Year 2025,
Volume: 6 Issue: 2, 111 - 120, 31.12.2025
Gülşah Akıncıoğlu
,
Yunus Zübeyir Turgut
,
Sıtkı Akıncıoğlu
References
-
References
-
[1] Chadha, U., Abrol, A., Vora, N. P., Tiwari, A., Shanker, S. K., & Selvaraj S. (2022). Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Progress in Additive Manufacturing, 7(5), 853–886. [CrossRef]
-
[2] Aslan, E., & Akıncıoğlu, G. (2024). Investigation of the wear and friction profile of TPU-based polymers at
different infill ratios. International Journal of Automotive Science and Technology, 8(1), 125–131. [CrossRef]
-
[3] Akıncıoğlu, G., Şirin E., & Aslan, E. (2023). Tribological characteristics of ABS structures with different infill
densities tested by pin-on-disc. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of
Engineering Tribology, 237(5), 1224–1234. [CrossRef]
-
[4] Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. (2019). An overview on 3D printing technology: Technological,
materials, and applications. Procedia Manufacturing, 35, 1286–1296. [CrossRef]
-
[5] Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and limitations in 3D printing materials and
-
technologies: a critical review. Polymers, 15(11), Article 2519. [CrossRef]
-
[6] Toktaş, I., & Akıncıoğlu, S. (2025). Investigation of tribological properties of industrial products with different
patterns produced by 3D printing using polylactic acid. Rapid Prototyping Journal, 31(2), 371–378. [CrossRef]
-
[7] Jiménez, L., Mena, M. J., Prendiz, J., Salas, L., & Vega-Baudrit, J. (2019). Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry. Journal of Food Science&Nutrition, 5(2), 2–6. [CrossRef]
-
[8] Abd Alsaheb, R. A., Aladdin, A., Othman, N. Z., Abd Malek, R., Leng, O. M., Aziz, R., & El Enshasy, H. A. (2015). Recent
applications of polylactic acid in pharmaceutical and medical industries. Journal of Chemical and
Pharmaceutical Research, 7(12), 51–63.
-
[9] Avinc, O., & Khoddami, A. (2009). Overview of poly (lactic acid)(PLA) fibre: Part I: production, properties,
performance, environmental impact, and end-use applications of poly (lactic acid) fibres. Fibre Chemistry, 41(6),
391–401. [CrossRef]
-
[10] Arockiam, A. J., Subramanian, K., Padmanabhan, R. G., Selvaraj R., Bagal D. K., & Rajesh S. (2022). A review on
PLA with different fillers used as a filament in 3D printing. Materials Today: Proceedings, 50(5), 2057–2064.
[CrossRef]
-
[11] Hussain, M., Maqsood Khan, S., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials
for biomedical applications. Giant, 18, Article 100261. [CrossRef]
-
[12] Aslan, E., & Akıncıoğlu, G. (2026). 3D printing in automotive component development, in Sustainable
Composites for Automotive Engineering (p. 321–338). Elsevier. [CrossRef]
-
[13] Şirin, Ş., Aslan, E., & Akincioğlu, G. (2023). Effects of 3D-printed PLA material with different filling densities on
coefficient of friction performance. Rapid Prototyping Journal, 29(1), 157–165. [CrossRef]
-
[14] Akıncıoğlu, G., & Aslan, E. (2021). Investigation of tribological properties of amorphous thermoplastic samples
with different filling densities produced by an additive manufacturing method. Gazi Journal of Engineering
Sciences, 8(3), 540–546. [CrossRef]
-
[15] Pezer, D., Vukas, F., & Butir, M. (2022). Experimental study of tensile strength for 3D printed specimens of HI-PLA polymer material on in-house tensile test machine. Technium, 4(1), 197–206. [CrossRef]
-
[16] Ayrilmis, N., Kariz, M., Heon Kwon, J., & Kuzman, M. K. (2019). Effect of printing layer thickness on water
absorption and mechanical properties of 3D-printed wood/PLA composite materials. The International Journal of
Advanced Manufacturing Technology, 102(5), 2195–2200. [CrossRef]
-
[17] Anand Kumar, S., & Shivraj Narayan, Y. (2019). Tensile testing and evaluation of 3D-printed PLA specimens as
per ASTM D638 type IV standard. In Innovative Design, Analysis and Development Practices in Aerospace and
Automotive Engineering (I-DAD 2018) Volume 2. Chennai, India. [CrossRef]
-
[18] Alharbi, M., Kong, I., & Patel, V. I. (2020). Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. J Applied Adhesion Science, 8(5), 1–10. [CrossRef]
-
[19] Özmen, Ö., Sürmen, H. K., & Sezgin A. (2023). The effect of infill pattern in 3-dimensional printing on tensile
strength. Journal of Engineering Sciences and Design, 11(1), 336–348. [CrossRef]
-
[20] Ganeshkumar, S., Dharani Kumar, S., Magarajan, U., Rajkumar, S., Arulmurugan, B., Sharma, S., Li, C., Ilyas, R.
A., & Badran, M. F. (2022). Investigation of tensile properties of different infill pattern structures of 3D-printed PLA
polymers: analysis and validation using finite element analysis in ANSYS. Materials, 15(15), Article 5142. [CrossRef]
-
[21] Harpool, T. D., Alarifi, I. M., Alshammari, B. A., Aabid, A., Baig, M., Malik, R. A., Sayed, AM., Asmatulu, R., & Ali EL-
Bagory, T. M. A. (2021). Evaluation of the infill design on the tensile response of 3D printed polylactic acid polymer. Materials, 14(9), Article 2195. [CrossRef]
-
[22] Auffray, L., Gouge, P.-A., & Hattali, L. (2022). Design of experiment analysis on tensile properties of PLA samples
produced by fused filament fabrication. The International Journal of Advanced Manufacturing Technology, 118, 4123–4137. [CrossRef]
-
[23] Brischetto, S., & Torre, R. (2020). Tensile and compressive behavior in the experimental tests for PLA
specimens produced via fused deposition modelling technique. Journal of Composites Science, 4(3), Article 140.
[CrossRef]
-
[24] Evlen, H., Özdemir, M. A., & Çalışkan, A. (2019). Effects of filling percentage on mechanical properties of PLA
and PET materials. Journal of Polytechnic, 22(4), 1031–1037. [Turkish] [CrossRef]
-
[25] Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Kaya, A., & Akay, O. E. (2022). Comparison of mechanical properties of
tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer. Journal of the Faculty of Engineering Architecture of Gazi University, 37(3), 1197–1211. [CrossRef]
-
[26] Aloyaydi, B., Sivasankaran, S., &. Mustafa, A. (2020). Investigation of infill-patterns on mechanical
response of 3D printed poly-lactic-acid. Polymer Testing, 87, Article 106557. [CrossRef]
-
[27] Klossa, C. M., Chatzidai, N., & Karalekas, D. (2023). Tensile properties of 3D printed carbon fiber reinforced nylon
specimens. Materials Today: Proceedings, 93, 571–574. [CrossRef]
-
[28] Öztürk, F. H., Marques, E. A. S., Carbas, R. J. C., & da Silva, L. F. M. (2024). Experimental and numerical study
on mechanical behavior of 3D printed adhesive joints with polycarbonate substrates. Journal of Applied Polymer
Science, 141(29), Article e55657. [CrossRef]
-
[29] Bacak, S. (2022). Investigation of the tensile strength properties of samples produced using different
parameters from ABS, PLA, TPU(Flex) materials. Journal of Yekarum, 7(2), 58–64.
[30] Alarifi, I. M. (2023). Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon
composite unit structures. Journal of Materials Research Technology, 23, 656–669. [CrossRef]
-
[31] Akhoundi, B., Behravesh, A. H., & Bagheri Saed, A. (2019). Improving mechanical properties of continuous fiber-
reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics Composites,
38(3), 99–116. [CrossRef]
-
[32] Shakor, P., Sanjayan, J., Nazari, A., & Nejadi, S. (2017). Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction Building Materials, 138,
398–409. [CrossRef]
-
[33] Bacak, S., Özkavak, H. V., & Sofu, M. M. (2021). Comparison of Mechanical Properties of 3D-Printed
Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology, 11(2), 1444–1454. [CrossRef]
-
[34] Sola, A., Chong, W. J., Simunec, D. P., Li, Y., Trinchi, A., Kyratzis, I., & Wen, C. (2023). Open challenges in tensile
testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication.
Polymer Testing, 117, Article 107859. [CrossRef]
-
[35] Sirigiri, V.K.R., Gudiga, V. Y., Gattu, U. S., Suneesh, G., & Buddaraju, K. M. (2022). A review on Johnson Cook material model. Materials Today: Proceedings, 62, 3450–3456. [CrossRef]
-
[36] Burley, M., Campbell, J. E., Dean, J., & Clyne, T. W. (2018). Johnson-Cook parameter evaluation from
ballistic impact data via iterative FEM modelling. International Journal of Impact Engineering, 112, 180–192. [CrossRef]
-
[37] Pyka, D., Słowiński, J. J., Kurzawa, A., Roszaki, M., Stachowicz, M., Kazimierczak, M., Stępczak, M., & Grygier, D. (2024). Research on basic properties of polymers for fused deposition modelling technology. Applied Sciences, 14(23), Article 11151. [CrossRef]
Tensile testing of polylactic acid (PLA) samples produced with a 3D printer and finite element analysis
Year 2025,
Volume: 6 Issue: 2, 111 - 120, 31.12.2025
Gülşah Akıncıoğlu
,
Yunus Zübeyir Turgut
,
Sıtkı Akıncıoğlu
Abstract
This study evaluated the mechanical properties of fully loaded samples produced from PLA (polylactic acid) filament using a 3D printer using experimental tensile tests and finite element analysis (FEM). The samples were designed in accordance with the ASTM D638 Type I standard and fabricated using a Creality Ender 3 V3 SE 3D printer. Tensile tests were performed on a Zwick/Roell Z010 device, and FEM analyses were performed using the Explicit Dynamics module and the Johnson Cook material model in ANSYS 2024 R2 software. Fracture zones were examined with a Dino-Lite digital microscope. Experimental tensile tests on fully loaded PLA samples accurately simulated the stress distribution using the finite element method. The study highlighted the impact of print quality on mechanical properties and provided important insights into improving the reliability of PLA in industrial applications.
References
-
References
-
[1] Chadha, U., Abrol, A., Vora, N. P., Tiwari, A., Shanker, S. K., & Selvaraj S. (2022). Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Progress in Additive Manufacturing, 7(5), 853–886. [CrossRef]
-
[2] Aslan, E., & Akıncıoğlu, G. (2024). Investigation of the wear and friction profile of TPU-based polymers at
different infill ratios. International Journal of Automotive Science and Technology, 8(1), 125–131. [CrossRef]
-
[3] Akıncıoğlu, G., Şirin E., & Aslan, E. (2023). Tribological characteristics of ABS structures with different infill
densities tested by pin-on-disc. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of
Engineering Tribology, 237(5), 1224–1234. [CrossRef]
-
[4] Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. (2019). An overview on 3D printing technology: Technological,
materials, and applications. Procedia Manufacturing, 35, 1286–1296. [CrossRef]
-
[5] Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and limitations in 3D printing materials and
-
technologies: a critical review. Polymers, 15(11), Article 2519. [CrossRef]
-
[6] Toktaş, I., & Akıncıoğlu, S. (2025). Investigation of tribological properties of industrial products with different
patterns produced by 3D printing using polylactic acid. Rapid Prototyping Journal, 31(2), 371–378. [CrossRef]
-
[7] Jiménez, L., Mena, M. J., Prendiz, J., Salas, L., & Vega-Baudrit, J. (2019). Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry. Journal of Food Science&Nutrition, 5(2), 2–6. [CrossRef]
-
[8] Abd Alsaheb, R. A., Aladdin, A., Othman, N. Z., Abd Malek, R., Leng, O. M., Aziz, R., & El Enshasy, H. A. (2015). Recent
applications of polylactic acid in pharmaceutical and medical industries. Journal of Chemical and
Pharmaceutical Research, 7(12), 51–63.
-
[9] Avinc, O., & Khoddami, A. (2009). Overview of poly (lactic acid)(PLA) fibre: Part I: production, properties,
performance, environmental impact, and end-use applications of poly (lactic acid) fibres. Fibre Chemistry, 41(6),
391–401. [CrossRef]
-
[10] Arockiam, A. J., Subramanian, K., Padmanabhan, R. G., Selvaraj R., Bagal D. K., & Rajesh S. (2022). A review on
PLA with different fillers used as a filament in 3D printing. Materials Today: Proceedings, 50(5), 2057–2064.
[CrossRef]
-
[11] Hussain, M., Maqsood Khan, S., Shafiq, M., & Abbas, N. (2024). A review on PLA-based biodegradable materials
for biomedical applications. Giant, 18, Article 100261. [CrossRef]
-
[12] Aslan, E., & Akıncıoğlu, G. (2026). 3D printing in automotive component development, in Sustainable
Composites for Automotive Engineering (p. 321–338). Elsevier. [CrossRef]
-
[13] Şirin, Ş., Aslan, E., & Akincioğlu, G. (2023). Effects of 3D-printed PLA material with different filling densities on
coefficient of friction performance. Rapid Prototyping Journal, 29(1), 157–165. [CrossRef]
-
[14] Akıncıoğlu, G., & Aslan, E. (2021). Investigation of tribological properties of amorphous thermoplastic samples
with different filling densities produced by an additive manufacturing method. Gazi Journal of Engineering
Sciences, 8(3), 540–546. [CrossRef]
-
[15] Pezer, D., Vukas, F., & Butir, M. (2022). Experimental study of tensile strength for 3D printed specimens of HI-PLA polymer material on in-house tensile test machine. Technium, 4(1), 197–206. [CrossRef]
-
[16] Ayrilmis, N., Kariz, M., Heon Kwon, J., & Kuzman, M. K. (2019). Effect of printing layer thickness on water
absorption and mechanical properties of 3D-printed wood/PLA composite materials. The International Journal of
Advanced Manufacturing Technology, 102(5), 2195–2200. [CrossRef]
-
[17] Anand Kumar, S., & Shivraj Narayan, Y. (2019). Tensile testing and evaluation of 3D-printed PLA specimens as
per ASTM D638 type IV standard. In Innovative Design, Analysis and Development Practices in Aerospace and
Automotive Engineering (I-DAD 2018) Volume 2. Chennai, India. [CrossRef]
-
[18] Alharbi, M., Kong, I., & Patel, V. I. (2020). Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. J Applied Adhesion Science, 8(5), 1–10. [CrossRef]
-
[19] Özmen, Ö., Sürmen, H. K., & Sezgin A. (2023). The effect of infill pattern in 3-dimensional printing on tensile
strength. Journal of Engineering Sciences and Design, 11(1), 336–348. [CrossRef]
-
[20] Ganeshkumar, S., Dharani Kumar, S., Magarajan, U., Rajkumar, S., Arulmurugan, B., Sharma, S., Li, C., Ilyas, R.
A., & Badran, M. F. (2022). Investigation of tensile properties of different infill pattern structures of 3D-printed PLA
polymers: analysis and validation using finite element analysis in ANSYS. Materials, 15(15), Article 5142. [CrossRef]
-
[21] Harpool, T. D., Alarifi, I. M., Alshammari, B. A., Aabid, A., Baig, M., Malik, R. A., Sayed, AM., Asmatulu, R., & Ali EL-
Bagory, T. M. A. (2021). Evaluation of the infill design on the tensile response of 3D printed polylactic acid polymer. Materials, 14(9), Article 2195. [CrossRef]
-
[22] Auffray, L., Gouge, P.-A., & Hattali, L. (2022). Design of experiment analysis on tensile properties of PLA samples
produced by fused filament fabrication. The International Journal of Advanced Manufacturing Technology, 118, 4123–4137. [CrossRef]
-
[23] Brischetto, S., & Torre, R. (2020). Tensile and compressive behavior in the experimental tests for PLA
specimens produced via fused deposition modelling technique. Journal of Composites Science, 4(3), Article 140.
[CrossRef]
-
[24] Evlen, H., Özdemir, M. A., & Çalışkan, A. (2019). Effects of filling percentage on mechanical properties of PLA
and PET materials. Journal of Polytechnic, 22(4), 1031–1037. [Turkish] [CrossRef]
-
[25] Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Kaya, A., & Akay, O. E. (2022). Comparison of mechanical properties of
tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer. Journal of the Faculty of Engineering Architecture of Gazi University, 37(3), 1197–1211. [CrossRef]
-
[26] Aloyaydi, B., Sivasankaran, S., &. Mustafa, A. (2020). Investigation of infill-patterns on mechanical
response of 3D printed poly-lactic-acid. Polymer Testing, 87, Article 106557. [CrossRef]
-
[27] Klossa, C. M., Chatzidai, N., & Karalekas, D. (2023). Tensile properties of 3D printed carbon fiber reinforced nylon
specimens. Materials Today: Proceedings, 93, 571–574. [CrossRef]
-
[28] Öztürk, F. H., Marques, E. A. S., Carbas, R. J. C., & da Silva, L. F. M. (2024). Experimental and numerical study
on mechanical behavior of 3D printed adhesive joints with polycarbonate substrates. Journal of Applied Polymer
Science, 141(29), Article e55657. [CrossRef]
-
[29] Bacak, S. (2022). Investigation of the tensile strength properties of samples produced using different
parameters from ABS, PLA, TPU(Flex) materials. Journal of Yekarum, 7(2), 58–64.
[30] Alarifi, I. M. (2023). Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon
composite unit structures. Journal of Materials Research Technology, 23, 656–669. [CrossRef]
-
[31] Akhoundi, B., Behravesh, A. H., & Bagheri Saed, A. (2019). Improving mechanical properties of continuous fiber-
reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics Composites,
38(3), 99–116. [CrossRef]
-
[32] Shakor, P., Sanjayan, J., Nazari, A., & Nejadi, S. (2017). Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction Building Materials, 138,
398–409. [CrossRef]
-
[33] Bacak, S., Özkavak, H. V., & Sofu, M. M. (2021). Comparison of Mechanical Properties of 3D-Printed
Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology, 11(2), 1444–1454. [CrossRef]
-
[34] Sola, A., Chong, W. J., Simunec, D. P., Li, Y., Trinchi, A., Kyratzis, I., & Wen, C. (2023). Open challenges in tensile
testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication.
Polymer Testing, 117, Article 107859. [CrossRef]
-
[35] Sirigiri, V.K.R., Gudiga, V. Y., Gattu, U. S., Suneesh, G., & Buddaraju, K. M. (2022). A review on Johnson Cook material model. Materials Today: Proceedings, 62, 3450–3456. [CrossRef]
-
[36] Burley, M., Campbell, J. E., Dean, J., & Clyne, T. W. (2018). Johnson-Cook parameter evaluation from
ballistic impact data via iterative FEM modelling. International Journal of Impact Engineering, 112, 180–192. [CrossRef]
-
[37] Pyka, D., Słowiński, J. J., Kurzawa, A., Roszaki, M., Stachowicz, M., Kazimierczak, M., Stępczak, M., & Grygier, D. (2024). Research on basic properties of polymers for fused deposition modelling technology. Applied Sciences, 14(23), Article 11151. [CrossRef]