Review
BibTex RIS Cite

Imidazopyridine scaffold as an effective tubulin polymerization inhibitor

Year 2024, Volume: 54 Issue: 3, 496 - 504, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1436292

Abstract

Tubulin and the tubulin cycle, which have many vital cellular functions in living cells, are privileged targets for the development of anticancer drug candidates. In the processing of cellular processes, especially cell division, alpha and beta tubulin polymerize to form microtubules and continue the cycle by depolymerizing again. Disruption of the polymerization-depolymerization dynamics of microtubules by various agents causes mitotic cell arrest and subsequent cell death via apoptosis. This review summarizes the tubulin cycle, cancer, and target regions. Tubulin has three main target binding sites: taxane, vinca, and colchicine. In particular, the colchicine binding site, which is the current target for disrupting the tubulin cycle, is inhibited by various synthetic compounds, and the common properties of these compounds are emphasized. The results show that highly effective cytotoxic agents can be developed by modifying the imidazopyridine scaffold, which remains open to exploration. The remarkable antitubulin and cytotoxic effects of recently developed compounds with an imidazopyridine ring are interesting. A detailed report of anti-tubulin agents with imidazopyridine structures, among the tubulin polymerization inhibitors developed to date, and an evaluation of the structure–activity relationship is presented here. In addition, the new molecular topology established in this review based on the structure-activity relationships of imidazopyridine will inspire research groups to develop new imidazopyridine-based anti-tubulin agents with clinical anticancer potential in the near future.

References

  • Akhmanova, A., & Steinmetz, M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature reviews Molecular cell biology, 9(4), 309-322. google scholar
  • An, W., Wang, W., Yu, T., Zhang, Y., Miao, Z., Meng, T., & Shen, J. (2016). Discovery of novel 2-phenyl-imidazo [1, 2-a] pyridine ana-logues targeting tubulin polymerization as antiproliferative agents. European Journal of Medicinal Chemistry, 112, 367-372. google scholar
  • Aponte, P. M., & Caicedo, A. (2017). Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem cells inter-national, 2017(1), 5619472. google scholar
  • Bagdi, A. K., Santra, S., Monir, K., & Hajra, A. (2015). Synthesis of imidazo [1, 2-a] pyridines: a decade update. Chemical Communi-cations, 51(9), 1555-1575. google scholar
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammar-lund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142-1147. google scholar
  • Chu, C. S., & Rubin, S. C. (2018). Basic principles of chemotherapy. In Clinical gynecologic oncology (pp. 449-469). Elsevier. google scholar
  • DeVita, V. T., Lawrence, T. S., & Rosenberg, S. A. (2008). DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncol-ogy (Vol. 2). Lippincott Williams & Wilkins. google scholar
  • Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature reviews Drug dis-covery, 9(10), 790-803. google scholar
  • Elseginy, S. A., Oliveira, A. S. F., Shoemark, D. K., & Sessions, R. B. (2022). Identification and validation of novel microtubule suppressors with an imidazopyridine scaffold through structure-based virtual screening and docking. RSC medicinal chemistry, 13(8), 929-943. google scholar
  • Field, J. J., Kanakkanthara, A., & Miller, J. H. (2014). Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorganic & medicinal chemistry, 22(18), 5050-5059. google scholar
  • Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvo-gel, L., & Kroemer, G. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death & Differentia-tion, 14(7), 1237-1243. google scholar
  • Güçlü, D., Kuzu, B., Tozlu, İ., Taşpınar, F., Canpınar, H., Taşpınar, M., & Menges, N. (2018). Synthesis of novel imidazopyridines and their biological evaluation as potent anticancer agents: A promising candidate for glioblastoma. Bioorganic & Medicinal Chemistry Letters, 28(15), 2647-2651. google scholar
  • Guo, H., Li, X., Guo, Y., & Zhen, L. (2019). An overview of tubulin modulators deposited in protein data bank. Medicinal Chemistry Research, 28, 927-937. google scholar
  • Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753-758. google scholar
  • Jordan, M. A. (2002). Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Current Medicinal Chemistry-Anti-Cancer Agents, 2(1), 1-17. google scholar
  • Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature reviews cancer, 4(4), 253-265. google scholar
  • Kamal, A., Kumar, G. B., Nayak, V. L., Reddy, V. S., Shaik, A. B., & Reddy, M. K. (2015). Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents. Medicinal Chemistry Communica-tions, 6(4), 606-612. google scholar
  • Kamal, A., Rao, A. S., Nayak, V. L., Reddy, N. S., Swapna, K., Ra-makrishna, G., & Alvala, M. (2014). Synthesis and biological evaluation of imidazo [1, 5-a] pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Organic & Biomolecular Chemistry, 12(48), 9864-9880. google scholar
  • Kamal, A., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Bharathi, E. V., Sagar, M. V. P., ... & Pal-Bhadra, M. (2010). Design, syn-thesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. Medicinal Chemistry Communications, 1(5), 355-360. google scholar
  • Kamal, A., Reddy, V. S., Karnewar, S., Chourasiya, S. S., Shaik, A. B., Kumar, G. B., ... & Kotamraju, S. (2013). Synthesis and Biological Evaluation of Imidazopyridine-Oxindole Conjugates as Microtubule-Targeting Agents. ChemMedChem, 8(12), 20152025. google scholar
  • Kaur, R., Kaur, G., Gill, R. K., Soni, R., & Bariwal, J. (2014). Recent developments in tubulin polymerization inhibitors: an overview. European Journal of Medicinal Chemistry, 87, 89-124. google scholar
  • Kendall, J. D., Rewcastle, G. W., Frederick, R., Mawson, C., Denny, W. A., Marshall, E. S., ... & Shepherd, P. R. (2007). Synthesis, bio-logical evaluation and molecular modelling of sulfonohydrazides as selective PI3K p110 inhibitors. Bioorganic & Medicinal Chem-istry, 15(24), 7677-7687. google scholar
  • Khatun, S., Singh, A., Bader, G. N., & Sofi, F. A. (2022). Imida-zopyridine, a promising scaffold with potential medicinal applica-tions and structural activity relationship (SAR): recent advances. Journal of Biomolecular Structure and Dynamics, 40(24), 1427914302. google scholar
  • Kim, O., Jeong, Y., Lee, H., Hong, S. S., & Hong, S. (2011). De-sign and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. Journal of Medicinal Chemistry, 54(7), 2455-2466. google scholar
  • Li, D. D., Qin, Y. J., Zhang, X., Yin, Y., Zhu, H. L., & Zhao, L. G. (2015). Combined molecular docking, 3D-QSAR, and pharma-cophore model: design of novel tubulin polymerization inhibitors by binding to colchicine-binding site. Chemical Biology & Drug Design, 86(4), 731-745. google scholar
  • Lippert III, J. W. (2007). Vascular disrupting agents. Bioorganic & Medicinal Chemistry, 15(2), 605-615. google scholar
  • Liu, J., Zuo, D., Jing, T., Guo, M., Xing, L., Zhang,W., ... Zhai, X. (2017). Synthesis, biological evaluation and molecular model-ing of imidazo [1, 2-a] pyridine derivatives as potent antitubulin agents. Bioorganic & Medicinal Chemistry, 25(15), 4088-4099. google scholar
  • Lu, Y., Chen, J., Xiao, M., Li, W., & Miller, D. D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical research, 29, 2943-2971. google scholar
  • Martmez-Urbina, M. A., Zentella, A., Vilchis-Reyes, M. A., Guzman, Â., Vargas, O., Apan, M. T. R.,... & D^az, E. (2010). 6-Substituted 2-(N-trifluoroacetylamino) imidazopyridines induce cell cycle ar-rest and apoptosis in SK-LU-1 human cancer cell line. European Journal of Medicinal Chemistry, 45(3), 1211-1219. google scholar
  • Meng, T., Zhang, Z., Hu, D., Lin, L., Ding, J., Wang, X., & Shen, J. (2007). Three-Component Combinatorial Synthesis of a Substi-tuted 6 H-Pyrido [2 ‘, 1 ‘: 2, 3] imidazo-[4, 5-c] isoquinolin-5 (6 H)-one Library with Cytotoxic Activity. Journal of Combinatorial Chemistry, 9(5), 739-741. google scholar
  • Moore, Sarah. (2020, February 06). What is Tubulin?. News-Medical. Retrieved on January 26, 2024 from https://www.news-medical. net/life-sciences/What-is-Tubulin.aspx. google scholar
  • Nam, N. H. (2003). Combretastatin A-4 analogues as antimitotic anti-tumor agents. Current Medicinal Chemistry, 10(17), 1697-1722. google scholar
  • Nogales, E., Whittaker, M., Milligan, R. A., & Downing, K. H. (1999). High-resolution model of the microtubule. Cell, 96(1), 79-88. google scholar
  • Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., ... & Tsuji, T. (1998). Novel combretastatin analogues effective against murine solid tumors: design and structure activ-ity relationships. Journal of Medicinal Chemistry, 41(16), 30223032. google scholar
  • Pragyandipta, P., Pedapati, R. K., Reddy, P. K., Nayek, A., Meher, R. K., Guru, S. K., ... & Naik, P. K. (2023). Rational design of novel microtubule targeting anticancer drugs N-imidazopyridine noscapinoids: Chemical synthesis and experimental evaluation based on in vitro using breast cancer cells and in vivo using xenograft mice model. Chemico-Biological Interactions, 110606. google scholar
  • Ramya, P. S., Guntuku, L., Angapelly, S., Digwal, C. S., Lakshmi, U. J., Sigalapalli, D. K., ... & Kamal, A. (2018). Synthesis and bio-logical evaluation of curcumin inspired imidazo [1, 2-a] pyridine analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 143, 216-231. google scholar
  • Ravelli, R. B., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198-202. google scholar
  • Sanghai, N., Jain, V., Preet, R., Kandekar, S., Das, S., Trivedi, N., ... & Bharatam, P. V. (2014). Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin poly-merization inhibitors, antimitotic and anticancer agents. Med-ChemComm, 5(6), 766-782. google scholar
  • Sayeed, I. B., Nayak, V. L., Shareef, M. A., Chouhan, N. K., & Kamal, A. (2017). Design, synthesis and biological evaluation of imi-dazopyridine-propenone conjugates as potent tubulin inhibitors. MedChemComm, 8(5), 1000-1006. google scholar
  • Sayeed, I. B., Vishnuvardhan, M. V. P. S., Nagarajan, A., Kantevari, S., & Kamal, A. (2018). Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorganic Chemistry, 80, 714-720. google scholar
  • Schiff, P. B., Fant, J., & Horwitz, S. B. (1979). Promotion of micro-tubule assembly in vitro by taxol. Nature, 277(5698), 665-667. google scholar
  • Shan, Y. S., Zhang, J., Liu, Z., Wang, M., & Dong, Y. (2011). Devel-opments of combretastatin A-4 derivatives as anticancer agents. Current Medicinal Chemistry, 18(4), 523-538. google scholar
  • Sigalapalli, D. K., Kiranmai, G., Devi, G. P., Tokala, R., Sana, S., Tripura, C., ... & Tangellamudi, N. D. (2021). Synthesis and bi-ological evaluation of novel imidazo [1, 2-a] pyridine-oxadiazole hybrids as anti-proliferative agents: Study of microtubule poly-merization inhibition and DNA binding. Bioorganic & Medicinal Chemistry, 43, 116277. google scholar
  • Sontag, C. A., Staley, J. T., & Erickson, H. P. (2005). In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. The Journal of Cell Biology, 169(2), 233-238. google scholar
  • Stroylov, V. S., Svitanko, I. V., Maksimenko, A. S., Kislyi, V. P., Semenova, M. N., & Semenov, V. V. (2020). Computational modeling and target synthesis of monomethoxy-substituted o-diphenylisoxazoles with unexpectedly high antimitotic micro-tubule destabilizing activity. Bioorganic & Medicinal Chemistry Letters, 30(23), 127608. google scholar
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209-249. google scholar
  • Swift, L. H., & Golsteyn, R. M. (2014). Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. International Journal of Molecular Sciences, 15(3), 3403-3431. google scholar
  • Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mam-malian DNA topoisomerase II. Science, 226(4673), 466-468. google scholar
  • Thammathong, J., Chisam, K. B., Tessmer, G. E., Womack, C. B., Sidrak, M. M., Weissmiller, A. M., & Banerjee, S. (2023). Fused Imidazopyrazine-Based Tubulin Polymerization Inhibitors Inhibit Neuroblastoma Cell Function. ACS Medicinal Chemistry Letters, 14(9), 1284-1294. google scholar
  • Tilsed, C. M., Fisher, S. A., Nowak, A. K., Lake, R. A., & Lesterhuis, W. J. (2022). Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Frontiers in Oncology, 12, 960317. google scholar
  • Xi, J. B., Fang, Y. F., Frett, B., Zhu, M. L., Zhu, T., Kong, Y. N., ... & Hu, W. (2017). Structure-based design and synthesis of imidazo [1, 2-a] pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. European Journal of Medicinal Chemistry, 126, 1083-1106. google scholar
  • Zhang, Z., Meng, T., Yang, N., Wang, W., Xiong, B., Chen, Y., ... & Ding, J. (2011). MT119, a new planar-structured compound, tar-gets the colchicine site of tubulin arresting mitosis and inhibiting tumor cell proliferation. International Journal of Cancer, 129(1), 214-224. google scholar
Year 2024, Volume: 54 Issue: 3, 496 - 504, 30.12.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1436292

Abstract

References

  • Akhmanova, A., & Steinmetz, M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature reviews Molecular cell biology, 9(4), 309-322. google scholar
  • An, W., Wang, W., Yu, T., Zhang, Y., Miao, Z., Meng, T., & Shen, J. (2016). Discovery of novel 2-phenyl-imidazo [1, 2-a] pyridine ana-logues targeting tubulin polymerization as antiproliferative agents. European Journal of Medicinal Chemistry, 112, 367-372. google scholar
  • Aponte, P. M., & Caicedo, A. (2017). Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem cells inter-national, 2017(1), 5619472. google scholar
  • Bagdi, A. K., Santra, S., Monir, K., & Hajra, A. (2015). Synthesis of imidazo [1, 2-a] pyridines: a decade update. Chemical Communi-cations, 51(9), 1555-1575. google scholar
  • Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammar-lund, E. U., & Pienta, K. J. (2023). Updating the definition of cancer. Molecular Cancer Research, 21(11), 1142-1147. google scholar
  • Chu, C. S., & Rubin, S. C. (2018). Basic principles of chemotherapy. In Clinical gynecologic oncology (pp. 449-469). Elsevier. google scholar
  • DeVita, V. T., Lawrence, T. S., & Rosenberg, S. A. (2008). DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncol-ogy (Vol. 2). Lippincott Williams & Wilkins. google scholar
  • Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature reviews Drug dis-covery, 9(10), 790-803. google scholar
  • Elseginy, S. A., Oliveira, A. S. F., Shoemark, D. K., & Sessions, R. B. (2022). Identification and validation of novel microtubule suppressors with an imidazopyridine scaffold through structure-based virtual screening and docking. RSC medicinal chemistry, 13(8), 929-943. google scholar
  • Field, J. J., Kanakkanthara, A., & Miller, J. H. (2014). Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorganic & medicinal chemistry, 22(18), 5050-5059. google scholar
  • Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvo-gel, L., & Kroemer, G. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death & Differentia-tion, 14(7), 1237-1243. google scholar
  • Güçlü, D., Kuzu, B., Tozlu, İ., Taşpınar, F., Canpınar, H., Taşpınar, M., & Menges, N. (2018). Synthesis of novel imidazopyridines and their biological evaluation as potent anticancer agents: A promising candidate for glioblastoma. Bioorganic & Medicinal Chemistry Letters, 28(15), 2647-2651. google scholar
  • Guo, H., Li, X., Guo, Y., & Zhen, L. (2019). An overview of tubulin modulators deposited in protein data bank. Medicinal Chemistry Research, 28, 927-937. google scholar
  • Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753-758. google scholar
  • Jordan, M. A. (2002). Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Current Medicinal Chemistry-Anti-Cancer Agents, 2(1), 1-17. google scholar
  • Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature reviews cancer, 4(4), 253-265. google scholar
  • Kamal, A., Kumar, G. B., Nayak, V. L., Reddy, V. S., Shaik, A. B., & Reddy, M. K. (2015). Design, synthesis and biological evaluation of imidazopyridine/imidazopyrimidine-benzimidazole conjugates as potential anticancer agents. Medicinal Chemistry Communica-tions, 6(4), 606-612. google scholar
  • Kamal, A., Rao, A. S., Nayak, V. L., Reddy, N. S., Swapna, K., Ra-makrishna, G., & Alvala, M. (2014). Synthesis and biological evaluation of imidazo [1, 5-a] pyridine-benzimidazole hybrids as inhibitors of both tubulin polymerization and PI3K/Akt pathway. Organic & Biomolecular Chemistry, 12(48), 9864-9880. google scholar
  • Kamal, A., Reddy, J. S., Ramaiah, M. J., Dastagiri, D., Bharathi, E. V., Sagar, M. V. P., ... & Pal-Bhadra, M. (2010). Design, syn-thesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. Medicinal Chemistry Communications, 1(5), 355-360. google scholar
  • Kamal, A., Reddy, V. S., Karnewar, S., Chourasiya, S. S., Shaik, A. B., Kumar, G. B., ... & Kotamraju, S. (2013). Synthesis and Biological Evaluation of Imidazopyridine-Oxindole Conjugates as Microtubule-Targeting Agents. ChemMedChem, 8(12), 20152025. google scholar
  • Kaur, R., Kaur, G., Gill, R. K., Soni, R., & Bariwal, J. (2014). Recent developments in tubulin polymerization inhibitors: an overview. European Journal of Medicinal Chemistry, 87, 89-124. google scholar
  • Kendall, J. D., Rewcastle, G. W., Frederick, R., Mawson, C., Denny, W. A., Marshall, E. S., ... & Shepherd, P. R. (2007). Synthesis, bio-logical evaluation and molecular modelling of sulfonohydrazides as selective PI3K p110 inhibitors. Bioorganic & Medicinal Chem-istry, 15(24), 7677-7687. google scholar
  • Khatun, S., Singh, A., Bader, G. N., & Sofi, F. A. (2022). Imida-zopyridine, a promising scaffold with potential medicinal applica-tions and structural activity relationship (SAR): recent advances. Journal of Biomolecular Structure and Dynamics, 40(24), 1427914302. google scholar
  • Kim, O., Jeong, Y., Lee, H., Hong, S. S., & Hong, S. (2011). De-sign and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. Journal of Medicinal Chemistry, 54(7), 2455-2466. google scholar
  • Li, D. D., Qin, Y. J., Zhang, X., Yin, Y., Zhu, H. L., & Zhao, L. G. (2015). Combined molecular docking, 3D-QSAR, and pharma-cophore model: design of novel tubulin polymerization inhibitors by binding to colchicine-binding site. Chemical Biology & Drug Design, 86(4), 731-745. google scholar
  • Lippert III, J. W. (2007). Vascular disrupting agents. Bioorganic & Medicinal Chemistry, 15(2), 605-615. google scholar
  • Liu, J., Zuo, D., Jing, T., Guo, M., Xing, L., Zhang,W., ... Zhai, X. (2017). Synthesis, biological evaluation and molecular model-ing of imidazo [1, 2-a] pyridine derivatives as potent antitubulin agents. Bioorganic & Medicinal Chemistry, 25(15), 4088-4099. google scholar
  • Lu, Y., Chen, J., Xiao, M., Li, W., & Miller, D. D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical research, 29, 2943-2971. google scholar
  • Martmez-Urbina, M. A., Zentella, A., Vilchis-Reyes, M. A., Guzman, Â., Vargas, O., Apan, M. T. R.,... & D^az, E. (2010). 6-Substituted 2-(N-trifluoroacetylamino) imidazopyridines induce cell cycle ar-rest and apoptosis in SK-LU-1 human cancer cell line. European Journal of Medicinal Chemistry, 45(3), 1211-1219. google scholar
  • Meng, T., Zhang, Z., Hu, D., Lin, L., Ding, J., Wang, X., & Shen, J. (2007). Three-Component Combinatorial Synthesis of a Substi-tuted 6 H-Pyrido [2 ‘, 1 ‘: 2, 3] imidazo-[4, 5-c] isoquinolin-5 (6 H)-one Library with Cytotoxic Activity. Journal of Combinatorial Chemistry, 9(5), 739-741. google scholar
  • Moore, Sarah. (2020, February 06). What is Tubulin?. News-Medical. Retrieved on January 26, 2024 from https://www.news-medical. net/life-sciences/What-is-Tubulin.aspx. google scholar
  • Nam, N. H. (2003). Combretastatin A-4 analogues as antimitotic anti-tumor agents. Current Medicinal Chemistry, 10(17), 1697-1722. google scholar
  • Nogales, E., Whittaker, M., Milligan, R. A., & Downing, K. H. (1999). High-resolution model of the microtubule. Cell, 96(1), 79-88. google scholar
  • Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., ... & Tsuji, T. (1998). Novel combretastatin analogues effective against murine solid tumors: design and structure activ-ity relationships. Journal of Medicinal Chemistry, 41(16), 30223032. google scholar
  • Pragyandipta, P., Pedapati, R. K., Reddy, P. K., Nayek, A., Meher, R. K., Guru, S. K., ... & Naik, P. K. (2023). Rational design of novel microtubule targeting anticancer drugs N-imidazopyridine noscapinoids: Chemical synthesis and experimental evaluation based on in vitro using breast cancer cells and in vivo using xenograft mice model. Chemico-Biological Interactions, 110606. google scholar
  • Ramya, P. S., Guntuku, L., Angapelly, S., Digwal, C. S., Lakshmi, U. J., Sigalapalli, D. K., ... & Kamal, A. (2018). Synthesis and bio-logical evaluation of curcumin inspired imidazo [1, 2-a] pyridine analogues as tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 143, 216-231. google scholar
  • Ravelli, R. B., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198-202. google scholar
  • Sanghai, N., Jain, V., Preet, R., Kandekar, S., Das, S., Trivedi, N., ... & Bharatam, P. V. (2014). Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin poly-merization inhibitors, antimitotic and anticancer agents. Med-ChemComm, 5(6), 766-782. google scholar
  • Sayeed, I. B., Nayak, V. L., Shareef, M. A., Chouhan, N. K., & Kamal, A. (2017). Design, synthesis and biological evaluation of imi-dazopyridine-propenone conjugates as potent tubulin inhibitors. MedChemComm, 8(5), 1000-1006. google scholar
  • Sayeed, I. B., Vishnuvardhan, M. V. P. S., Nagarajan, A., Kantevari, S., & Kamal, A. (2018). Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorganic Chemistry, 80, 714-720. google scholar
  • Schiff, P. B., Fant, J., & Horwitz, S. B. (1979). Promotion of micro-tubule assembly in vitro by taxol. Nature, 277(5698), 665-667. google scholar
  • Shan, Y. S., Zhang, J., Liu, Z., Wang, M., & Dong, Y. (2011). Devel-opments of combretastatin A-4 derivatives as anticancer agents. Current Medicinal Chemistry, 18(4), 523-538. google scholar
  • Sigalapalli, D. K., Kiranmai, G., Devi, G. P., Tokala, R., Sana, S., Tripura, C., ... & Tangellamudi, N. D. (2021). Synthesis and bi-ological evaluation of novel imidazo [1, 2-a] pyridine-oxadiazole hybrids as anti-proliferative agents: Study of microtubule poly-merization inhibition and DNA binding. Bioorganic & Medicinal Chemistry, 43, 116277. google scholar
  • Sontag, C. A., Staley, J. T., & Erickson, H. P. (2005). In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. The Journal of Cell Biology, 169(2), 233-238. google scholar
  • Stroylov, V. S., Svitanko, I. V., Maksimenko, A. S., Kislyi, V. P., Semenova, M. N., & Semenov, V. V. (2020). Computational modeling and target synthesis of monomethoxy-substituted o-diphenylisoxazoles with unexpectedly high antimitotic micro-tubule destabilizing activity. Bioorganic & Medicinal Chemistry Letters, 30(23), 127608. google scholar
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209-249. google scholar
  • Swift, L. H., & Golsteyn, R. M. (2014). Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. International Journal of Molecular Sciences, 15(3), 3403-3431. google scholar
  • Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mam-malian DNA topoisomerase II. Science, 226(4673), 466-468. google scholar
  • Thammathong, J., Chisam, K. B., Tessmer, G. E., Womack, C. B., Sidrak, M. M., Weissmiller, A. M., & Banerjee, S. (2023). Fused Imidazopyrazine-Based Tubulin Polymerization Inhibitors Inhibit Neuroblastoma Cell Function. ACS Medicinal Chemistry Letters, 14(9), 1284-1294. google scholar
  • Tilsed, C. M., Fisher, S. A., Nowak, A. K., Lake, R. A., & Lesterhuis, W. J. (2022). Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Frontiers in Oncology, 12, 960317. google scholar
  • Xi, J. B., Fang, Y. F., Frett, B., Zhu, M. L., Zhu, T., Kong, Y. N., ... & Hu, W. (2017). Structure-based design and synthesis of imidazo [1, 2-a] pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. European Journal of Medicinal Chemistry, 126, 1083-1106. google scholar
  • Zhang, Z., Meng, T., Yang, N., Wang, W., Xiong, B., Chen, Y., ... & Ding, J. (2011). MT119, a new planar-structured compound, tar-gets the colchicine site of tubulin arresting mitosis and inhibiting tumor cell proliferation. International Journal of Cancer, 129(1), 214-224. google scholar
There are 52 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Review
Authors

Burak Kuzu 0000-0002-7305-7177

Publication Date December 30, 2024
Submission Date February 13, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 54 Issue: 3

Cite

APA Kuzu, B. (2024). Imidazopyridine scaffold as an effective tubulin polymerization inhibitor. İstanbul Journal of Pharmacy, 54(3), 496-504. https://doi.org/10.26650/IstanbulJPharm.2024.1436292
AMA Kuzu B. Imidazopyridine scaffold as an effective tubulin polymerization inhibitor. iujp. December 2024;54(3):496-504. doi:10.26650/IstanbulJPharm.2024.1436292
Chicago Kuzu, Burak. “Imidazopyridine Scaffold As an Effective Tubulin Polymerization Inhibitor”. İstanbul Journal of Pharmacy 54, no. 3 (December 2024): 496-504. https://doi.org/10.26650/IstanbulJPharm.2024.1436292.
EndNote Kuzu B (December 1, 2024) Imidazopyridine scaffold as an effective tubulin polymerization inhibitor. İstanbul Journal of Pharmacy 54 3 496–504.
IEEE B. Kuzu, “Imidazopyridine scaffold as an effective tubulin polymerization inhibitor”, iujp, vol. 54, no. 3, pp. 496–504, 2024, doi: 10.26650/IstanbulJPharm.2024.1436292.
ISNAD Kuzu, Burak. “Imidazopyridine Scaffold As an Effective Tubulin Polymerization Inhibitor”. İstanbul Journal of Pharmacy 54/3 (December 2024), 496-504. https://doi.org/10.26650/IstanbulJPharm.2024.1436292.
JAMA Kuzu B. Imidazopyridine scaffold as an effective tubulin polymerization inhibitor. iujp. 2024;54:496–504.
MLA Kuzu, Burak. “Imidazopyridine Scaffold As an Effective Tubulin Polymerization Inhibitor”. İstanbul Journal of Pharmacy, vol. 54, no. 3, 2024, pp. 496-04, doi:10.26650/IstanbulJPharm.2024.1436292.
Vancouver Kuzu B. Imidazopyridine scaffold as an effective tubulin polymerization inhibitor. iujp. 2024;54(3):496-504.