Synthesis, characterization, and crystal structure of a novel spirocyclic 2-indolinone bearing a 5-(trifluoromethyl)benzothiazoline moiety
Year 2024,
Volume: 54 Issue: 3, 456 - 465, 30.12.2024
Asu Büşra Temizer
,
Filiz Betül Kaynak
,
Nilgün Karalı
Abstract
Background and Aims: Spirocyclic 2-indolinones are important and promising compounds because of their various biological activities in drug development studies. The main aim of this study is to determine spirocyclic, molecular and stereoisomeric structure of the new 5’-chloro-1’,7’-dimethyl-5-(trifluoromethyl)-3H-spiro[1,3-benzothiazole-2,3’-indole]-2’-one (4) and to examine the contribution of the trifluoromethyl group.
Methods: Compound 4 was synthesized from the reaction of 2-amino-4-(trifluoromethyl)benzenethiol with 5-chloro-1,7-dimethyl1H-indole-2,3-dione in ethanol. The purity and structure determination of compound 4 was carried out by elemental and spectral analyzes. The crystal structure of compound 4 was characterized by X-ray single crystal diffraction analysis method (SC-XRD). Additionally, compliance with Lipinski’s rule of 5 (RO5) and some pharmacokinetic parameters of compound 4 were evaluated using the Qikprop modüle (Schrödinger).
Results: The molecular structure of 4 was confirmed by elemental and spectral (IR, 1H NMR, 13C NMR-APT, HSQC-2D, HMBC2D and LCMS-APCI) data. The crystal, spirocyclic and stereoisomeric structure of compound 4 was elucidated by SC-XRD, and it was observed that N-H···O hydrogen bonding interactions take place within the molecular layers aligned parallel to the (010) plane. As a drug candidate, compound 4 exhibited physicochemical parameters consistent with Lipinski’s RO5.
Conclusion: In the crystal, both intra- and intermolecular hydrogen bonds are present. The molecular packing is stabilized by intermolecular N— H···O hydrogen bonds.
Ethical Statement
Not required
Supporting Institution
This work was supported by The Scientific Research Projects Coordination Unit of Istanbul University (TSA-2020-37008).
Project Number
TSA-2020-37008
Thanks
We would like to thank Prof. Dr. Ömer Andaç for his contribution to X-ray single crystal diffraction analysis studies. Asu Büşra TEMIZER who is the author of this study is supported by Council of Higher Education (100/2000 YOK doctoral scholarships) and The Scientific and Technological Research Council of Türkiye (TUBITAK-BIDEB 2211/A National PhD Scholarship Program).
References
- Abdelmouna, K., Laghchioua, F., Paz, F. A., Mendes, R. F., Moura, N. M., Faustino, M. A., . . . & Neves, M. G. (2023). Development of catalyst-free approach to synthesize novel spiro[indoline-3,1-pyrazolo[1,2-a]pyrazoles] via 1,3-dipolar cycloaddition. Journal of Molecular Structure, 1272, 134170. google scholar
- Akdemir, Ö. G., & Ermut, N. K. G. (2013). Antimicrobial and antiviral activity of spiroindolinones bearing benzothiazole moiety. Jour-nal of Faculty of Pharmacy of Istanbul University, 43(1), 1-11. google scholar
- Akkurt, M., Karaca, S., Ermut, G., Karalı, N., & Büyükgüngör, O. (2010). 5-Chlorobenzothiazole-2-spiro-3-indolin-2-one. Acta Crystallographica Section E: Structure Reports Online, 66(2), 399-400. google scholar
- Allam, Y. A., & Nawwar, G. A. (2002). Facile synthesis of 3-spiroindolines. Heteroatom Chemistry: An International Journal of Main Group Elements, 13(3), 207-210. google scholar
- Altowyan, M. S., Soliman, S. M., Haukka, M., Al-Shaalan, N. H., Alkharboush, A. A., & Barakat, A. (2022). Synthesis, charac-terization, and cytotoxicity of new spirooxindoles engrafted furan structural motif as a potential anticancer agent. ACS Omega, 7(40), 35743-35754. google scholar
- Baeyer, A. (1900). Systematik und nomenclatur bicyclischer kohlen-wasserstoffe. Berichte der Deutschen Chemischen Gesellschaft, 33(3), 3771-3775. google scholar
- Bariwal, J., Voskressensky, L. G., & Van der Eycken, E. V. (2018). Re-cent advances in spirocyclization of indole derivatives. Chemical Society Reviews, 47(11), 3831-3848. google scholar
- Castineiras, A., Gomez, M., & Sevillano, P. (2000). 2-(2,3-Dihydro-1,3-benzothiazol-2-yl)phenyl(diphenyl)phosphine oxide. Synthe-sis and characterization by IR and NMR spectroscopy and X-ray diffractometry. Journal of Molecular Structure, 554(2-3), 301306. google scholar
- Dandia A., Khanna S., & Joshi K C. (1990). Reactions of fluorinated isatin derivatives with 2-aminothiophenol. Journal Indian Chem-istry Society, 67, 824-826. google scholar
- Dandia, A., Singh, R., & Arya, K. (2004). Microwave induced dry-media synthesis of spiro[indole-thiazolidinones/thiazinones] as potential antifungal and antitubercular agents and study of their reactions. Phosphorus, Sulfur, and Silicon, 179(3), 551-564. google scholar
- Dandia, A., Singh, R., Khaturia, S., Merienne, C., Morgant, G., & Loupy, A. (2006). Efficient microwave enhanced re-gioselective synthesis of a series of benzimidazolyl/triazolyl spiro[indole-thiazolidinones] as potent antifungal agents and crys-tal structure of spiro[3H-indole-3,2-thiazolidine]-3(1,2,4-triazol-3-yl)-2,4(1H)-dione. Bioorganic & Medicinal Chemistry, 14(7), 2409-2417. google scholar
- Di, L., Fish, P. V., & Mano, T. (2012). Bridging solubility between drug discovery and development. Drug Discovery Today, 17(9-10), 486-495. google scholar
- Ding, A., Meazza, M., Guo, H., Yang, J. W., & Rios, R. (2018). New development in the enantioselective synthesis of spiro compounds. Chemical Society Reviews, 47(15), 5946-5996. google scholar
- Dowlatabadi, R., Khalaj, A., Rahimian, S., Montazeri, M., Amini, M., Shahverdi, A., & Mahjub, E. (2011). Impact of substituents on the isatin ring on the reaction between isatins with ortho-phenylenediamine. Synthetic Communications, 41(11), 16501658. google scholar
- Ermut, G., Karalı, N., Özsoy, N., & Can, A. (2014). New spiroin-dolinones bearing 5-chlorobenzothiazole moiety. Journal of En-zyme Inhibition and Medicinal Chemistry, 29(4), 457-468. google scholar
- Farrugia, L. J. (1999). WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837-838. google scholar
- Farrugia, L. J. (1997). ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565. google scholar
- Jain, R., Sharma, K., & Kumar, D. (2012). A greener, facile and scal-able synthesis of indole derivatives in water: reactions of indole-2,3-diones with 1,2-difunctionalized benzene. Tetrahedron Let-ters, 53(46), 6236-6240. google scholar
- Jiang, T., Kuhen, K. L., Wolff, K., Yin, H., Bieza, K., Caldwell, J., . . . He, Y. (2006). Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase in-hibitors. Part I. Bioorganic & Medicinal Chemistry Letters, 16(8), 2105-2108. google scholar
- Joshi K.C., Dandia A., & Khanna S. (1990). Studies in spirohete-rocycles: Part XXIII-Investigation on the reactions of indole-2,3-diones with 2-aminothiophenol and 2-aminophenol. Indian Journal Chemistry Sect B: Organic Chemistry Include Medicinal Chemistry, 29B: 824-829. google scholar
- Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S., & Salman, A. (2010). Syn-thesis of new spiroindolinones incorporating a benzothiazole moi-ety as antioxidant agents. European Journal of Medicinal Chem-istry, 45(3), 1068-1077. google scholar
- Laatsch, H., Thomson, R. H., & Cox, P. J. (1984). Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein. Journal of the Chemical Society, Perkin Transactions 2(8), 1331-1339. google scholar
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3-25. google scholar
- Murugan, R., Anbazhagan, S., & Narayanan, S. S. (2009). Synthe-sis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2]cycloaddition reactions with thiazolidinedione and rhodanine derivatives. European Journal of Medicinal Chemistry, 44(8), 3272-3279. google scholar
- Nardelli, M. (1995). PARST: a system of Fortran routines for calcu-lating molecular structure parameters from the results of crystal structure analyses. Journal of Applied Crystallography, 28, 659. google scholar
- Naumov, P., & Anastasova, F. (2001). Experimental and theoretical vibrational study of isatin, its 5-(NO2, F, Cl, Br, I, CH3 ) analogues and the isatinato anion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(3), 469-481. google scholar
- Popp, F. D. (1969). The reaction of Isatin with aromatic-o-diamines. Journal of Heterocyclic Chemistry, 6(1), 125-127. google scholar
- Rottmann, M., McNamara, C., Yeung, B. K. S., Lee, M. C. S., Zou, B., Russell, B., . . . Diagana, T. (2010). Spiroindolones, a potent compound class for the treatment of malaria. Science, 329(5996), 1175-1180. google scholar
- Santes, V., Rojas-Lima, S., Santillan, R. L., & Farfan, N. (1999). Synthesis and study of isomeric benzo[1,4]oxazines and ben-zothiazolines by NMR spectroscopy and X-ray crystallography. Monatshefte für Chemie, 130(12), 1481-1486. google scholar
- Schwertz, G., Witschel, M. C., Rottmann, M., Leartsakulpanich, U., Chitnumsub, P., Jaruwat, A., . . . Diederich, F. (2018). Potent inhibitors of plasmodial serine hydroxymethyltransferase (SHMT) featuring a spirocyclic scaffold. ChemMedChem, 13(9), 931-943. google scholar
- SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno= 3865. google scholar
- Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., . . . Wang, S. (2008). Temporal activation of p53 by a spe-cific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proceedings of the National Academy of Sciences, 105(10), 3933-3938. google scholar
- Sheldrick, G. M. (1997). SHELXS-97, Program for the Solution of Crystal Structures, University of Gottingen, Germany. google scholar
- Sheldrick, G. M. (2015). SHELXL-2014, Crystal Structure Refine-ment with SHELXL. Acta Crystallographica Section C, 71, 3-8. google scholar
- Spek, A. L. (2009). Structure validation in chemical crystallography, Acta Crystallographica Section D Structural Biology, D65, 148155. google scholar
- Stoe & Cie, (2002). X-AREA (Version 1.18) X-RED32 (Version 1.04) Stoe & Cie. Darmstadt, Germany. google scholar
- Zhao, Y., Yu, S., Sun, W., Liu, L., Lu, J., McEachern, D., . . . Wang, S. (2013). A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regres-sion in mice. Journal of Medicinal Chemistry, 56(13), 5553-5561. google scholar
Year 2024,
Volume: 54 Issue: 3, 456 - 465, 30.12.2024
Asu Büşra Temizer
,
Filiz Betül Kaynak
,
Nilgün Karalı
Project Number
TSA-2020-37008
References
- Abdelmouna, K., Laghchioua, F., Paz, F. A., Mendes, R. F., Moura, N. M., Faustino, M. A., . . . & Neves, M. G. (2023). Development of catalyst-free approach to synthesize novel spiro[indoline-3,1-pyrazolo[1,2-a]pyrazoles] via 1,3-dipolar cycloaddition. Journal of Molecular Structure, 1272, 134170. google scholar
- Akdemir, Ö. G., & Ermut, N. K. G. (2013). Antimicrobial and antiviral activity of spiroindolinones bearing benzothiazole moiety. Jour-nal of Faculty of Pharmacy of Istanbul University, 43(1), 1-11. google scholar
- Akkurt, M., Karaca, S., Ermut, G., Karalı, N., & Büyükgüngör, O. (2010). 5-Chlorobenzothiazole-2-spiro-3-indolin-2-one. Acta Crystallographica Section E: Structure Reports Online, 66(2), 399-400. google scholar
- Allam, Y. A., & Nawwar, G. A. (2002). Facile synthesis of 3-spiroindolines. Heteroatom Chemistry: An International Journal of Main Group Elements, 13(3), 207-210. google scholar
- Altowyan, M. S., Soliman, S. M., Haukka, M., Al-Shaalan, N. H., Alkharboush, A. A., & Barakat, A. (2022). Synthesis, charac-terization, and cytotoxicity of new spirooxindoles engrafted furan structural motif as a potential anticancer agent. ACS Omega, 7(40), 35743-35754. google scholar
- Baeyer, A. (1900). Systematik und nomenclatur bicyclischer kohlen-wasserstoffe. Berichte der Deutschen Chemischen Gesellschaft, 33(3), 3771-3775. google scholar
- Bariwal, J., Voskressensky, L. G., & Van der Eycken, E. V. (2018). Re-cent advances in spirocyclization of indole derivatives. Chemical Society Reviews, 47(11), 3831-3848. google scholar
- Castineiras, A., Gomez, M., & Sevillano, P. (2000). 2-(2,3-Dihydro-1,3-benzothiazol-2-yl)phenyl(diphenyl)phosphine oxide. Synthe-sis and characterization by IR and NMR spectroscopy and X-ray diffractometry. Journal of Molecular Structure, 554(2-3), 301306. google scholar
- Dandia A., Khanna S., & Joshi K C. (1990). Reactions of fluorinated isatin derivatives with 2-aminothiophenol. Journal Indian Chem-istry Society, 67, 824-826. google scholar
- Dandia, A., Singh, R., & Arya, K. (2004). Microwave induced dry-media synthesis of spiro[indole-thiazolidinones/thiazinones] as potential antifungal and antitubercular agents and study of their reactions. Phosphorus, Sulfur, and Silicon, 179(3), 551-564. google scholar
- Dandia, A., Singh, R., Khaturia, S., Merienne, C., Morgant, G., & Loupy, A. (2006). Efficient microwave enhanced re-gioselective synthesis of a series of benzimidazolyl/triazolyl spiro[indole-thiazolidinones] as potent antifungal agents and crys-tal structure of spiro[3H-indole-3,2-thiazolidine]-3(1,2,4-triazol-3-yl)-2,4(1H)-dione. Bioorganic & Medicinal Chemistry, 14(7), 2409-2417. google scholar
- Di, L., Fish, P. V., & Mano, T. (2012). Bridging solubility between drug discovery and development. Drug Discovery Today, 17(9-10), 486-495. google scholar
- Ding, A., Meazza, M., Guo, H., Yang, J. W., & Rios, R. (2018). New development in the enantioselective synthesis of spiro compounds. Chemical Society Reviews, 47(15), 5946-5996. google scholar
- Dowlatabadi, R., Khalaj, A., Rahimian, S., Montazeri, M., Amini, M., Shahverdi, A., & Mahjub, E. (2011). Impact of substituents on the isatin ring on the reaction between isatins with ortho-phenylenediamine. Synthetic Communications, 41(11), 16501658. google scholar
- Ermut, G., Karalı, N., Özsoy, N., & Can, A. (2014). New spiroin-dolinones bearing 5-chlorobenzothiazole moiety. Journal of En-zyme Inhibition and Medicinal Chemistry, 29(4), 457-468. google scholar
- Farrugia, L. J. (1999). WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837-838. google scholar
- Farrugia, L. J. (1997). ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565. google scholar
- Jain, R., Sharma, K., & Kumar, D. (2012). A greener, facile and scal-able synthesis of indole derivatives in water: reactions of indole-2,3-diones with 1,2-difunctionalized benzene. Tetrahedron Let-ters, 53(46), 6236-6240. google scholar
- Jiang, T., Kuhen, K. L., Wolff, K., Yin, H., Bieza, K., Caldwell, J., . . . He, Y. (2006). Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase in-hibitors. Part I. Bioorganic & Medicinal Chemistry Letters, 16(8), 2105-2108. google scholar
- Joshi K.C., Dandia A., & Khanna S. (1990). Studies in spirohete-rocycles: Part XXIII-Investigation on the reactions of indole-2,3-diones with 2-aminothiophenol and 2-aminophenol. Indian Journal Chemistry Sect B: Organic Chemistry Include Medicinal Chemistry, 29B: 824-829. google scholar
- Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S., & Salman, A. (2010). Syn-thesis of new spiroindolinones incorporating a benzothiazole moi-ety as antioxidant agents. European Journal of Medicinal Chem-istry, 45(3), 1068-1077. google scholar
- Laatsch, H., Thomson, R. H., & Cox, P. J. (1984). Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein. Journal of the Chemical Society, Perkin Transactions 2(8), 1331-1339. google scholar
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3-25. google scholar
- Murugan, R., Anbazhagan, S., & Narayanan, S. S. (2009). Synthe-sis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2]cycloaddition reactions with thiazolidinedione and rhodanine derivatives. European Journal of Medicinal Chemistry, 44(8), 3272-3279. google scholar
- Nardelli, M. (1995). PARST: a system of Fortran routines for calcu-lating molecular structure parameters from the results of crystal structure analyses. Journal of Applied Crystallography, 28, 659. google scholar
- Naumov, P., & Anastasova, F. (2001). Experimental and theoretical vibrational study of isatin, its 5-(NO2, F, Cl, Br, I, CH3 ) analogues and the isatinato anion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(3), 469-481. google scholar
- Popp, F. D. (1969). The reaction of Isatin with aromatic-o-diamines. Journal of Heterocyclic Chemistry, 6(1), 125-127. google scholar
- Rottmann, M., McNamara, C., Yeung, B. K. S., Lee, M. C. S., Zou, B., Russell, B., . . . Diagana, T. (2010). Spiroindolones, a potent compound class for the treatment of malaria. Science, 329(5996), 1175-1180. google scholar
- Santes, V., Rojas-Lima, S., Santillan, R. L., & Farfan, N. (1999). Synthesis and study of isomeric benzo[1,4]oxazines and ben-zothiazolines by NMR spectroscopy and X-ray crystallography. Monatshefte für Chemie, 130(12), 1481-1486. google scholar
- Schwertz, G., Witschel, M. C., Rottmann, M., Leartsakulpanich, U., Chitnumsub, P., Jaruwat, A., . . . Diederich, F. (2018). Potent inhibitors of plasmodial serine hydroxymethyltransferase (SHMT) featuring a spirocyclic scaffold. ChemMedChem, 13(9), 931-943. google scholar
- SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno= 3865. google scholar
- Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., . . . Wang, S. (2008). Temporal activation of p53 by a spe-cific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proceedings of the National Academy of Sciences, 105(10), 3933-3938. google scholar
- Sheldrick, G. M. (1997). SHELXS-97, Program for the Solution of Crystal Structures, University of Gottingen, Germany. google scholar
- Sheldrick, G. M. (2015). SHELXL-2014, Crystal Structure Refine-ment with SHELXL. Acta Crystallographica Section C, 71, 3-8. google scholar
- Spek, A. L. (2009). Structure validation in chemical crystallography, Acta Crystallographica Section D Structural Biology, D65, 148155. google scholar
- Stoe & Cie, (2002). X-AREA (Version 1.18) X-RED32 (Version 1.04) Stoe & Cie. Darmstadt, Germany. google scholar
- Zhao, Y., Yu, S., Sun, W., Liu, L., Lu, J., McEachern, D., . . . Wang, S. (2013). A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regres-sion in mice. Journal of Medicinal Chemistry, 56(13), 5553-5561. google scholar