Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Potential Flood Areas in the Basin of Lake Ladik through AHP and GIS Integration, (Samsun, Türkiye)

Yıl 2024, Sayı: 13, 71 - 93, 15.10.2024
https://doi.org/10.46453/jader.1513212

Öz

Floods are a problem of many countries on a global scale. In Türkiye, especially in the summer months, large floods occur in the Black Sea Region coastal belt. The number and the destructive power of experienced floods are increasing day by day. It is not possible to prevent the occurrence of floods. But it is possible to take the necessary measures to prevent it from turning into a disaster. Recently, susceptibility analyses have been carried out for floods and similar natural disasters and the results help decision-makers. Within the scope of this study, flood susceptibility analysis was carried out by using multiple geographical factors together in the Basin of Lake Ladik of Samsun Province in the Black Sea Region. In the study, Analytical Hierarchy Process (AHP), Geographic Information Systems (GIS) and Remote Sensing (RS) techniques were used, which are multi-criteria decision-making methods. In this context, flood susceptibility analysis of the basin was carried out by using nine (9) different geographical factors (slope, aspect, lithology, soil, basin size, land use, landforms, precipitation, and drainage density). As a result of the study, for floods, there were identified four (4) different levels as low, medium, high, and very high; and 36.77% of the basin was found to be low, 30.03% was medium, 11.43% was high and 21.77% was found to be sensitive to possible floods at a very high level. The results of the study are also important for decision-makers to make flood risk planning.

Kaynakça

  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD). (2018). Türkiye deprem bina yönetmeliği. Ek: Deprem etkisi altında binaların tasarımı için esaslar. Access: 2 May 2023, Resmî Gazete, 18 March 2018, Sayı: 30364, s. 343. https://www.resmigazete.gov.tr
  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD). (2022). 2020 yılı doğa kaynaklı olay istatistikleri. Access: 7 August 2022. https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/Istatistikler/2020yili
  • Ajin, R., Krishnamurthy R.R, Jayaprakash, M. and Vinod, P.G. (2013). Flood hazard assessment of Vamanapuram River Basin, Kerala, India: An approach using Remote Sensing & GIS techniques. Advances in Applied Science Research. 4 (3). 263–274. https://www.researchgate.net/publication/299978233
  • Altın, G., Taşkın, S., Yurtal, R. and Aköz, M. S. (2024). Kuru derelerde taşkın risk analizi: Kebendibi Deresi örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi. 39 (1), 221-229. https://doi.org/10.21605/cukurovaumfd.1460463
  • Altıparmak, S. and Türkoğlu, N. (2018). Yakacık Çayı Havzasının (Hatay) morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi. 58 (1). 353-374. https://dergipark.org.tr/tr/download/article-file/2153709
  • ArcGIS Pro Help, (2024): Data classification methods. Retrieved form (08.08.2024). https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm.
  • Arya, A.K. and Singh, A.P. (2021). Multi criteria analysis for flood hazard mapping using GIS techniques: A case study of Ghaghara River basin in Uttar Pradesh, India. Arabian Journals of Geosciences. 14 (656). 1-12. http://dx.doi.org/10.1007/s12517-021-06971-1
  • Bahadır, M. and Uzun, A. (2021). Lâdik Gölü Havzasında arazi kullanımı (Samsun). Kesit Akademi Dergisi. 7 (27). 257-280. http://dx.doi.org/10.29228/kesit.49685
  • Baker, V.R., Kochel, R.C. and Patton, P.C. (1990). Flood geomorphology. USA: John Wiley & Sons, Inc. https://doi.org/10.1002/esp.3290150314
  • Ballesteros-Cánovas, J.A., Sanchez-Silva, M., Bodoque, J.M. and Díez-Herrero, A. (2013). An integrated approach to flood risk management: A case study of Navaluenga (Central Spain). Water Resources Management. 27. 3051–3069. http://dx.doi.org/10.1007/s11269-013-0332-1
  • Balogun, A., Quann, S., Pradhan, B., Dano, U. and Yekeen, S. (2021). An improved flood susceptibility model for assessing the correlation of flood hazard and property prices using geospatial technology and fuzzy-ANP. Journal of Environmental Informatics. 37 (2). 107–121. https://doi.org/10.3808/jei.202000442
  • Bozdoğan, M., & Canpolat, E. (2024). Delibekirli Havzası’nın taşkın tekerrürünün hesaplanması ve HEC-RAS ile modellenmesi (Kırıkhan/Hatay). Doğal Afetler ve Çevre Dergisi. 10 (2), 478-503. https://doi.org/10.21324/dacd.1387971
  • Chandran, R. and Joisy, M.B. (2009, November). Flood hazard mapping of Vamanapuram River basin-A case study. Proceedings of 10th National Conference on Technological Trends [Online]. Trivandrum, Kerala, India.
  • Chiadikobi, K.C., Omoboriowo, A.O., Chiaghanam, O.I., Opatola, A.O. and Oyebanji, O. (2011). Flood risk assessment of Port Harcourt, Rivers State, Nigeria. Advances in Applied Science Research. 2 (6). 287–298. https://www.researchgate.net/publication/336288521
  • CRED (2023). 2023 Disasters in numbers. Centre for Research on the Epidemiology of Disasters (CRED). Retrieved from (08.08.2024) https://files.emdat.be/reports/2023_EMDAT_report.pdf
  • De Risi, R., Jalayer, F., De Paola, F., Carozza, S., Yonas, N., Giugni, M. and Gasparini, P. (2019). From flood risk mapping toward reducing vulnerability: The case of Addis Ababa. Natural Hazards. 100. 387-415. https://link.springer.com/article/10.1007/s11069-019-03817-8
  • Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B. and Yetman, G. (2005). Natural disaster hotspots: A global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University.
  • Ekinci, D. (2004). Gülüç Çayı Havzası’nın uygulamalı jeomorfoloji özellikleri. (Pulication No. 146587). [Doctoral dissertation, Istanbul University Institute of Social Sciences]. Council of Higher Education Thesis Centers.
  • El-Haddad, B.A., Youssef, A.M., Pourghasemi, H.R., Pradhan, B., El-Shater, A.H. and El-Khashab, M.H. (2021). Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Natural Hazards. 105. 83–114. https://doi.org/10.1007/s11069-020-04296-y
  • Esri (2022). Sentinel-2, 10 m arazi kullanımı/arazi örtü süresi serisi. Retrieved from (08.02.2022). https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31
  • Feizizadeh, B., Gheshlaghi, HA. and Bui, D.T. (2020). An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. Journal of Environmental Planning and Management. 64 (3). 485–516. https://doi.org/10.1080/09640568.2020.1775561
  • Fıçıcı, M. (2024). Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğal Afetler ve Çevre Dergisi, 10 (2), 295-313. https://doi.org/10.21324/dacd.1407354
  • Franci, F., Bitelli, G., Mandanici, E., Hadjimitsis, D. and Agapiou, A. (2016). Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping. Natural Hazards. 83 (1). 31–51. https://doi.org/10.1007/s11069-016-2504-9
  • Gashaw, W. and Legesse, D. (2011). Flood hazard and risk assessment using GIS and remote sensing in Fogera Woreda, Northwest Ethiopia. Nil River Basin: Hydrology, Climate and Water Use. In: Melesse, A.M. (Ed.). 179–206. Netherlands, Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-007-0689-7_9
  • Girayhan, T.F. (2015). Nicel taşkın risk değerlendirmesiyle hasar modellemesi ve metodolojinin geliştirilmesi. [Master’s thesis, Republic of Turkey Ministry of Forestry and Water Affairs, Ankara].
  • Goepel, K.D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-A new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, June. Kuala Lumpur. https://doi.org/10.13033/isahp.y2013.047
  • Göztepe, S., Bahadır, M. and Şen, H. (2022). Geographical analysis of floods and flood susceptibility of the Hatip stream basin in Ankara, Turkey. The Journal of Kesit Academy. 8 (33), 143-169. http://dx.doi.org/10.29228/kesit.66182
  • Gupta, M. and Srivastava, P.K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water International. 35 (2). 233-245. http://dx.doi.org/10.1080/02508061003664419
  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A-X. and Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625. 575–588. https://doi.org/10.1016/j.scitotenv.2017.12.256
  • Horritt, M.S., Mason, D.C. and Luckman, A.J. (2001). Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. International Journal of Remote Sensing. 22 (13). 2489–250. http://dx.doi.org/10.1080/01431160116902
  • Horton, R.E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin. 56 (3). 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  • Işık, F., Bahadır, M., Zeybek, H.İ. and Çağlak, S. (2020). Karadere Çayı taşkını (Araklı-Trabzon). Mavi Atlas. 8 (2). 526-547. https://doi.org/10.18795/gumusmaviatlas.788991
  • Kirpich, Z.P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering. 10 (6). 362.
  • Köroğlu, B. and Akıncı, H. (2023). Coğrafi Bilgi Sistemleri tabanlı çok kriterli karar analizi ile Giresun ili Dereli ilçesinin taşkın duyarlılık Analizi. Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1 (2), 62-81. https://dergipark.org.tr/tr/pub/acujes/issue/81869/1347333
  • Köse, Y., Şahin, Ş. and Müftüoğlu, V. (2024). Ankara Çayı Havzası’nın kentsel planlama kapsamında taşkın duyarlılığı açısından değerlendirilmesi. İdealkent. 16 (43), 512-543. https://doi.org/10.31198/idealkent.1360600
  • Kumar, M.K., Dharanirajan, K. and Sabyasachy, S. (2021). Application of Gumbel’s distribution method for flood frequency analysis of Lower Ganga Basin (Farakka Barrage Station), West Bengal, India. Disaster Advances 14 (8), 51–58. https://doi.org/10.25303/148da5121
  • Lin, H., Wan, Q., Li, X., Chen, J. and Kong, Y. (1997). GIS based multicriteria evaluation for investment environment. Environment and Planning B: Urban Analytics and City Science. 24 (3). 403-414.
  • Majeed, M., Lu, L., Anwar, M.M., Tariq, A., Qin, S., El-Hefnawy, M.E. and Alasmari, A. (2023). Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Frontiers in Environmental Science. 10. 1037547. https://doi.org/10.3389/fenvs.2022.1037547
  • Mohan, R. (2018). Ghaghara River System-Its current status and value to society. The Indian Rivers: Scientific and Socio-Economic Aspects. In: Singh, D.S. (Ed.). 151-164. Singapore: Springer Hydrogeology, Springer. http://dx.doi.org/10.1007/978-981-10-2984-4_12
  • Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N. and bin Ghazali, A.H. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk. 8 (2). 1080–1102. https://doi.org/10.1080/19475705.2017.1294113
  • Nsangou, D., Kpoumié, A., Mfonka, Z., Ngouh, A.N., Fossi, D.H., Jourdan, C., Mbele, H.Z., Mouncherou, O.F., Vandervaere, J-P. and Ngoupayou, J.R.N. (2022). Urban flood susceptibility modelling using AHP and GIS approach: case of the Mfoundi watershed at Yaoundéin the South-Cameroon plateau. Scientific African. 15 (2022). 1-16. http://dx.doi.org/10.1016/j.sciaf.2021.e01043
  • Ocak, F. (2018). Ünye şehir sellerinin zarar görebilirlik yöntemi ile incelenmesi. (Publication No. 523827). [Master’s thesis, Ondokuz Mayıs University Institute of Social Sciences, Samsun]. Council of Higher Education Thesis Centers.
  • Ocak, F. and Bahadır, M. (2020). Örnek taşkın risk modeli oluşturulması ve Ünye şehrindeki derelere ait taşkın risk analizleri. Jass Studies-The Journal of Academic Social Science Studies. 13 (80). 21-37. http://dx.doi.org/10.29228/JASSS.43017
  • Ocak, F. and Bahadır, M. (2021). Taşkın bilgi ve yönetim sisteminin oluşturulmasında web CBS teknolojisi kullanımı: Ordu-Ünye şehir selleri örneği. Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları II. In: Döker M.F. and Akköprü, E. (Eds). 205-220. Ankara: Pegem Akademi Yayıncılık.
  • Ocak, F., Bahadır, M., Uzun, A. and Şahin, K. (2021a). Atakum ilçesi kıyı kuşağının taşkın ve duyarlılık analizi, Samsun/Türkiye. Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları II. In: Döker, M.F. and Akköprü, E. (Eds). 273-292. Ankara: Pegem Akademi Yayıncılık.
  • Ocak, F., Bahadır, M. and Aylar, F. (2021b). Bakacak Deresi Havzası’nın (Samsun) coğrafi analizi ve taşkın duyarlılığı. Mavi Atlas. 9 (2). 61-81. https://doi.org/10.18795/gumusmaviatlas.981217
  • Ocak, F. and Bahadır, M. (2022). CBS teknikleri kullanılarak deprem duyarlılık analizi için Analitik Hiyerarşi Prosesi: Samsun Ladik Gölü Havzası örneği, Türkiye. Kesit Akademi Dergisi. 8 (33). 322-348. http://dx.doi.org/10.29228/kesit.64705
  • Oğuz, E., Oğuz, K. and Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik. 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Ouma, Y.O. and Omai, L. (2023). Flood Susceptibility mapping using image-based 2D-CNN deep learning: Overview and case study application using multiparametric spatial data in data-scarce urban environments. International Journal of Intelligent Systems. 2023. 5672401. http://dx.doi.org/10.1155/2023/5672401
  • Özdemir, H. (2007). Havran çayı havzasının (Balıkesir) CBS ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Publication No. 215084). [Doctoral dissertation, Istanbul University Institute of Social Sciences, İstanbul]. Council of Higher Education Thesis Centers.
  • Özdemir, H. and Bayrakdar, C. (2014). 16 November 2007 Tuzla Deresi taşkınının nedenleri üzerine bir araştırma (Silivri-İstanbul). Türk Coğrafya Dergisi. 49 (5). 123-139. https://dergipark.org.tr/tr/download/article-file/198493
  • Özşahin, E. (2016). Arnavutluk’ta taşkın risk analizi. Uluslararası Avrasya Sosyal Bilimler Dergisi. (12). 91-109. https://dergipark.org.tr/tr/pub/ijoess/issue/8530/105929
  • Özşahin, E. (2022). Havsa (Edirne) ilçesinde taşkın tehlike duyarlılığının değerlendirilmesi. In M. Tan, and T. Erdoğan (Eds). Her Yönüyle Havsa, (pp.711-732). Paradigma Akademi Yayınları.
  • Parker, D., Tapsell, S. and McCarthy, S. (2007). Enhancing the human benefits of flood warnings. Natural Hazards. 43. 397-414. https://doi.org/10.1007/s11069-007-9137-y
  • Patel, D.P. and Srivastava, P.K. (2013). Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resources Management. 27. 2353-2368. http://dx.doi.org/10.1007/s11269-013-0291-6
  • Patton, P.C. and Baker, V.R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. U.S. Water Resources Research. 12 (5). 941-952. https://www.academia.edu/29120485/
  • Pereira, J.M.C. and Duckstein, L. (1993). A multiple criteria decision-making approach to GIS based land suitability evaluation. International Journal of Geographical Information Systems. 7 (5). 407-424. https://doi.org/10.1080/02693799308901971
  • Reddy, G.P.O., Maji, A.K. and Gajbhiye, K.S .(2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India-A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation. 6 (1). 1-16. http://dx.doi.org/10.1016/j.jag.2004.06.003
  • Saaty, T.L. (1980). The analytic hierarchy process, New York. McGraw Hill. International, Translated to Russian, Portuguese, and Chinese, Revised editions, Paperback (1996, 2000), Pittsburgh: RWS Publications.
  • Saaty, T.L. (1989). Hierarchical-Multiobjective systems. Control-Theory and Advanced Technology. 5 (4). 485-489.
  • Saaty, T.L. and Alexander J. (1989) Conflict resolution: The analytic hierarchy process. Praeger, New York.
  • Saaty, T.L. and Forman, E.H. (1993). The hierarchon–A dictionary of hierarchies. RWS Publications, Pittsburgh, PA.
  • Saaty, T.L. and Vargas, L.G. (2006). Decision making with the analytic network process: Economic, political, social and technological applications with benefits, opportunities, costs and risks. United States of America, New York: Springer. http://dx.doi.org/10.1007/0-387-33987-6
  • Saini, S.S. and Kaushik, S.P. (2012). Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana. International Journal of Geomatics and Geosciences. 3 (1). 42–54. https://www.researchgate.net/publication/269695166
  • Samsun Provincial Directorate of Disaster and Emergency (2022). CİMER (Presidential Communication Center) information request.
  • Sanjay, K. and Goel, M.K. (2002). Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS. Hydrological Sciences Journal. 47 (1). 31–40. http://dx.doi.org/10.1080/02626660209492905
  • Sherman LK (1932). The relation of hydrographs of runoff to size and character of drainage basin. Trans. Am. Geophys. Union. 13. 332-339.
  • Singh, D.S., Prajapati, S.K., Singh, P., Singh, K. and Kumar, D. (2015). Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River Basin. Ganga Plain, India. Journal of the Geological Society of India. 85 (1). 79–86. https://www.researchgate.net/publication/344586665
  • Singh, A.P., Arya, A.K. and Singh, D.S. (2020). Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS. Journal Geological Society of India. 95. 169-178. http://dx.doi.org/10.1007/s12594-020-1406-3
  • Singh K, Arya AK, Agarwal KK (2020). Landslide occurrences along lineaments on NH-154A, Chamba, Himachal Pradesh; extracted from Satellite Data Landsat 8, India. Journal of the Indian Society of Remote Sensing. 48. 791-803. https://doi.org/10.1007/s12524-020-01113-8
  • Sinha, R., Bapalu, G., Singh, L.K. and Rath, B. (2008). Flood risk analysis in the Kosi River Basin, North Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing. 36. 335-349. http://dx.doi.org/10.1007/s12524-008-0034-y
  • Srivastava, O.S., Denis, D.M., Srivastava, S.K., Kumar, M. and Kumar, N. (2014). Morphometric analysis of a Semi Urban Watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS. International Journal of Engineering Science. 3. 71-79. https://www.researchgate.net/publication/308028238
  • Stefanidis, S., and Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards. 68. 569–585. http://dx.doi.org/10.1007/s11069-013-0639-5
  • Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology. In: Chow, V.T. (Ed.). 439-476. United States of America, New York.
  • Swain, K. C., Singha, C. and Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information. 9 (12), 720. https://doi.org/10.3390/ijgi9120720
  • Tariq, A., Yan, J., Ghaffar, B., Qin, S., Mousa, B. G., Sharifi, A. and Aslam, M. (2022). Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio model with diverse spatial data. Water. 14 (19), 3069. https://doi.org/10.3390/w14193069
  • Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R. and Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment. 615, 438–451. http://dx.doi.org/10.1016/j.scitotenv.2017.09.262
  • Thilagavathi, G., Tamilenthi, S., Ramu, C. and Baskaran R. (2011). Application of GIS in flood hazard zonation studies in Papanasam Taluk, Thanjavur District, Tamilnadu. Advances in Applied Science Research. 2 (3). 574-585. https://www.researchgate.net/publication/216335849
  • Turoğlu, H. (2005). Bartın’da meydana gelen sel ve taşkınlara ait zarar azaltma ve önleme önerileri. İTÜ Türkiye Kuvaterner Sempozyumu V. İstanbul Teknik Üniversitesi, İstanbul.
  • Turoğlu, H. and Özdemir, H. (2005). Bartın’da sel ve taşkınlar: Sebepler, etkiler, önleme ve zarar azaltma önerileri. İstanbul: Çantay Kitabevi.
  • URL-1: Historical floods in the Basin of Lake Ladik. Access: 25 September 2022. www.atlas.gov.tr
  • Utlu, M. (2023). Frekans Oranı ve Shannon Entropisi yöntemi kullanarak Ezine Çayı Havzası taşkın duyarlılık analizi (Kastamonu-Bozkurt). Jeomorfolojik Araştırmalar Dergisi. (11). 160-178. https://doi.org/10.46453/jader.1358845
  • Uysal, G. and Taşçı, E. (2023). Batman Barajı’nın yıkılması durumunda mansapta taşkın riskinin iki boyutlu hidrolik modelleme ve uydu verileri ile analizi. Doğal Afetler ve Çevre Dergisi. 9 (1). 39-57. https://doi.org/10.21324/dacd.1107630
  • Warner, M. (2001). Impact of grid size in GIS based flood extent mapping using a 1D flow model. Physics and Chemistry of the Earth Part B: Hydrology Oceans and Atmosphere. 26 (7-8). 517–522. http://dx.doi.org/10.1016/S1464-1909(01)00043-0
  • Yurteri, C. (2024). Coğrafi Bilgi Sistemleri (CBS) ortamında Analitik Hiyerarşi Yöntemi (AHY) kullanılarak taşkın risk analizi: Karabük ili örneği. Mühendislik Bilimleri ve Tasarım Dergisi. 12 (2). 298-318. https://doi.org/10.21923/jesd.1438999
  • Zhao, G., Pang, B., Xu, Z., Peng, D. and Zuo, D. (2020). Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology. 590. 125235. https://doi.org/10.1016/j.jhydrol.2020.125235

Ladik Gölü Havzası’ndaki Potansiyel Taşkın Alanlarının AHP ve CBS Entegrasyonu ile Değerlendirilmesi (Samsun, Türkiye)

Yıl 2024, Sayı: 13, 71 - 93, 15.10.2024
https://doi.org/10.46453/jader.1513212

Öz

Taşkınlar küresel ölçekte birçok ülkenin sorunudur. Türkiye’de özellikle yaz aylarında Karadeniz Bölgesi kıyı kuşağında büyük taşkınlar meydana gelmektedir. Yaşanılan taşkınların sayısı ve tahrip etme güçleri her geçen gün artmaktadır. Taşkınların oluşumunu engellemek mümkün değildir. Ancak bir afet karakterine dönüşmesini engellemek için gerekli önlemleri almak mümkündür. Taşkın ve benzeri doğal afetler için son zamanlarda duyarlılık analizleri gerçekleştirilmekte ve sonuçları karar vericilere yardımcı olmaktadır. Bu çalışma kapsamında Karadeniz Bölgesi’nde yer alan Samsun iline bağlı Ladik Gölü Havzası’nda birden çok coğrafi faktörün bir arada kullanılmasıyla taşkın duyarlılık analizi gerçekleştirilmiştir. Çalışmada çok kriterli karar verme yöntemlerinden olan Analitik Hiyerarşi Prosesi (AHP), Coğrafi Bilgi Sistemleri (CBS) ve Uzaktan Algılama (UA) teknikleri kullanılmıştır. Bu kapsamda dokuz (9) faklı coğrafi faktör (eğim, bakı, litoloji, toprak, havza boyutu, arazi kullanımı, yeryüzü şekilleri, yağış ve drenaj yoğunluğu) kullanılarak havzanın taşkın duyarlılık analizi gerçekleştirilmiştir. Çalışma sonucunda taşkın için düşük, orta, yüksek ve çok yüksek olmak üzere dört (4) farklı düzey belirlenmiş ve havzanın %36,77’si düşük, %30,03’ü orta, %11,43’ü yüksek ve %21,77’si çok yüksek düzeyde gerçekleşmesi muhtemel taşkınlara karşı duyarlı çıkmıştır. Ayrıca elde edilen taşkın duyarlılığı sonuçları ile daha öncesinde yaşanmış olan taşkın olaylarının karşılaştırılması yapılmıştır. Böylece analiz sonuçları ile doğal gerçeklik korele edilmiştir. Çalışmanın sonuç kısmında ise sahada taşkın afeti öncesinde alınması gereken önlemler ve risk yönetimine yönelik yaklaşımlar sunulmuştur.

Etik Beyan

Bu çalışma Fatih OCAK'ın “Ladik Gölü Havzası'nda (Samsun) Akıllı Doğal Afet Yönetimi” başlıklı doktora tezinin taşkın duyarlılık analizi kısmından üretilmiştir.

Kaynakça

  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD). (2018). Türkiye deprem bina yönetmeliği. Ek: Deprem etkisi altında binaların tasarımı için esaslar. Access: 2 May 2023, Resmî Gazete, 18 March 2018, Sayı: 30364, s. 343. https://www.resmigazete.gov.tr
  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD). (2022). 2020 yılı doğa kaynaklı olay istatistikleri. Access: 7 August 2022. https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/Istatistikler/2020yili
  • Ajin, R., Krishnamurthy R.R, Jayaprakash, M. and Vinod, P.G. (2013). Flood hazard assessment of Vamanapuram River Basin, Kerala, India: An approach using Remote Sensing & GIS techniques. Advances in Applied Science Research. 4 (3). 263–274. https://www.researchgate.net/publication/299978233
  • Altın, G., Taşkın, S., Yurtal, R. and Aköz, M. S. (2024). Kuru derelerde taşkın risk analizi: Kebendibi Deresi örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi. 39 (1), 221-229. https://doi.org/10.21605/cukurovaumfd.1460463
  • Altıparmak, S. and Türkoğlu, N. (2018). Yakacık Çayı Havzasının (Hatay) morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi. 58 (1). 353-374. https://dergipark.org.tr/tr/download/article-file/2153709
  • ArcGIS Pro Help, (2024): Data classification methods. Retrieved form (08.08.2024). https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm.
  • Arya, A.K. and Singh, A.P. (2021). Multi criteria analysis for flood hazard mapping using GIS techniques: A case study of Ghaghara River basin in Uttar Pradesh, India. Arabian Journals of Geosciences. 14 (656). 1-12. http://dx.doi.org/10.1007/s12517-021-06971-1
  • Bahadır, M. and Uzun, A. (2021). Lâdik Gölü Havzasında arazi kullanımı (Samsun). Kesit Akademi Dergisi. 7 (27). 257-280. http://dx.doi.org/10.29228/kesit.49685
  • Baker, V.R., Kochel, R.C. and Patton, P.C. (1990). Flood geomorphology. USA: John Wiley & Sons, Inc. https://doi.org/10.1002/esp.3290150314
  • Ballesteros-Cánovas, J.A., Sanchez-Silva, M., Bodoque, J.M. and Díez-Herrero, A. (2013). An integrated approach to flood risk management: A case study of Navaluenga (Central Spain). Water Resources Management. 27. 3051–3069. http://dx.doi.org/10.1007/s11269-013-0332-1
  • Balogun, A., Quann, S., Pradhan, B., Dano, U. and Yekeen, S. (2021). An improved flood susceptibility model for assessing the correlation of flood hazard and property prices using geospatial technology and fuzzy-ANP. Journal of Environmental Informatics. 37 (2). 107–121. https://doi.org/10.3808/jei.202000442
  • Bozdoğan, M., & Canpolat, E. (2024). Delibekirli Havzası’nın taşkın tekerrürünün hesaplanması ve HEC-RAS ile modellenmesi (Kırıkhan/Hatay). Doğal Afetler ve Çevre Dergisi. 10 (2), 478-503. https://doi.org/10.21324/dacd.1387971
  • Chandran, R. and Joisy, M.B. (2009, November). Flood hazard mapping of Vamanapuram River basin-A case study. Proceedings of 10th National Conference on Technological Trends [Online]. Trivandrum, Kerala, India.
  • Chiadikobi, K.C., Omoboriowo, A.O., Chiaghanam, O.I., Opatola, A.O. and Oyebanji, O. (2011). Flood risk assessment of Port Harcourt, Rivers State, Nigeria. Advances in Applied Science Research. 2 (6). 287–298. https://www.researchgate.net/publication/336288521
  • CRED (2023). 2023 Disasters in numbers. Centre for Research on the Epidemiology of Disasters (CRED). Retrieved from (08.08.2024) https://files.emdat.be/reports/2023_EMDAT_report.pdf
  • De Risi, R., Jalayer, F., De Paola, F., Carozza, S., Yonas, N., Giugni, M. and Gasparini, P. (2019). From flood risk mapping toward reducing vulnerability: The case of Addis Ababa. Natural Hazards. 100. 387-415. https://link.springer.com/article/10.1007/s11069-019-03817-8
  • Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B. and Yetman, G. (2005). Natural disaster hotspots: A global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University.
  • Ekinci, D. (2004). Gülüç Çayı Havzası’nın uygulamalı jeomorfoloji özellikleri. (Pulication No. 146587). [Doctoral dissertation, Istanbul University Institute of Social Sciences]. Council of Higher Education Thesis Centers.
  • El-Haddad, B.A., Youssef, A.M., Pourghasemi, H.R., Pradhan, B., El-Shater, A.H. and El-Khashab, M.H. (2021). Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Natural Hazards. 105. 83–114. https://doi.org/10.1007/s11069-020-04296-y
  • Esri (2022). Sentinel-2, 10 m arazi kullanımı/arazi örtü süresi serisi. Retrieved from (08.02.2022). https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31
  • Feizizadeh, B., Gheshlaghi, HA. and Bui, D.T. (2020). An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. Journal of Environmental Planning and Management. 64 (3). 485–516. https://doi.org/10.1080/09640568.2020.1775561
  • Fıçıcı, M. (2024). Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğal Afetler ve Çevre Dergisi, 10 (2), 295-313. https://doi.org/10.21324/dacd.1407354
  • Franci, F., Bitelli, G., Mandanici, E., Hadjimitsis, D. and Agapiou, A. (2016). Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping. Natural Hazards. 83 (1). 31–51. https://doi.org/10.1007/s11069-016-2504-9
  • Gashaw, W. and Legesse, D. (2011). Flood hazard and risk assessment using GIS and remote sensing in Fogera Woreda, Northwest Ethiopia. Nil River Basin: Hydrology, Climate and Water Use. In: Melesse, A.M. (Ed.). 179–206. Netherlands, Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-007-0689-7_9
  • Girayhan, T.F. (2015). Nicel taşkın risk değerlendirmesiyle hasar modellemesi ve metodolojinin geliştirilmesi. [Master’s thesis, Republic of Turkey Ministry of Forestry and Water Affairs, Ankara].
  • Goepel, K.D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises-A new AHP excel template with multiple inputs. Proceedings of the International Symposium on the Analytic Hierarchy Process, June. Kuala Lumpur. https://doi.org/10.13033/isahp.y2013.047
  • Göztepe, S., Bahadır, M. and Şen, H. (2022). Geographical analysis of floods and flood susceptibility of the Hatip stream basin in Ankara, Turkey. The Journal of Kesit Academy. 8 (33), 143-169. http://dx.doi.org/10.29228/kesit.66182
  • Gupta, M. and Srivastava, P.K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water International. 35 (2). 233-245. http://dx.doi.org/10.1080/02508061003664419
  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A-X. and Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625. 575–588. https://doi.org/10.1016/j.scitotenv.2017.12.256
  • Horritt, M.S., Mason, D.C. and Luckman, A.J. (2001). Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. International Journal of Remote Sensing. 22 (13). 2489–250. http://dx.doi.org/10.1080/01431160116902
  • Horton, R.E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin. 56 (3). 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  • Işık, F., Bahadır, M., Zeybek, H.İ. and Çağlak, S. (2020). Karadere Çayı taşkını (Araklı-Trabzon). Mavi Atlas. 8 (2). 526-547. https://doi.org/10.18795/gumusmaviatlas.788991
  • Kirpich, Z.P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering. 10 (6). 362.
  • Köroğlu, B. and Akıncı, H. (2023). Coğrafi Bilgi Sistemleri tabanlı çok kriterli karar analizi ile Giresun ili Dereli ilçesinin taşkın duyarlılık Analizi. Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 1 (2), 62-81. https://dergipark.org.tr/tr/pub/acujes/issue/81869/1347333
  • Köse, Y., Şahin, Ş. and Müftüoğlu, V. (2024). Ankara Çayı Havzası’nın kentsel planlama kapsamında taşkın duyarlılığı açısından değerlendirilmesi. İdealkent. 16 (43), 512-543. https://doi.org/10.31198/idealkent.1360600
  • Kumar, M.K., Dharanirajan, K. and Sabyasachy, S. (2021). Application of Gumbel’s distribution method for flood frequency analysis of Lower Ganga Basin (Farakka Barrage Station), West Bengal, India. Disaster Advances 14 (8), 51–58. https://doi.org/10.25303/148da5121
  • Lin, H., Wan, Q., Li, X., Chen, J. and Kong, Y. (1997). GIS based multicriteria evaluation for investment environment. Environment and Planning B: Urban Analytics and City Science. 24 (3). 403-414.
  • Majeed, M., Lu, L., Anwar, M.M., Tariq, A., Qin, S., El-Hefnawy, M.E. and Alasmari, A. (2023). Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Frontiers in Environmental Science. 10. 1037547. https://doi.org/10.3389/fenvs.2022.1037547
  • Mohan, R. (2018). Ghaghara River System-Its current status and value to society. The Indian Rivers: Scientific and Socio-Economic Aspects. In: Singh, D.S. (Ed.). 151-164. Singapore: Springer Hydrogeology, Springer. http://dx.doi.org/10.1007/978-981-10-2984-4_12
  • Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N. and bin Ghazali, A.H. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk. 8 (2). 1080–1102. https://doi.org/10.1080/19475705.2017.1294113
  • Nsangou, D., Kpoumié, A., Mfonka, Z., Ngouh, A.N., Fossi, D.H., Jourdan, C., Mbele, H.Z., Mouncherou, O.F., Vandervaere, J-P. and Ngoupayou, J.R.N. (2022). Urban flood susceptibility modelling using AHP and GIS approach: case of the Mfoundi watershed at Yaoundéin the South-Cameroon plateau. Scientific African. 15 (2022). 1-16. http://dx.doi.org/10.1016/j.sciaf.2021.e01043
  • Ocak, F. (2018). Ünye şehir sellerinin zarar görebilirlik yöntemi ile incelenmesi. (Publication No. 523827). [Master’s thesis, Ondokuz Mayıs University Institute of Social Sciences, Samsun]. Council of Higher Education Thesis Centers.
  • Ocak, F. and Bahadır, M. (2020). Örnek taşkın risk modeli oluşturulması ve Ünye şehrindeki derelere ait taşkın risk analizleri. Jass Studies-The Journal of Academic Social Science Studies. 13 (80). 21-37. http://dx.doi.org/10.29228/JASSS.43017
  • Ocak, F. and Bahadır, M. (2021). Taşkın bilgi ve yönetim sisteminin oluşturulmasında web CBS teknolojisi kullanımı: Ordu-Ünye şehir selleri örneği. Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları II. In: Döker M.F. and Akköprü, E. (Eds). 205-220. Ankara: Pegem Akademi Yayıncılık.
  • Ocak, F., Bahadır, M., Uzun, A. and Şahin, K. (2021a). Atakum ilçesi kıyı kuşağının taşkın ve duyarlılık analizi, Samsun/Türkiye. Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları II. In: Döker, M.F. and Akköprü, E. (Eds). 273-292. Ankara: Pegem Akademi Yayıncılık.
  • Ocak, F., Bahadır, M. and Aylar, F. (2021b). Bakacak Deresi Havzası’nın (Samsun) coğrafi analizi ve taşkın duyarlılığı. Mavi Atlas. 9 (2). 61-81. https://doi.org/10.18795/gumusmaviatlas.981217
  • Ocak, F. and Bahadır, M. (2022). CBS teknikleri kullanılarak deprem duyarlılık analizi için Analitik Hiyerarşi Prosesi: Samsun Ladik Gölü Havzası örneği, Türkiye. Kesit Akademi Dergisi. 8 (33). 322-348. http://dx.doi.org/10.29228/kesit.64705
  • Oğuz, E., Oğuz, K. and Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik. 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Ouma, Y.O. and Omai, L. (2023). Flood Susceptibility mapping using image-based 2D-CNN deep learning: Overview and case study application using multiparametric spatial data in data-scarce urban environments. International Journal of Intelligent Systems. 2023. 5672401. http://dx.doi.org/10.1155/2023/5672401
  • Özdemir, H. (2007). Havran çayı havzasının (Balıkesir) CBS ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Publication No. 215084). [Doctoral dissertation, Istanbul University Institute of Social Sciences, İstanbul]. Council of Higher Education Thesis Centers.
  • Özdemir, H. and Bayrakdar, C. (2014). 16 November 2007 Tuzla Deresi taşkınının nedenleri üzerine bir araştırma (Silivri-İstanbul). Türk Coğrafya Dergisi. 49 (5). 123-139. https://dergipark.org.tr/tr/download/article-file/198493
  • Özşahin, E. (2016). Arnavutluk’ta taşkın risk analizi. Uluslararası Avrasya Sosyal Bilimler Dergisi. (12). 91-109. https://dergipark.org.tr/tr/pub/ijoess/issue/8530/105929
  • Özşahin, E. (2022). Havsa (Edirne) ilçesinde taşkın tehlike duyarlılığının değerlendirilmesi. In M. Tan, and T. Erdoğan (Eds). Her Yönüyle Havsa, (pp.711-732). Paradigma Akademi Yayınları.
  • Parker, D., Tapsell, S. and McCarthy, S. (2007). Enhancing the human benefits of flood warnings. Natural Hazards. 43. 397-414. https://doi.org/10.1007/s11069-007-9137-y
  • Patel, D.P. and Srivastava, P.K. (2013). Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resources Management. 27. 2353-2368. http://dx.doi.org/10.1007/s11269-013-0291-6
  • Patton, P.C. and Baker, V.R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. U.S. Water Resources Research. 12 (5). 941-952. https://www.academia.edu/29120485/
  • Pereira, J.M.C. and Duckstein, L. (1993). A multiple criteria decision-making approach to GIS based land suitability evaluation. International Journal of Geographical Information Systems. 7 (5). 407-424. https://doi.org/10.1080/02693799308901971
  • Reddy, G.P.O., Maji, A.K. and Gajbhiye, K.S .(2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India-A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation. 6 (1). 1-16. http://dx.doi.org/10.1016/j.jag.2004.06.003
  • Saaty, T.L. (1980). The analytic hierarchy process, New York. McGraw Hill. International, Translated to Russian, Portuguese, and Chinese, Revised editions, Paperback (1996, 2000), Pittsburgh: RWS Publications.
  • Saaty, T.L. (1989). Hierarchical-Multiobjective systems. Control-Theory and Advanced Technology. 5 (4). 485-489.
  • Saaty, T.L. and Alexander J. (1989) Conflict resolution: The analytic hierarchy process. Praeger, New York.
  • Saaty, T.L. and Forman, E.H. (1993). The hierarchon–A dictionary of hierarchies. RWS Publications, Pittsburgh, PA.
  • Saaty, T.L. and Vargas, L.G. (2006). Decision making with the analytic network process: Economic, political, social and technological applications with benefits, opportunities, costs and risks. United States of America, New York: Springer. http://dx.doi.org/10.1007/0-387-33987-6
  • Saini, S.S. and Kaushik, S.P. (2012). Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: A case study of Guhla block, Kaithal, Haryana. International Journal of Geomatics and Geosciences. 3 (1). 42–54. https://www.researchgate.net/publication/269695166
  • Samsun Provincial Directorate of Disaster and Emergency (2022). CİMER (Presidential Communication Center) information request.
  • Sanjay, K. and Goel, M.K. (2002). Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS. Hydrological Sciences Journal. 47 (1). 31–40. http://dx.doi.org/10.1080/02626660209492905
  • Sherman LK (1932). The relation of hydrographs of runoff to size and character of drainage basin. Trans. Am. Geophys. Union. 13. 332-339.
  • Singh, D.S., Prajapati, S.K., Singh, P., Singh, K. and Kumar, D. (2015). Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River Basin. Ganga Plain, India. Journal of the Geological Society of India. 85 (1). 79–86. https://www.researchgate.net/publication/344586665
  • Singh, A.P., Arya, A.K. and Singh, D.S. (2020). Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS. Journal Geological Society of India. 95. 169-178. http://dx.doi.org/10.1007/s12594-020-1406-3
  • Singh K, Arya AK, Agarwal KK (2020). Landslide occurrences along lineaments on NH-154A, Chamba, Himachal Pradesh; extracted from Satellite Data Landsat 8, India. Journal of the Indian Society of Remote Sensing. 48. 791-803. https://doi.org/10.1007/s12524-020-01113-8
  • Sinha, R., Bapalu, G., Singh, L.K. and Rath, B. (2008). Flood risk analysis in the Kosi River Basin, North Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). Journal of the Indian Society of Remote Sensing. 36. 335-349. http://dx.doi.org/10.1007/s12524-008-0034-y
  • Srivastava, O.S., Denis, D.M., Srivastava, S.K., Kumar, M. and Kumar, N. (2014). Morphometric analysis of a Semi Urban Watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS. International Journal of Engineering Science. 3. 71-79. https://www.researchgate.net/publication/308028238
  • Stefanidis, S., and Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards. 68. 569–585. http://dx.doi.org/10.1007/s11069-013-0639-5
  • Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology. In: Chow, V.T. (Ed.). 439-476. United States of America, New York.
  • Swain, K. C., Singha, C. and Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information. 9 (12), 720. https://doi.org/10.3390/ijgi9120720
  • Tariq, A., Yan, J., Ghaffar, B., Qin, S., Mousa, B. G., Sharifi, A. and Aslam, M. (2022). Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio model with diverse spatial data. Water. 14 (19), 3069. https://doi.org/10.3390/w14193069
  • Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R. and Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment. 615, 438–451. http://dx.doi.org/10.1016/j.scitotenv.2017.09.262
  • Thilagavathi, G., Tamilenthi, S., Ramu, C. and Baskaran R. (2011). Application of GIS in flood hazard zonation studies in Papanasam Taluk, Thanjavur District, Tamilnadu. Advances in Applied Science Research. 2 (3). 574-585. https://www.researchgate.net/publication/216335849
  • Turoğlu, H. (2005). Bartın’da meydana gelen sel ve taşkınlara ait zarar azaltma ve önleme önerileri. İTÜ Türkiye Kuvaterner Sempozyumu V. İstanbul Teknik Üniversitesi, İstanbul.
  • Turoğlu, H. and Özdemir, H. (2005). Bartın’da sel ve taşkınlar: Sebepler, etkiler, önleme ve zarar azaltma önerileri. İstanbul: Çantay Kitabevi.
  • URL-1: Historical floods in the Basin of Lake Ladik. Access: 25 September 2022. www.atlas.gov.tr
  • Utlu, M. (2023). Frekans Oranı ve Shannon Entropisi yöntemi kullanarak Ezine Çayı Havzası taşkın duyarlılık analizi (Kastamonu-Bozkurt). Jeomorfolojik Araştırmalar Dergisi. (11). 160-178. https://doi.org/10.46453/jader.1358845
  • Uysal, G. and Taşçı, E. (2023). Batman Barajı’nın yıkılması durumunda mansapta taşkın riskinin iki boyutlu hidrolik modelleme ve uydu verileri ile analizi. Doğal Afetler ve Çevre Dergisi. 9 (1). 39-57. https://doi.org/10.21324/dacd.1107630
  • Warner, M. (2001). Impact of grid size in GIS based flood extent mapping using a 1D flow model. Physics and Chemistry of the Earth Part B: Hydrology Oceans and Atmosphere. 26 (7-8). 517–522. http://dx.doi.org/10.1016/S1464-1909(01)00043-0
  • Yurteri, C. (2024). Coğrafi Bilgi Sistemleri (CBS) ortamında Analitik Hiyerarşi Yöntemi (AHY) kullanılarak taşkın risk analizi: Karabük ili örneği. Mühendislik Bilimleri ve Tasarım Dergisi. 12 (2). 298-318. https://doi.org/10.21923/jesd.1438999
  • Zhao, G., Pang, B., Xu, Z., Peng, D. and Zuo, D. (2020). Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology. 590. 125235. https://doi.org/10.1016/j.jhydrol.2020.125235
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Coğrafi Bilgi Sistemleri, Doğal Afetler, Fiziki Coğrafya
Bölüm Makaleler
Yazarlar

Fatih Ocak 0000-0002-1088-3762

Muhammet Bahadır 0000-0001-5068-4250

Erken Görünüm Tarihi 23 Eylül 2024
Yayımlanma Tarihi 15 Ekim 2024
Gönderilme Tarihi 10 Temmuz 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 13

Kaynak Göster

APA Ocak, F., & Bahadır, M. (2024). Evaluation of Potential Flood Areas in the Basin of Lake Ladik through AHP and GIS Integration, (Samsun, Türkiye). Jeomorfolojik Araştırmalar Dergisi(13), 71-93. https://doi.org/10.46453/jader.1513212
Jeomorfolojik Araştırmalar Dergisi ( JADER ) / Journal of Geomorphological Researches
TR Dizin - Crossref - Google ScholarDOAJ - DRJI - ASOS İndeks - Scientific Indexing Service  tarafından taranmaktadır. 
Jeomorfoloji Derneği  / Turkish Society for Geomorphology ( www.jd.org.tr )