Other
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 2, 64 - 76, 11.01.2023

Abstract

References

  • 1. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 2. Rai, R. N., Datta, G. L., Chakraborty, M., & Chattopadhyay, A. B. (2006). A study on the machinability behaviour of Al–TiC composite prepared by in situ technique. Materials Science and Engineering: A, 428(1-2), 34-40.
  • 3. Hung, N. P., Venkatesh, V. C., & Loh, N. L. (1998). Cutting tools for metal matrix composites. In Key engineering materials (Vol. 138, pp. 289-326). Trans Tech Publications Ltd.
  • 4. Chawla, N., & Chawla, K. K. (2013). Processing. In Metal Matrix Composites (pp. 55-97). Springer, New York, NY.
  • 5. Teng, X., & Huo, D. (2021). Conventional Machining of Metal Matrix Composites. In Advances in Machining of Composite Materials (pp. 159-181). Springer, Cham.
  • 6. Autar K. Kaw, “Mechanics of composite materials” Second Edition, Taylor & Francis Group, ISBN 10: 0-8493-1343-0,2006).
  • 7. Ajay R. Bhardwaj, Dr. A M Vaidya, “ Machining of Metal Matrix Composite: A Review” KITE/NCISRDC/IJARIIT/2018/MECH/101, (ISSN: 2454-132X) 2018.
  • 8. Harris, S.J.; AGARD Lectures Series no. 174, New Light Alloys, 1990; 4–1–4–21.
  • 9. Zhang, L.C.: Cutting composites: a discussion on mechanics modelling. J. Mater. Process. Tech. 209(9), 4548–4552 (2009).
  • 10. Pramanik, A., Zhang, L.C., Arsecularatne, J.A.: Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int. J. Mach. Tools Manuf 48, 1613–1625 (2008). https://doi.org/10.1016/j.ijmachtools.2008.07.008)
  • 11. Dabade, U. A., & Joshi, S. S. (2009). Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. Journal of Materials Processing Technology, 209(10), 4704-4710.
  • 12. Carrilero, M. S., & Marcos, M. (1996). On the machinability of aluminium and aluminium alloys. Journal of the Mechanical Behavior of Materials, 7(3), 179-194.
  • 13. Gökkaya, H., & Nalbant, M. (2007). Kesme hizinin yiğinti katmani ve yiğinti talaş oluşumu üzerindeki etkilerinin SEM ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22(3).
  • 14. List, G., Nouari, M., Géhin, D., Gomez, S., Manaud, J. P., Le Petitcorps, Y., & Girot, F. (2005). Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear, 259(7-12), 1177-1189.
  • 15. Trent, E. M., & Wright, P. K. (1991). Metal Cutting, Butherworth. Heinemann, 3rd edition, Oxford, UK, 188, 241.
  • 16. Kumar, A., Mahapatra, M. M., & Jha, P. K. (2014). Effect of machining parameters on cutting force and surface roughness of in situ Al–4.5% Cu/TiC metal matrix composites. Measurement, 48, 325-332.
  • 17. Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of materials processing technology, 140(1-3), 711-716.
  • 18. Muthukrishnan, N., Murugan, M., & Prahlada Rao, K. (2008). Machinability issues in turning of Al-SiC (10p) metal matrix composites. The International Journal of Advanced Manufacturing Technology, 39(3), 211-218.
  • 19. Gallab, M. E., & Sklad, M. (1998). Machining of Al/SiC particulate metal-matrix composites, Part-II: workpiece surface integrity. J Mater Process Technol, 83(277), 85.
  • 20. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 21. Hung, N. P., Yeo, S. H., & Oon, B. E. (1997). Effect of cutting fluid on the machinability of metal matrix composites. Journal of Materials Processing Technology, 67(1-3), 157-161.
  • 22. Manna, A., & Bhattacharayya, B. (2005). Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25(9), 850-856.
  • 23. Kılıçkap, E., Özben, T., & Çakır, O. Al-SiCp mmk'lerde partikül takviye oranının mekanik özelliklere ve işlenebilirliğine etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 313-320.
  • 24. Li, X., & Seah, W. K. H. (2001). Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear, 247(2), 161-171.
  • 25. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 26. Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257(9–10): 1041–1046.
  • 27. Pandi, G., & Muthusamy, S. (2012). A review on machining and tribological behaviors of aluminium hybrid composites. Procedia engineering, 38, 1399-1408.
  • 28. Kaarmuhilan, K., Karthika, S., & Muthukrishnan, N. (2012). Performance evaluation of PCD 1300 and 1500 grade inserts on turning A356 alloy with 20% reinforcement of SiC particles. In Applied Mechanics and Materials (Vol. 110, pp. 1855-1861). Trans Tech Publications Ltd.
  • 29. Manna, A., & Bhattacharayya, B. (2005). Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25(9), 850-856.
  • 30. Srinivasan, A., Arunachalam, R. M., Ramesh, S., & Senthilkumaar, J. S. (2012). Machining performance study on metal matrix composites-a response surface methodology approach. American Journal of Applied Sciences, 9(4), 478-483. 30- Sahin, Y. (2003).
  • 31. Preparation and some properties of SiC particle reinforced aluminium alloy composites. Materials & design, 24(8), 671-679.
  • 32. Gaitonde, V. N., Karnik, S. R., & Paulo Davim, J. (2012). Computational methods and optimization in machining of metal matrix composites. In Machining of Metal Matrix Composites (pp. 143-162). Springer, London.
  • 33. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 34. Premnath, A. A., Alwarsamy, T., & Rajmohan, T. (2012). Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Materials and Manufacturing Processes, 27(10), 1035-1044.
  • 35. Bhushan, R. K. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production, 39, 242-254.
  • 36. Davim, J. P. (2003). Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of materials processing technology, 132(1-3), 340-344.).
  • 37. Ozcatalbas, Y. (2003). Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Materials & design, 24(3), 215-221.
  • 38. Basavarajappa, S., Chandramohan, G., Prabu, M., Mukund, K., & Ashwin, M. (2007). Drilling of hybrid metal matrix composites—Workpiece surface integrity. International Journal of Machine Tools and Manufacture, 47(1), 92-96.
  • 39. Anandakrishnan, V., & Mahamani, A. (2011). Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. The International Journal of Advanced Manufacturing Technology, 55(1), 65-73.
  • 40. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.)
  • 41. Finn, M., & Srivastava, A. (1996, May). Machining of advanced and engineered materials. In Proceedings of the CSME Symposium. McMaster University (Vol. 616).
  • 42. Bansal, P., & Upadhyay, L. (2013). Experimental investigations to study tool wear during turning of alumina reinforced aluminium composite. Procedia Engineering, 51, 818-827.
  • 43. Ozben, T., Kilickap, E., & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of materials processing technology, 198(1-3), 220-225.
  • 44. Pendse, D. M., & Joshi, S. S. (2004). Modeling and optimization of machining process in discontinuously reinforced aluminium matrix composites. Machining Science and Technology, 8(1), 85-102.
  • 45. Chandrasekaran, M., & Devarasiddappa, D. (2012). Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Academy of Science, Engineering and Technology, 6(7), 928-933.
  • 46. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 47. Pramanik, A., Zhang, L. C., & Arsecularatne, J. A. (2008). Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. International Journal of Machine Tools and Manufacture, 48(15), 1613-1625.
  • 48. Behera, R., & Sutradhar, G. (2012). Machinability of LM6/SiCp metal matrix composites with tungsten carbide cutting tool inserts. ARPN J Eng Appl Sci, 7(2), 216-221.
  • 49. Davim, J. P. (2001). Turning particulate metal matrix composites: experimental study of the evolution of the cutting forces, tool wear and workpiece surface roughness with the cutting time. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(3), 371-376.
  • 50. Kishore, D. S. C., Rao, K. P., & Mahamani, A. (2014). Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite. Procedia materials science, 6, 1040-1050.
  • 51. Kannan, S., Kishwy, H. A., & Deiab, I. (2008). Cutting forces and TEM analysis of the generated surface. J. Mater. Process. Technol, 9, 2260-2269.
  • 52. Weinert, K., & Lange, M. (2001). Machining of magnesium matrix composites. Advanced Engineering Materials, 3(12), 975-979.
  • 53. Takacs, M., Verö, B., & Meszaros, I. (2003). Micromilling of metallic materials. Journal of Materials Processing Technology, 138(1-3), 152-155.
  • 54. Wang, C., Cheng, K., Rakowski, R., Greenwood, D., & Wale, J. (2017). Comparative studies on the effect of pilot drillings with application to high-speed drilling of carbon fibre reinforced plastic (CFRP) composites. The International Journal of Advanced Manufacturing Technology, 89(9), 3243-3255.
  • 55. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 56. Haq, A. N., Marimuthu, P., & Jeyapaul, R. (2008). Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. The International Journal of Advanced Manufacturing Technology, 37(3), 250-255.
  • 57. Njuguna, M. J., Gao, D., & Hao, Z. (2013). Tool wear, surface integrity and dimensional accuracy in turning Al2124SiCp (45% wt) metal matrix composite using CBN and PCD tools. Res J Appl Sci Eng Technol, 6(22), 4138-4144.
  • 58. Kannan, S., Kishawy, H. A., Deiab, I. M., & Surappa, M. K. (2006). On the role of reinforcements on tool performance during cutting of metal matrix composites. Journal of manufacturing processes, 8(2), 67-75.
  • 59. Beristain, J., Gonzalo, O., & Sandá, A. (2014). Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts. Revista De Metalurgia, 50, 1-6.
  • 60. Hung, N. P., Boey, F. Y. C., Khor, K. A., Phua, Y. S., & Lee, H. F. (1996). Machinability of aluminum alloys reinforced with silicon carbide particulates. Journal of materials processing technology, 56(1-4), 966-977.
  • 61. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 62. Cronjäger, L., & Meister, D. (1992). Machining of fibre and particle-reinforced aluminium. CIRP annals, 41(1), 63-66.
  • 63. Narahari, P., Pai, B. C., & Pillai, R. M. (1999). Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools. Journal of materials engineering and performance, 8(5), 538-542.
  • 64. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611-634.
  • 65. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 66. Chen, P., & Hoshi, T. (1992). High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals, 41(1), 59-62.
  • 67. Hung, N. P., Boey, F. Y. C., Khor, K. A., Oh, C. A., & Lee, H. F. (1995). Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. Journal of Materials Processing Technology, 48(1-4), 291-297.
  • 68. Abdullah, A. (1996). Machining of aluminium based metal matrix composite (MMC) (Doctoral dissertation, University of Warwick).
  • 69. Pedersen, W., & Ramulu, M. (2006). Facing SiCp/Mg metal matrix composites with carbide tools. Journal of materials processing technology, 172(3), 417-423.
  • 70. Quigley, O., Monaghan, J., & O'Reilly, P. (1994). Factors affecting the machinability of an Al/SiC metal-matrix composite. Journal of materials processing technology, 43(1), 21-36.
  • 71. Muthukrishnan, N. (2012). Machinability studies on fabricated Al Sic B4c hybrid metal matrix composites by turning. i-Manager's Journal on Mechanical Engineering, 2(2), 32.
  • 72. Hung, N. P., Loh, N. L., & Xu, Z. M. (1996). Cumulative tool wear in machining metal matrix composites part II: machinability. Journal of Materials Processing Technology, 58(1), 114-120.
  • 73. Davis, J. R., & Davis, J. R. (1993). ASM international handbook committee, Aluminum and aluminum alloys. ASM specialty handbook, Materials Park, OH, ASM International, 33.
  • 74. Davim, J. P., & Baptista, A. M. (2000). Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Journal of materials processing technology, 103(3), 417-423.
  • 75. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 76. Ding, X., Liew, W. Y. H., & Liu, X. D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 259(7-12), 1225-1234.
  • 77. Huang, S. T., Zhou, L., Chen, J., & Xu, L. F. (2012). Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools. Materials and Manufacturing Processes, 27(10), 1090-1094.
  • 78. Ei-Gallab, M., & Sklad, M. (1998). Machining of Al: SiC particulate metal–matrix composites part I: tool performance. Journal of Materials Processing Technology, 83(1–3), 151-158.
  • 79. Andrewes, C. J., Feng, H. Y., & Lau, W. M. (2000). Machining of an aluminum/SiC composite using diamond inserts. Journal of materials processing technology, 102(1-3), 25-29.
  • 80. Kremer, A., & El Mansori, M. (2009). Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surface and Coatings Technology, 204(6-7), 1051-1055.
  • 81. Kremer, A., Devillez, A., Dominiak, S., Dudzinski, D., & El Mansori, M. (2008). Machinability of AI/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Machining Science and Technology, 12(2), 214-233.
  • 82. Davim, J. P. (2002). Diamond tool performance in machining metal–matrix composites. Journal of materials processing technology, 128(1-3), 100-105.
  • 83. Wang, Y. J., Zhou, M., Huang, S. N., & Zhang, Y. J. (2010). Tool wear in high-speed milling of SiCp/Al2024 metal matrix composites. In Applied Mechanics and Materials (Vol. 33, pp. 200-203). Trans Tech Publications Ltd.
  • 84. Smith, G. T. (2008). Cutting tool technology: industrial handbook. Springer Science & Business Media.
  • 85. Ding, X., Liew, W. Y. H., & Liu, X. D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 259(7-12), 1225-1234.
  • 86. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 87. Hung, N. P., Boey, F. Y. C., Khor, K. A., Phua, Y. S., & Lee, H. F. (1996). Machinability of aluminum alloys reinforced with silicon carbide particulates. Journal of materials processing technology, 56(1-4), 966-977.
  • 88. Chen, P., & Hoshi, T. (1992). High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals, 41(1), 59-62.
  • 89. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 90. Tönshoff, H. K., & Winkler, J. (1997). The influence of tool coatings in machining of magnesium. Surface and Coatings Technology, 94, 610-616.
  • 91. Weinert, K., & König, W. (1993). A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Annals, 42(1), 95-98.
  • 92. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611-634.
  • 93. Looney, L. A., Monaghan, J. M., O'Reilly, P., & Taplin, D. M. R. (1992). The turning of an Al/SiC metal-matrix composite. Journal of materials processing technology, 33(4), 453-468.
  • 94. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 95. Cronjäger, L., & Meister, D. (1992). Machining of fibre and particle-reinforced aluminium. CIRP annals, 41(1), 63-66.
  • 96. Lane, C., 1990, Machining Characteristics of Particulate-Reinforced Aluminium, in Fabrication of Particulates Reinforced Metal Composites, ASM, Ohio: 195-201.
  • 97. Songmene, V., & Balazinski, M. (2001, June). Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools. In Proceedings of the CIRP International Seminar on Progress in Innovative Manufacturing Engineering—PRIME, Sestri Levante, Italy (pp. 20-22).
  • 98. Ekici, E., & Gülesin, M. (2016). The machinability of Al/B4C composites produced by hot pressing based on reinforcing the element ratio. Science and Engineering of Composite Materials, 23(6), 743-750.
  • 99. Coelho, R. T., Aspinwall, D. K., & Wise, M. L. H. (1994). Drilling and reaming aluminium-based metal matrix composites (MMC) using PCD tooling. Transactions of NAMRI/SME.
  • 100. Coelho, R. T., Yamada, S., Aspinwall, D. K., & Wise, M. L. H. (1995). The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminium based alloys including MMC. International Journal of Machine Tools and Manufacture, 35(5), 761-774.
  • 101. Ames, W., & Alpas, A. T. (1995). Sliding wear of an Al-Si alloy reinforced with silicon carbide particles and graphite flakes. Friction and wear technology for advanced composite materials(A 96-16704 03-24), Materials Park, OH, ASM International, 1995,, 27-35.
  • 102. Songmene, V., & Balazinski, M. (2001, June). Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools. In Proceedings of the CIRP International Seminar on Progress in Innovative Manufacturing Engineering—PRIME, Sestri Levante, Italy (pp. 20-22).
  • 103. Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of materials processing technology, 140(1-3), 711-716.
  • 104. Weinert, K., Lange, M., & Schroer, M. (2000). Machining of Light‐metal Matrix Composites. Magnesium alloys and their applications, 412-417.

CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES

Year 2022, Volume: 3 Issue: 2, 64 - 76, 11.01.2023

Abstract

Metal-based composites (MMCs) have been a major material widely used in aerospace, automotive, and other machinery industries that require low weight and high performance for the last 50 years. Machining of metal matrix composites is quite difficult due to discontinuities in the structure of the material. As a result, it is important to understand all the factors that affect tool wear. Appropriate tool selection is one of the most important parameters to improve process quality and extend tool utilization time. The tool materials are ranging from tool steel to carbide cutters and other coating materials. This study aims to investigate various cutting tools for machining metal matrix composite in a conventional machining process. The effect of cutting tool selection on process parameters is determined in the processing of composite and microstructure, as well as on surface finishing fluid, cutting force, tool life, and tool wear.

References

  • 1. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 2. Rai, R. N., Datta, G. L., Chakraborty, M., & Chattopadhyay, A. B. (2006). A study on the machinability behaviour of Al–TiC composite prepared by in situ technique. Materials Science and Engineering: A, 428(1-2), 34-40.
  • 3. Hung, N. P., Venkatesh, V. C., & Loh, N. L. (1998). Cutting tools for metal matrix composites. In Key engineering materials (Vol. 138, pp. 289-326). Trans Tech Publications Ltd.
  • 4. Chawla, N., & Chawla, K. K. (2013). Processing. In Metal Matrix Composites (pp. 55-97). Springer, New York, NY.
  • 5. Teng, X., & Huo, D. (2021). Conventional Machining of Metal Matrix Composites. In Advances in Machining of Composite Materials (pp. 159-181). Springer, Cham.
  • 6. Autar K. Kaw, “Mechanics of composite materials” Second Edition, Taylor & Francis Group, ISBN 10: 0-8493-1343-0,2006).
  • 7. Ajay R. Bhardwaj, Dr. A M Vaidya, “ Machining of Metal Matrix Composite: A Review” KITE/NCISRDC/IJARIIT/2018/MECH/101, (ISSN: 2454-132X) 2018.
  • 8. Harris, S.J.; AGARD Lectures Series no. 174, New Light Alloys, 1990; 4–1–4–21.
  • 9. Zhang, L.C.: Cutting composites: a discussion on mechanics modelling. J. Mater. Process. Tech. 209(9), 4548–4552 (2009).
  • 10. Pramanik, A., Zhang, L.C., Arsecularatne, J.A.: Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int. J. Mach. Tools Manuf 48, 1613–1625 (2008). https://doi.org/10.1016/j.ijmachtools.2008.07.008)
  • 11. Dabade, U. A., & Joshi, S. S. (2009). Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. Journal of Materials Processing Technology, 209(10), 4704-4710.
  • 12. Carrilero, M. S., & Marcos, M. (1996). On the machinability of aluminium and aluminium alloys. Journal of the Mechanical Behavior of Materials, 7(3), 179-194.
  • 13. Gökkaya, H., & Nalbant, M. (2007). Kesme hizinin yiğinti katmani ve yiğinti talaş oluşumu üzerindeki etkilerinin SEM ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22(3).
  • 14. List, G., Nouari, M., Géhin, D., Gomez, S., Manaud, J. P., Le Petitcorps, Y., & Girot, F. (2005). Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear, 259(7-12), 1177-1189.
  • 15. Trent, E. M., & Wright, P. K. (1991). Metal Cutting, Butherworth. Heinemann, 3rd edition, Oxford, UK, 188, 241.
  • 16. Kumar, A., Mahapatra, M. M., & Jha, P. K. (2014). Effect of machining parameters on cutting force and surface roughness of in situ Al–4.5% Cu/TiC metal matrix composites. Measurement, 48, 325-332.
  • 17. Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of materials processing technology, 140(1-3), 711-716.
  • 18. Muthukrishnan, N., Murugan, M., & Prahlada Rao, K. (2008). Machinability issues in turning of Al-SiC (10p) metal matrix composites. The International Journal of Advanced Manufacturing Technology, 39(3), 211-218.
  • 19. Gallab, M. E., & Sklad, M. (1998). Machining of Al/SiC particulate metal-matrix composites, Part-II: workpiece surface integrity. J Mater Process Technol, 83(277), 85.
  • 20. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 21. Hung, N. P., Yeo, S. H., & Oon, B. E. (1997). Effect of cutting fluid on the machinability of metal matrix composites. Journal of Materials Processing Technology, 67(1-3), 157-161.
  • 22. Manna, A., & Bhattacharayya, B. (2005). Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25(9), 850-856.
  • 23. Kılıçkap, E., Özben, T., & Çakır, O. Al-SiCp mmk'lerde partikül takviye oranının mekanik özelliklere ve işlenebilirliğine etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 313-320.
  • 24. Li, X., & Seah, W. K. H. (2001). Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear, 247(2), 161-171.
  • 25. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 26. Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257(9–10): 1041–1046.
  • 27. Pandi, G., & Muthusamy, S. (2012). A review on machining and tribological behaviors of aluminium hybrid composites. Procedia engineering, 38, 1399-1408.
  • 28. Kaarmuhilan, K., Karthika, S., & Muthukrishnan, N. (2012). Performance evaluation of PCD 1300 and 1500 grade inserts on turning A356 alloy with 20% reinforcement of SiC particles. In Applied Mechanics and Materials (Vol. 110, pp. 1855-1861). Trans Tech Publications Ltd.
  • 29. Manna, A., & Bhattacharayya, B. (2005). Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC. The International Journal of Advanced Manufacturing Technology, 25(9), 850-856.
  • 30. Srinivasan, A., Arunachalam, R. M., Ramesh, S., & Senthilkumaar, J. S. (2012). Machining performance study on metal matrix composites-a response surface methodology approach. American Journal of Applied Sciences, 9(4), 478-483. 30- Sahin, Y. (2003).
  • 31. Preparation and some properties of SiC particle reinforced aluminium alloy composites. Materials & design, 24(8), 671-679.
  • 32. Gaitonde, V. N., Karnik, S. R., & Paulo Davim, J. (2012). Computational methods and optimization in machining of metal matrix composites. In Machining of Metal Matrix Composites (pp. 143-162). Springer, London.
  • 33. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 34. Premnath, A. A., Alwarsamy, T., & Rajmohan, T. (2012). Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Materials and Manufacturing Processes, 27(10), 1035-1044.
  • 35. Bhushan, R. K. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production, 39, 242-254.
  • 36. Davim, J. P. (2003). Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of materials processing technology, 132(1-3), 340-344.).
  • 37. Ozcatalbas, Y. (2003). Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Materials & design, 24(3), 215-221.
  • 38. Basavarajappa, S., Chandramohan, G., Prabu, M., Mukund, K., & Ashwin, M. (2007). Drilling of hybrid metal matrix composites—Workpiece surface integrity. International Journal of Machine Tools and Manufacture, 47(1), 92-96.
  • 39. Anandakrishnan, V., & Mahamani, A. (2011). Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. The International Journal of Advanced Manufacturing Technology, 55(1), 65-73.
  • 40. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.)
  • 41. Finn, M., & Srivastava, A. (1996, May). Machining of advanced and engineered materials. In Proceedings of the CSME Symposium. McMaster University (Vol. 616).
  • 42. Bansal, P., & Upadhyay, L. (2013). Experimental investigations to study tool wear during turning of alumina reinforced aluminium composite. Procedia Engineering, 51, 818-827.
  • 43. Ozben, T., Kilickap, E., & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of materials processing technology, 198(1-3), 220-225.
  • 44. Pendse, D. M., & Joshi, S. S. (2004). Modeling and optimization of machining process in discontinuously reinforced aluminium matrix composites. Machining Science and Technology, 8(1), 85-102.
  • 45. Chandrasekaran, M., & Devarasiddappa, D. (2012). Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Academy of Science, Engineering and Technology, 6(7), 928-933.
  • 46. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 47. Pramanik, A., Zhang, L. C., & Arsecularatne, J. A. (2008). Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. International Journal of Machine Tools and Manufacture, 48(15), 1613-1625.
  • 48. Behera, R., & Sutradhar, G. (2012). Machinability of LM6/SiCp metal matrix composites with tungsten carbide cutting tool inserts. ARPN J Eng Appl Sci, 7(2), 216-221.
  • 49. Davim, J. P. (2001). Turning particulate metal matrix composites: experimental study of the evolution of the cutting forces, tool wear and workpiece surface roughness with the cutting time. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(3), 371-376.
  • 50. Kishore, D. S. C., Rao, K. P., & Mahamani, A. (2014). Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite. Procedia materials science, 6, 1040-1050.
  • 51. Kannan, S., Kishwy, H. A., & Deiab, I. (2008). Cutting forces and TEM analysis of the generated surface. J. Mater. Process. Technol, 9, 2260-2269.
  • 52. Weinert, K., & Lange, M. (2001). Machining of magnesium matrix composites. Advanced Engineering Materials, 3(12), 975-979.
  • 53. Takacs, M., Verö, B., & Meszaros, I. (2003). Micromilling of metallic materials. Journal of Materials Processing Technology, 138(1-3), 152-155.
  • 54. Wang, C., Cheng, K., Rakowski, R., Greenwood, D., & Wale, J. (2017). Comparative studies on the effect of pilot drillings with application to high-speed drilling of carbon fibre reinforced plastic (CFRP) composites. The International Journal of Advanced Manufacturing Technology, 89(9), 3243-3255.
  • 55. Nicholls, C. J., Boswell, B., Davies, I. J., & Islam, M. N. (2017). Review of machining metal matrix composites. The International Journal of Advanced Manufacturing Technology, 90(9), 2429-2441.
  • 56. Haq, A. N., Marimuthu, P., & Jeyapaul, R. (2008). Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. The International Journal of Advanced Manufacturing Technology, 37(3), 250-255.
  • 57. Njuguna, M. J., Gao, D., & Hao, Z. (2013). Tool wear, surface integrity and dimensional accuracy in turning Al2124SiCp (45% wt) metal matrix composite using CBN and PCD tools. Res J Appl Sci Eng Technol, 6(22), 4138-4144.
  • 58. Kannan, S., Kishawy, H. A., Deiab, I. M., & Surappa, M. K. (2006). On the role of reinforcements on tool performance during cutting of metal matrix composites. Journal of manufacturing processes, 8(2), 67-75.
  • 59. Beristain, J., Gonzalo, O., & Sandá, A. (2014). Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts. Revista De Metalurgia, 50, 1-6.
  • 60. Hung, N. P., Boey, F. Y. C., Khor, K. A., Phua, Y. S., & Lee, H. F. (1996). Machinability of aluminum alloys reinforced with silicon carbide particulates. Journal of materials processing technology, 56(1-4), 966-977.
  • 61. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A. (2017). Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 913-923.
  • 62. Cronjäger, L., & Meister, D. (1992). Machining of fibre and particle-reinforced aluminium. CIRP annals, 41(1), 63-66.
  • 63. Narahari, P., Pai, B. C., & Pillai, R. M. (1999). Some aspects of machining cast Al-SiCp composites with conventional high speed steel and tungsten carbide tools. Journal of materials engineering and performance, 8(5), 538-542.
  • 64. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611-634.
  • 65. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 66. Chen, P., & Hoshi, T. (1992). High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals, 41(1), 59-62.
  • 67. Hung, N. P., Boey, F. Y. C., Khor, K. A., Oh, C. A., & Lee, H. F. (1995). Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. Journal of Materials Processing Technology, 48(1-4), 291-297.
  • 68. Abdullah, A. (1996). Machining of aluminium based metal matrix composite (MMC) (Doctoral dissertation, University of Warwick).
  • 69. Pedersen, W., & Ramulu, M. (2006). Facing SiCp/Mg metal matrix composites with carbide tools. Journal of materials processing technology, 172(3), 417-423.
  • 70. Quigley, O., Monaghan, J., & O'Reilly, P. (1994). Factors affecting the machinability of an Al/SiC metal-matrix composite. Journal of materials processing technology, 43(1), 21-36.
  • 71. Muthukrishnan, N. (2012). Machinability studies on fabricated Al Sic B4c hybrid metal matrix composites by turning. i-Manager's Journal on Mechanical Engineering, 2(2), 32.
  • 72. Hung, N. P., Loh, N. L., & Xu, Z. M. (1996). Cumulative tool wear in machining metal matrix composites part II: machinability. Journal of Materials Processing Technology, 58(1), 114-120.
  • 73. Davis, J. R., & Davis, J. R. (1993). ASM international handbook committee, Aluminum and aluminum alloys. ASM specialty handbook, Materials Park, OH, ASM International, 33.
  • 74. Davim, J. P., & Baptista, A. M. (2000). Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Journal of materials processing technology, 103(3), 417-423.
  • 75. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 76. Ding, X., Liew, W. Y. H., & Liu, X. D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 259(7-12), 1225-1234.
  • 77. Huang, S. T., Zhou, L., Chen, J., & Xu, L. F. (2012). Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools. Materials and Manufacturing Processes, 27(10), 1090-1094.
  • 78. Ei-Gallab, M., & Sklad, M. (1998). Machining of Al: SiC particulate metal–matrix composites part I: tool performance. Journal of Materials Processing Technology, 83(1–3), 151-158.
  • 79. Andrewes, C. J., Feng, H. Y., & Lau, W. M. (2000). Machining of an aluminum/SiC composite using diamond inserts. Journal of materials processing technology, 102(1-3), 25-29.
  • 80. Kremer, A., & El Mansori, M. (2009). Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surface and Coatings Technology, 204(6-7), 1051-1055.
  • 81. Kremer, A., Devillez, A., Dominiak, S., Dudzinski, D., & El Mansori, M. (2008). Machinability of AI/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Machining Science and Technology, 12(2), 214-233.
  • 82. Davim, J. P. (2002). Diamond tool performance in machining metal–matrix composites. Journal of materials processing technology, 128(1-3), 100-105.
  • 83. Wang, Y. J., Zhou, M., Huang, S. N., & Zhang, Y. J. (2010). Tool wear in high-speed milling of SiCp/Al2024 metal matrix composites. In Applied Mechanics and Materials (Vol. 33, pp. 200-203). Trans Tech Publications Ltd.
  • 84. Smith, G. T. (2008). Cutting tool technology: industrial handbook. Springer Science & Business Media.
  • 85. Ding, X., Liew, W. Y. H., & Liu, X. D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools. Wear, 259(7-12), 1225-1234.
  • 86. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 87. Hung, N. P., Boey, F. Y. C., Khor, K. A., Phua, Y. S., & Lee, H. F. (1996). Machinability of aluminum alloys reinforced with silicon carbide particulates. Journal of materials processing technology, 56(1-4), 966-977.
  • 88. Chen, P., & Hoshi, T. (1992). High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals, 41(1), 59-62.
  • 89. Tomac, N., Tannessen, K., & Rasch, F. O. (1992). Machinability of particulate aluminium matrix composites. CIRP annals, 41(1), 55-58.
  • 90. Tönshoff, H. K., & Winkler, J. (1997). The influence of tool coatings in machining of magnesium. Surface and Coatings Technology, 94, 610-616.
  • 91. Weinert, K., & König, W. (1993). A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Annals, 42(1), 95-98.
  • 92. Teti, R. (2002). Machining of composite materials. CIRP Annals, 51(2), 611-634.
  • 93. Looney, L. A., Monaghan, J. M., O'Reilly, P., & Taplin, D. M. R. (1992). The turning of an Al/SiC metal-matrix composite. Journal of materials processing technology, 33(4), 453-468.
  • 94. Ciftci, I., Turker, M., & Seker, U. (2004). CBN cutting tool wear during machining of particulate reinforced MMCs. Wear, 257(9-10), 1041-1046.
  • 95. Cronjäger, L., & Meister, D. (1992). Machining of fibre and particle-reinforced aluminium. CIRP annals, 41(1), 63-66.
  • 96. Lane, C., 1990, Machining Characteristics of Particulate-Reinforced Aluminium, in Fabrication of Particulates Reinforced Metal Composites, ASM, Ohio: 195-201.
  • 97. Songmene, V., & Balazinski, M. (2001, June). Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools. In Proceedings of the CIRP International Seminar on Progress in Innovative Manufacturing Engineering—PRIME, Sestri Levante, Italy (pp. 20-22).
  • 98. Ekici, E., & Gülesin, M. (2016). The machinability of Al/B4C composites produced by hot pressing based on reinforcing the element ratio. Science and Engineering of Composite Materials, 23(6), 743-750.
  • 99. Coelho, R. T., Aspinwall, D. K., & Wise, M. L. H. (1994). Drilling and reaming aluminium-based metal matrix composites (MMC) using PCD tooling. Transactions of NAMRI/SME.
  • 100. Coelho, R. T., Yamada, S., Aspinwall, D. K., & Wise, M. L. H. (1995). The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminium based alloys including MMC. International Journal of Machine Tools and Manufacture, 35(5), 761-774.
  • 101. Ames, W., & Alpas, A. T. (1995). Sliding wear of an Al-Si alloy reinforced with silicon carbide particles and graphite flakes. Friction and wear technology for advanced composite materials(A 96-16704 03-24), Materials Park, OH, ASM International, 1995,, 27-35.
  • 102. Songmene, V., & Balazinski, M. (2001, June). Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools. In Proceedings of the CIRP International Seminar on Progress in Innovative Manufacturing Engineering—PRIME, Sestri Levante, Italy (pp. 20-22).
  • 103. Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of materials processing technology, 140(1-3), 711-716.
  • 104. Weinert, K., Lange, M., & Schroer, M. (2000). Machining of Light‐metal Matrix Composites. Magnesium alloys and their applications, 412-417.
There are 104 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Reviews
Authors

Necdet Yakut 0000-0001-7334-2990

Publication Date January 11, 2023
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Yakut, N. (2023). CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES. Journal of Advances in Manufacturing Engineering, 3(2), 64-76.
AMA Yakut N. CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES. J Adv Manuf Eng. January 2023;3(2):64-76.
Chicago Yakut, Necdet. “CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES”. Journal of Advances in Manufacturing Engineering 3, no. 2 (January 2023): 64-76.
EndNote Yakut N (January 1, 2023) CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES. Journal of Advances in Manufacturing Engineering 3 2 64–76.
IEEE N. Yakut, “CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES”, J Adv Manuf Eng, vol. 3, no. 2, pp. 64–76, 2023.
ISNAD Yakut, Necdet. “CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES”. Journal of Advances in Manufacturing Engineering 3/2 (January 2023), 64-76.
JAMA Yakut N. CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES. J Adv Manuf Eng. 2023;3:64–76.
MLA Yakut, Necdet. “CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES”. Journal of Advances in Manufacturing Engineering, vol. 3, no. 2, 2023, pp. 64-76.
Vancouver Yakut N. CUTTING TOOL SELECTION FOR MACHINING METAL MATRIX COMPOSITES. J Adv Manuf Eng. 2023;3(2):64-76.