Selective laser melting (SLM) is an additive manufacturing process to fabricate three-dimen- sional structures by fusing powder particles using a computer-guided laser source. The SLM process can produce lightweight bespoke designs, having high strength comparable to con- ventional components. However, the developed surface texture and some of the mechanical properties are still sub-standard compared to the conventional components. The process un- certainty can produce inconsistency in parts’ properties, even those prepared concurrently, affecting SLM parts' repeatability and quality. Therefore, designing applications based on the most probable outcome of the desired properties can embrace process uncertainty. Weibull distribution is a statistical-based probability distribution method that measures the likelihood of the values’ occurrence of any random variable falling in a specific set of values. In this study, the Weibull distribution measured the relative likelihood (90% probability) of the compressive yield, and ultimate strength of the SLM prepared AlSi10Mg samples in a given 22 random sample size. The results showed that the compressive yield and ultimate strength fall between 321 MPa to 382 MPa and 665 MPa to 883 MPa.
Primary Language | English |
---|---|
Subjects | Manufacturing and Industrial Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | June 15, 2021 |
Published in Issue | Year 2021 Volume: 2 Issue: 1 |