, 34, 15-28.https://doi.org/10.1002/ceat.201000335 google scholar
  • Arya, A., Mishra, V., & Chundawat, T.S., (2019). Green syn-thesis of silver nanoparticles from green algae (Botryococ-cus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chemical Data Collections, 20,100190. https://doi.org/10.1016/j.cdc.2019.100190 google scholar
  • Avalos, A., Haza, A.I., Mateo, D., & Morales, P.(2014). Cytotoxic-ity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells, Journal . Applied Toxicology, 34 (4). 413-423, https://doi.org/10.1002/jat.2957. google scholar
  • Battal, D., Celik, A., Güler, G., Aktaş, A., Yildirimcan, S., Ocakoglu, K., & Çömelekoglu, Ü., (2015). SiO2 Nanoparticule-induced size-dependent genotoxicity-an in vitro study us-ing sister chromatid exchange, micronucleus and comet assay. Drug and Chemical Toxicology, 38(2), 196-204. https://doi.org/10.3109/01480545.2014.928721 google scholar
  • Bharathi, D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti- biofilm and photo catalytic activity. Materials Research Express, 5(5), 055404. https://doi.org/10.1088/2053-1591/aac2ef google scholar
  • Buzea, C., Pacheco, I.I., & Robbie, K., (2007). Nanomaterials & nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71. https://doi.org/10.1116/1.2815690 google scholar
  • Das, C. A., Kumar, V. G., Dhas, T. S., Karthick, V. Govindaraju, K., Joselin J. M., & Baalamurugan, J., (2020). Antibacterial ac-tivity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology, 27, 101593.https://doi.org/10.1016/j.bcab.2020.101593 google scholar
  • Dobrzynska, M.M., Gajowik, A., Radzikowska, J., Lankoff, A., Dusin-ska, M., & Kruszewski, M., (2014). Genotoxicity of silver and ti-tanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology, 315, 86-91. https://doi.org/10.1016/j.tox.2013.11.012 google scholar
  • Francisco, V.F., & Garcia-Estepa, R.M., (2018). Nanotechnology in the agrofood industry. Journal of Food Engineering, 238, 1-11. https://doi.org/10.1016/j.jfoodeng.2018.05.024 google scholar
  • Ghosh, M., Manivannan, J., Sinha, S., Chakraborty, A., Mallick, S.K., Bandyopadhyay, M., & Mukherjee, A., (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 749(1-2), 60-69. https://doi.org/10.1016/j.mrgentox.2012.08.007 google scholar
  • Gkika, D.A., Vordos, N., Magafas, L., Mitropoulos, A.C., & Kyzas, G.Z. (2021). Risk return profile of nanoma-terials. Journal of Molecular Structure, 1228, 129740. https://doi.org/10.1016/j.molstruc.2020.129740 google scholar
  • Hawar, S.N., Al-Shmgani, H.S., Al-Kubaisi, Z.A., Sulaiman, G.M., Dewir, Y.H., & Rikisahedew, J.J., (2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanoma-terials, 2022, 1-8 https://doi.org/10.1155/2022/10581192 google scholar
  • Heydari, R. (2017). Biological applications of biosynthesized silver nanoparticles through the utilization of plant extracts. Herbal Medicines Journal, 87-95. https://doi.org/10.22087/hmj.v2i2.618 google scholar
  • Heydari, R., & Rashidipour, M. (2015). Green synthesis of sil-ver nanoparticles using extract of oak fruit hull (Jaft): syn-thesis and in vitro cytotoxic effect on MCF-7 cells. Interna-tional Journal of Breast Cancer, Article ID 846743, 6 pages https://doi.org/10.1155/2015/846743 google scholar
  • Heydari, R., Koudehi, M.F., & Pourmortazavi, S.M. (2019). Antibac-terial activity of Fe3O4/Cu nanocomposite: green synthesis using Carum carvi L. seeds aqueous extract. Chemistry Select, 4(2), 531-535. https://doi.org/10.1002/slct.201803431 google scholar
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V., & Zolfaghari, B., (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385. google scholar
  • Jiravova, J., Tomankova, K.B., Harvanova, M., Malina, L., Mal-ohlava, J., Luhova, L., & Kolarova, H., (2016). The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food and Chemical Toxicology, 96, 50-61. https://doi.org/10.1016/j.fct.2016.07.015 google scholar
  • Johannes, C., & Obe, G., (2019). Chromosomal Aberration Test in Hu-man Lymphocytes. In: Dhawan, A., Bajpayee, M. (eds) Genotox-icity Assessment. Methods in Molecular Biology, vol 2031. Hu-mana, New York, NY. https://doi.org/10.1007/978-1-4939-9646-9_6 google scholar
  • Joksic, G., Stasic, J. Filipovic, J., Sobot, A.V., & Trtica, M., (2016). Size of silver nanoparticles determines proliferation ability of hu-man circulating lymphocytes in vitro. Toxicology Letters, 247, 29-34. https://doi.org/10.1016/j.toxlet.2016.02.007 google scholar
  • Kahraman, O., Binzet, R., Turunc, E., Dogen, A., & Arslan, H., (2018). Synthesis, characterization, antimicrobial and electrochemical ac-tivities of zinc oxide nanoparticles obtained from sarcopoterium spinosum (L.) spach leaf extract. Materials Research Express, 5(11), 115017. https://doi.org/10.1088/2053-1591/aad953 google scholar
  • Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abo-mughaid, M. M., Al Ali, A., ... Dizge,N. (2022). Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxi-dant and antimicrobial properties. Nanomaterials, 12(12), 2013 https://doi.org/10.3390/nano12122013 google scholar
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cecillon, L., Bureau, S., Barthes, V., & Sarret G., (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98-106. https://doi.org/10.1016/j.jhazmat.2013.10.053 google scholar
  • Li, Y., Chen, D.H., Yan, J., Chen, Y., Mittelstaedt, R.A., Zhang, Y., & Chen, T., (2012). Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 4-10.. https://doi.org/10.1016/j.mrgentox.2011.11.0103 google scholar
  • Mikhailova, E.O., (2020). Silver nanoparticles: mechanism of action and probable bio- application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084 google scholar
  • Moorhead, P.S,. Nowell, P.C., Mellman, W.J., Battips, D.T., & Hunger-ford, D.A., (1960). Chromosome preparations of leukocytes cul-tured from human peripheral blood. Experimental Cell Research, 20(3), 613-616. https://doi.org/10.1016/0014-4827(60)90138-5 google scholar
  • Nakkala, J.R., Mata, R., & Sadras, S.R. (2017). (2017). Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo tox-icity. Journal of Colloid and Interface Science, 499, 33-45. https://doi.org/10.1016/j.jcis.2017.03.090 google scholar
  • Nandana, C.N., Christeena, M., & Bharathi, D.(2022). Syn-thesis and characterization of chitosan/silver nanocompos-ite using rutin for antibacterial, antioxidant and photocat-alytic applications. Journal of Cluster Science, 33(1), 269-279. https://doi.org/10.1007/s10876-020-01947-9 google scholar
  • Nikalje, A.P., (2015). Nanotechnology and its Applications in Medicine. Medicinal Chemistry, 5(2) 081-089. https://doi.org/10.4172/2161-0444.1000247 google scholar
  • Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M., (2013). Green synthesis of silver nanoparticles, their characteri-zation, application and antibacterial activity. International Jour-nal of Environmental Research and Public Health, 10(10), 52215238.. https://doi.org/10.3390/ijerph10105221 google scholar
  • Palencia, M.S., Berrio, M.E., & Palencia, S.L., (2017). Effect of cap-ping agent and diffusivity of different silver nanoparticles on their antibacterial properties. Journal of Nanoscience and Nanotechnol-ogy, 17(8), 5197-5204. https://doi.org/10.1166/jnn.2017.13850 google scholar
  • Rajanahalli, P., Stucke, C.J., & Hong, Y., (2015). The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation. Toxicology Reports, 2, 758-764. https://doi.org/10.1016/j.toxrep.2015.05.005 google scholar
  • Rashidipour, M., & Heydari, R., (2014). Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. Journal of Nanostructure in Chemistry, 4(3), 1-6. https://doi.org/ 10.1007/s40097-014-0112-3 google scholar
  • Sınacı, C., Çelik, A., Yetkin, D., Çevik, S., & Güler, G.,(2023). Sul-foxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug and Chemical Toxicology, 46(5):972-983,. https://doi.org/10.1080/01480545.2022.2114006 google scholar
  • Singh, N.P., McCoy, M.T., Tice, R.R., & Schneider, E.L., (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184-191. https://doi.org/10.1016/0014-4827(88)90265-0 google scholar
  • Sliwinska, A., Kwiatkowski, D., Czarny, P., Milczarek, J., Toma, M., Korycinska, A., & Sliwinski, T., (2015). Geno-toxicity and cytotoxicity of ZnO and Al2O3 nanoparti-cles. Toxicology Mechanisms and Methods 25(3), 176-183. https://doi.org/10.3109/15376516.2015.1006509 google scholar
  • Tharani, S., Bharathi, D., & Ranjithkumar, R. (2020). (2020). Extracellular green synthesis of chitosan-silver nanoparti-cles using Lactobacillus reuteri for antibacterial applica-tions. Biocatalysis and Agricultural Biotechnology, 30, 101838. https://doi.org/10.1016/j.bcab.2020.101838 google scholar
  • Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E.F.C., Jeyakumar, N., & Dhanaraj, S.A., (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evalua-tion of their antimicrobial activities. Journal of Saudi Chemical Society, 15, 113-120. https://doi.org/10.1016/j.jscs.2010.06.004 google scholar
There are 37 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Original Article
Authors

Gizem Güler 0000-0002-1058-7306

Ersan Turunc 0000-0001-6412-9020

Rıza Binzet 0000-0003-0336-8305

Derya Yetkin 0000-0002-1452-5655

Ayla Çelik 0000-0002-0127-3639

Project Number 2018-2-TP3-2989
Publication Date December 30, 2024
Submission Date January 31, 2024
Acceptance Date May 30, 2024
Published in Issue Year 2024 Volume: 54 Issue: 3

Cite

APA Güler, G., Turunc, E., Binzet, R., Yetkin, D., et al. (2024). Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles. İstanbul Journal of Pharmacy, 54(3), 435-445. https://doi.org/10.26650/IstanbulJPharm.2024.1425586
AMA Güler G, Turunc E, Binzet R, Yetkin D, Çelik A. Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles. iujp. December 2024;54(3):435-445. doi:10.26650/IstanbulJPharm.2024.1425586
Chicago Güler, Gizem, Ersan Turunc, Rıza Binzet, Derya Yetkin, and Ayla Çelik. “Differences in Genotoxicity and Cytotoxicity Potentials of Green and Chemically Synthesized Silver Nanoparticles”. İstanbul Journal of Pharmacy 54, no. 3 (December 2024): 435-45. https://doi.org/10.26650/IstanbulJPharm.2024.1425586.
EndNote Güler G, Turunc E, Binzet R, Yetkin D, Çelik A (December 1, 2024) Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles. İstanbul Journal of Pharmacy 54 3 435–445.
IEEE G. Güler, E. Turunc, R. Binzet, D. Yetkin, and A. Çelik, “Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles”, iujp, vol. 54, no. 3, pp. 435–445, 2024, doi: 10.26650/IstanbulJPharm.2024.1425586.
ISNAD Güler, Gizem et al. “Differences in Genotoxicity and Cytotoxicity Potentials of Green and Chemically Synthesized Silver Nanoparticles”. İstanbul Journal of Pharmacy 54/3 (December 2024), 435-445. https://doi.org/10.26650/IstanbulJPharm.2024.1425586.
JAMA Güler G, Turunc E, Binzet R, Yetkin D, Çelik A. Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles. iujp. 2024;54:435–445.
MLA Güler, Gizem et al. “Differences in Genotoxicity and Cytotoxicity Potentials of Green and Chemically Synthesized Silver Nanoparticles”. İstanbul Journal of Pharmacy, vol. 54, no. 3, 2024, pp. 435-4, doi:10.26650/IstanbulJPharm.2024.1425586.
Vancouver Güler G, Turunc E, Binzet R, Yetkin D, Çelik A. Differences in genotoxicity and cytotoxicity potentials of green and chemically synthesized silver nanoparticles. iujp. 2024;54(3):435-4.