Research Article
BibTex RIS Cite

Toxicological Evaluation of Siloxanes by In Silico Approaches

Year 2025, Volume: 55 Issue: 2, 233 - 244, 23.09.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1628403

Abstract

Background and Aims: Silicones are widely used in household items, personal care products, and medical devices. They are especially preferred for products used directly on humans, as they are biocompatible, biologically stable, and unlikely to cause allergic reactions. It has been estimated that the global produc tion capacity of siloxanes has reached 400,000 tons annually. Humans in all age groups are exposed to siloxanes from various products by oral, inhalation, dermal, or parenteral routes. For many years, siloxanes have been widely regarded as nontoxic substances, fostering a sense of safety in their use across various applications. However, emerging scientific research reveals a more nuanced perspective, indicating that this assumption of safety cannot be uniformly applied to all siloxanes. This study aimed to evaluate the in silico toxicological profile of sixteen different siloxanes, commonly regarded as safe, thereby questioning their potential risks and the validity of the current safety perception.

Methods: This study employed in silico toxicological evaluation of sixteen cyclic and linear siloxanes using VEGA (v.1.2.3), VEGA NRMEA (v.1.1.1), US EPA TEST (v.5.1.2 and 4.2.1), US EPA CompTox Chemicals Dashboard (v.2.5.3), PanScreen, ProTox (v.3.0), and DeepPK models.

Results: Our results suggested that siloxanes may affect the endocrine system through the oestrogen receptor (ER) pathway.

Conclusion: There is a growing need for new toxicity models that focus on silicone compounds. As our understanding advances, it becomes evident that the diverse chemical structures and behaviours of these compounds may pose potential risks that were previously overlooked.

References

  • Bains, P., & Kaur, S. (2023). Silicone in dermatology: an update. Journal of Cutaneous and Aesthetic Surgery, 16(1), 14–20. https://doi.org/10.4103/JCAS.JCAS_204_22 google scholar
  • Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513- W520. https://doi.org/10.1093/nar/gkae303 google scholar
  • Banerjee, P., Dehnbostel, F.O., & Preissner, R. (2018). Prediction is a balancing act: importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Frontiers in Chemistry, 6, 362. https://doi.org/10.3389/fchem.2018.00362 google scholar
  • Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), 257-263. https://doi.org/10.1093/nar/gky318 google scholar
  • Benfenati, E., Manganaro, A., Gini, G.C. (2013). VEGA-QSAR: AI inside a platform for predictive toxicology. Italy Published on CEUR Workshop Proceedings, 1107, 21-28. https://ceur-ws.org/Vol-1107/paper8.pdf google scholar
  • ChemSpider (2024). Retrieved from https://www.chemspider.com google scholar
  • Chen, W., Oh, J.S., Lim, J E., & Moon, H.B. (2023). Occurrence, time trends, and human exposure of siloxanes and synthetic musk compounds in indoor dust from Korean homes. Ecotoxicology and Environmental Safety, 266, 115538. https:// doi.org/10.1016/j.ecoenv.2023.115538 google scholar
  • Clewell, H., Greene, T., & Gentry, R. (2024). Dermal absorption of cyclic and linear siloxanes: a review. Journal of toxicology and environmental health. Part B, Critical reviews, 27(3), 106–129. https://doi.org/10.1080/10937404.2024.2316843 google scholar
  • Dekant, W., & Klaunig, J.E. (2016). Toxicology of decamethylcyclopentasiloxane (D5). Regulatory toxicology and pharmacology: Regulatory Toxicology and Pharma- cology, 74, 67-76. https://doi.org/10.1016/j.yrtph.2015.06.011 google scholar
  • Dekant, W., Scialli, A.R., Plotzke, K. & Klaunig J. E. (2017). Biological relevance of effects following chronic administration of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats. Toxicology Letters, 279, 42–53. https://doi.org/10.1016/j. toxlet.2017.01.010 google scholar
  • DEPA (2021). Survey and risk assessment of siloxanes in cosmetic products. Retrieved from https://www2.mst.dk/Udgiv/publications/2021/05/978-87-7038-317-2.pdf google scholar
  • Drwal, M.N., Banerjee, P., Dunkel, M., Wettig, M.R., & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42, 53–58. https://doi.org/10.1093/nar/gku401 google scholar
  • ECETOC (2011). European Centre for Ecotoxicology and Toxicology of Chemicals. Linear polydimethylsiloxanes, CAS No. 63148-62-9. JACC No. 55. 2011. Retrieved from https://www.ecetoc.org/publication/jacc-report-55-linear-polydimethyl siloxanes-second-edition/ google scholar
  • ECHA. Registered Substances Database. Retrieved from https://echa.europa.eu/cs/ information-on-chemicals/registered-substances google scholar
  • ECHA (2018). Retrieved from https://www.echa.europa.eu/web/guest/candidate-list- table google scholar
  • ECHA (2023a). Retrieved from https://echa.europa.eu/documents/10162/63ce2062-0 f0b-130f-3cb1-5c84071e7082 google scholar
  • ECHA (2023b). Retrieved from https://echa.europa.eu/-/committee-for-socio- economic-analysis-concludes-on-restricting-d4-and-d5 google scholar
  • Ferrari, T., Cattaneo, D., Gini, G., Bakhtyari, N.G., Benfenati, E., Manganaro, A. (2013). Automatic knowledge extraction from chemical structures: the case of muta- genicity prediction. SAR QSAR Environmental Research, 24, 365-383. https:// doi.org/10.1080/1062936x.2013.773376 google scholar
  • Franzen, A., Greene, T., Van Landingham, C., & Gentry, R. (2017). Toxicology of octamethylcyclotetrasiloxane (D4). Toxicology Letters, 279 (1), 2–22. https://doi. org/10.1016/j.toxlet.2017.06.007 google scholar
  • GSC (2023). Personal care and consumer products. Global Silicones Council. Retrieved from https://globalsilicones.org/explore-silicones/benefits-uses/consumer- products/ google scholar
  • Hansen, K., Mika, S., Schroeter, T., Sutter, A., Ter Laak, A., Steger-Hartmann, T., Heinrich, N., Müller, K.R. (2009). Benchmark data set for in silico prediction of Ames mu- tagenicity. Journal of Chemical Information Modelling, 49, 2077-2081. https:// doi.org/10.1021/ci900161g google scholar
  • He, B., Rhodes-Brower, S., Miller, M.R., Munson, A. E., Germolec, D.R., Walker, V.R., Korach, K.S., & Meade, B.J. (2003). Octamethylcyclotetrasiloxane exhibits estro- genic activity in mice via ERalpha. Toxicology and Applied Pharmacology, 192(3), 254–261. https://doi.org/10.1016/s0041-008x(03)00282-5 google scholar
  • Hoang, A.Q., Trinh, H.T., Nguyen, H.M.N., Nguyen, T.Q., Nguyen, T.X., Duc, T.V., Nguyen, T.T., Do, T.Q., Minh, T.B., & Tran, T.M. (2023). Assessment of cyclic volatile methyl siloxanes (CVMSs) in indoor dust from different micro-environments in northern and central Vietnam. Environmental Geochemistry and Health, 45(5), 1711–1722. https://doi.org/10.1007/s10653-022-01298-6 google scholar
  • Honma, M. (2020). An assessment of mutagenicity of chemical substances by (quan- titative) structure-activity relationship. Genes and Environment, 42(1), 1-13. https://doi.org/10.1186/s41021-020-00163-1 google scholar
  • Jean, P.A. & Plotzke, K. P. (2017). Chronic toxicity and oncogenicity of octamethylcy- clotetrasiloxane (D4) in the Fischer 344 rat. Toxicology Letters, 279, 75–97. https://doi.org/10.1016/j.toxlet.2017.06.003 google scholar
  • Jean, P.A., Plotzke, K.P., & Scialli, A.R. (2016). Chronic toxicity and oncogenicity of decamethylcyclopentasiloxane in the Fischer 344 Rat. Regulatory Toxicology and Pharmacology, 74, 57-66. https://doi.org/10.1016/j.yrtph.2015.06.014 google scholar
  • Jia, M., Dahlman-Wright, K., & Gustafsson, J. Å. (2015). Estrogen receptor alpha and beta in health and disease. Best practice & research. Clinical Endocrinology & Metabolism, 29(4), 557–568. https://doi.org/10.1016/j.beem.2015.04.008 google scholar
  • Johnson, W., Jr, Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Jr, Shank, R.C., Slaga, T.J., Snyder, P.W., & Andersen, F.A. (2011). Safety assessment of cyclomethicone, cyclotetrasiloxane, cyclopentasiloxane, cyclo- hexasiloxane, and cycloheptasiloxane. International Journal of Toxicology, 30(6), 149-227. https://doi.org/10.1177/1091581811428184 google scholar
  • Kadmiel, M., & Cidlowski, J. A. (2013). Glucocorticoid receptor signaling in health and disease. Trends in Pharmacological Sciences, 34(9), 518–530. https://doi.org/ 10.1016/j.tips.2013.07.003 google scholar
  • King, B.M., Janechek, N.J., Bryngelson, N., Adamcakova-Dodd, A., Lersch, T., Bunker, K., Casuccio, G., Thorne, P.S., Stanier, C.O., & Fiegel, J. (2020). Lung cell exposure to secondary photochemical aerosols generated from OH oxidation of cyclic siloxanes. Chemosphere, 241, 125126. https://doi.org/10.1016/j.chemosphere. 2019.125126 google scholar
  • Klaunig, J.E., Dekant, W., Plotzke, K., & Scialli, A.R. (2016). Biological relevance of de- camethylcyclopentasiloxane (D5) induced rat uterine endometrial adenocar- cinoma tumorigenesis: Mode of action and relevance to humans. Regulatory Toxicology and Pharmacology, 74, 44-56. https://doi.org/10.1016/j.yrtph.2015. 06.021 google scholar
  • Krenczkowska, D., Mojsiewicz-Pieńkowska, K., Wielgomas, B., Bazar, D., & Jankowski, Z. (2020). Ex vivo human skin is not a barrier for cyclic siloxanes (cyclic silicones): evidence of diffusion, bioaccumulation, and risk of dermal absorption using a new validated GC-FID procedure. Pharmaceutics, 12(6), 586. https://doi.org/ 10.3390/pharmaceutics12060586 google scholar
  • Krenczkowska, D., Mojsiewicz-Pieńkowska, K., Wielgomas, B., Cal, K., Bartoszewski, R., Bartoszewska, S., & Jankowski, Z. (2019). The consequences of overcoming the human skin barrier by siloxanes (silicones) Part 1. Penetration and permeation depth study of cyclic methyl siloxanes. Chemosphere, 231, 607–623. https:// doi.org/10.1016/j.chemosphere.2018.09.154 google scholar
  • Kumari, K., Singh, A., & Marathe, D. (2024). Cyclic volatile methyl siloxanes (D4, D5, and D6) as the emerging pollutants in environment: environmental distribution, fate, and toxicological assessments. Environmental Science and Pollution Re- search International, 31(27), 38681–38709. https://doi.org/10.1007/s11356-023- 25568-7 google scholar
  • Lassen, C., Hansen, C.L., Hagen Mikkelsen, S., & Maag, J. (2005). Siloxanes- consump- tion, toxicity and alternatives, Danish EPA, COWI A/S, Environmental Project No. 1031. Retrieved from https://www2.mst.dk/Udgiv/publications/2005/87- 7614-756-8/pdf/87-7614-757-6.pdf google scholar
  • Manganelli, S., Benfenati, E., Manganaro, A., Kulkarni, S., Barton-Maclaren, T.S., & Honma, M. (2016). New quantitative structure-activity relationship models improve predictability of Ames mutagenicity for aromatic azo compounds. Toxicological Sciences, 153(2), 316-326. https://doi.org/10.1093/toxsci/kfw125 google scholar
  • Matsumoto, T., Sakari, M., Okada, M., Yokoyama, A., Takahashi, S., Kouzmenko, A., & Kato, S. (2013). The androgen receptor in health and disease. Annual Review of Physiology, 75, 201–224. https://doi.org/10.1146/annurev-physiol-030212- 183656 google scholar
  • Mojsiewicz-Pieńkowska, K., Jamrógiewicz, M., Szymkowska, K., & Krenczkowska, D. (2016). Direct human contact with siloxanes (silicones) - Safety or Risk Part 1. Characteristics of siloxanes (silicones). Frontiers in Pharmacology, 7, 132. https://doi.org/10.3389/fphar.2016.00132 google scholar
  • Molinier, B., Arata, C., Katz, E.F., Lunderberg, D.M., Liu, Y., Misztal, P.K., Nazaroff, W.W., Goldstein, A.H. (2022). Volatile methyl siloxanes and other organosilicon compounds in residential air. Environmental Science and Technology, 56(22), 15427–15436. https://doi.org/10. 1021/acs.est.2c05438 google scholar
  • Mombelli, E., Fernández, A., Cester, J., Roncaglioni, A. (2022). QMRF identifier (JRC Inventory): To be entered by JRC QMRF Title: Mutagenicity (Ames test) CONSEN- SUS model-v. 1.0. 4. Retrieved from https://vegahub.eu/vegahub-dwn/qmrf/ QMRF_MUTA_CONSENSUS.pdf google scholar
  • Myung, Y., de Sá, A.G.C., & Ascher, D.B. (2024). Deep-PK: deep learning for small mol- ecule pharmacokinetic and toxicity prediction. Nucleic Acids Research, 52(1), 469–475. https://doi.org/10.1093/nar/gkae254 google scholar
  • Nguyen, T.T., Duong, V.A., & Maeng, H.J. (2021). Pharmaceutical formulations with P- glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics, 13(7), 1103. https://doi. org/10.3390/pharmaceutics13071103 google scholar
  • PubChem (2024). Retrieved from https://pubchem.ncbi.nlm.nih.gov google scholar
  • Quinn, A.L., Regan, J.M., Tobin, J.M., Marinik, B.J., McMahon, J.M., McNett, D.A., Sushynski, C.M., Crofoot, S.D., Jean, P.A., & Plotzke, K.P. (2007). In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic silox- anes. Toxicological Sciences: An Official Journal of the Society of Toxicology, 96(1), 145–153. https://doi.org/10.1093/toxsci/kfl185 google scholar
  • SCCS (2010). Opinion on cyclomethicone octamethylcyclotetrasiloxane (cyclote- trasiloxane, D4) and decamethylcyclopentasiloxane (cyclopentasiloxane, D5), SCCS/1241/10, 2010. Retrieved from http://ec.europa.eu/health/scientific_ committees/consumer_safety/docs/sccs_o_029.pdf google scholar
  • Sellner, M.S., Lill, M.A., & Smiesko, M. (2023). PanScreen: A comprehensive approach to off-target liability assessment. BioRxiv, 1-22. https://doi.org/10.1101/2023.11. 16.567496 google scholar
  • Siddiqui, W.H., Stump, D.G., Plotzke, K.P., Holson, J.F., & Meeks, R.G. (2007). A two-gener- ation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in rats exposed by whole-body vapor inhalation. Reproductive Toxicology (Elmsford, N.Y.), 23(2), 202–215. https://doi.org/10.1016/j.reprotox.2006.11.011 google scholar
  • UNECE (2011). Globally Harmonized System of Classification and Labelling of Chemicals (GHS). 4th Rev. New York: United Nations; 2011. Retrieved from https://unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/ English/ST-SG-AC10-30-Rev4e.pdf google scholar
  • US EPA (2025). CompTox Chemicals Dashboard (version 2.5.3). Retrieved from https:// comptox.epa.gov/dashboard/ google scholar
  • US EPA (2020). User’s Guide for T.E.S.T. (version 5.1) (Toxicity Estimation Software Tool): A program to estimate toxicity from molecular structure. Retrieved from https://www.epa.gov/sites/default/files/2016-05/documents/600r16058.pdf google scholar
  • Vedani, A., & Smiesko, M. (2009). In silico toxicology in drug discovery - concepts based on three-dimensional models. Alternatives to Laboratory Animals, 37(5), 477–496. https://doi.org/10.1177/026119290903700506 google scholar
  • Vedani, A., Dobler, M., & Smieško, M. (2012). VirtualToxLab - a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicology and Applied Pharmacology, 261(2), 142–153. https://doi.org/10.1016/j.taap.2012.03. 018 google scholar
  • Vedani, A., Dobler, M., Hu, Z., & Smieško, M. (2015). OpenVirtualToxLab - a platform for generating and exchanging in silico toxicity data. Toxicology Letters, 232(2), 519–532. https://doi.org/10.1016/j.toxlet.2014.09.004 google scholar
  • Vergnes, J.S., Jung, R., Thakur, A.K., Barfknecht, T.R., & Reynolds, V.L. (2000). Genetic toxicity evaluation of octamethylcyclotetrasiloxane. Environmental and Mol- ecular Mutagenesis, 36(1), 13-21. https://doi.org/10.1002/1098-2280(2000)36: 1<13::aid-em3>3.0.co;2-z google scholar
  • Wang, R., Moody, R.P., Koniecki, D., & Zhu, J. (2009). Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environment International, 35(6), 900-904. https://doi.org/10.1016/j. envint.2009.03.009 google scholar
  • WHO (2012). State of the science of endocrine disrupting chemicals 2012. Edited by Åke Bergman, Jerrold J. Heindel, Susan Jobling, Karen A. Kidd and R. Thomas Zoeller. Retrieved from https://apps.who.int/iris/bitstream/handle/ 10665/78102/WHO_HSE_PHE_IHE_2013.1_eng.pdf google scholar
  • WHO IARC (1999). Monographs on the evaluation of carcinogenic risks to humans, surgical implants and other foreign bodies, Vol 74, 1999. Retrieved from https://publications.iarc.fr/Book-And-Report- Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To- Humans/Surgical-Implants-And-Other-Foreign-Bodies-1999 google scholar
  • Williams, A.J., Grulke, C.M., Edwards, J., McEachran, A.D., Mansouri, K., Baker, N.C., Patlewicz, G., Shah, I., Wambaugh, J.F., Judson, R.S., & Richard, A.M. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 9(1), 61. https://doi.org/10.1186/s13321- 017-0247-6 google scholar
  • Williams, A.J., Lambert, J.C., Thayer, K., & Dorne, J.C.M. (2021). Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: a practical guide for human risk assessment. Environment International, 154, 106566. https://doi.org/10.1016/j.envint.2021.106566 google scholar
There are 59 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Original Article
Authors

Sezen Yılmaz Sarıaltın 0000-0002-8387-4146

Can Özgür Yalçın 0000-0003-4032-3229

Publication Date September 23, 2025
Submission Date January 31, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 55 Issue: 2

Cite

APA Yılmaz Sarıaltın, S., & Yalçın, C. Ö. (2025). Toxicological Evaluation of Siloxanes by In Silico Approaches. İstanbul Journal of Pharmacy, 55(2), 233-244. https://doi.org/10.26650/IstanbulJPharm.2025.1628403
AMA Yılmaz Sarıaltın S, Yalçın CÖ. Toxicological Evaluation of Siloxanes by In Silico Approaches. iujp. September 2025;55(2):233-244. doi:10.26650/IstanbulJPharm.2025.1628403
Chicago Yılmaz Sarıaltın, Sezen, and Can Özgür Yalçın. “Toxicological Evaluation of Siloxanes by In Silico Approaches”. İstanbul Journal of Pharmacy 55, no. 2 (September 2025): 233-44. https://doi.org/10.26650/IstanbulJPharm.2025.1628403.
EndNote Yılmaz Sarıaltın S, Yalçın CÖ (September 1, 2025) Toxicological Evaluation of Siloxanes by In Silico Approaches. İstanbul Journal of Pharmacy 55 2 233–244.
IEEE S. Yılmaz Sarıaltın and C. Ö. Yalçın, “Toxicological Evaluation of Siloxanes by In Silico Approaches”, iujp, vol. 55, no. 2, pp. 233–244, 2025, doi: 10.26650/IstanbulJPharm.2025.1628403.
ISNAD Yılmaz Sarıaltın, Sezen - Yalçın, Can Özgür. “Toxicological Evaluation of Siloxanes by In Silico Approaches”. İstanbul Journal of Pharmacy 55/2 (September2025), 233-244. https://doi.org/10.26650/IstanbulJPharm.2025.1628403.
JAMA Yılmaz Sarıaltın S, Yalçın CÖ. Toxicological Evaluation of Siloxanes by In Silico Approaches. iujp. 2025;55:233–244.
MLA Yılmaz Sarıaltın, Sezen and Can Özgür Yalçın. “Toxicological Evaluation of Siloxanes by In Silico Approaches”. İstanbul Journal of Pharmacy, vol. 55, no. 2, 2025, pp. 233-44, doi:10.26650/IstanbulJPharm.2025.1628403.
Vancouver Yılmaz Sarıaltın S, Yalçın CÖ. Toxicological Evaluation of Siloxanes by In Silico Approaches. iujp. 2025;55(2):233-44.