Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 84 - 93, 31.12.2024

Abstract

Project Number

121D015

References

  • REFERENCES
  • [1] Başcı, Ü. G., & Yamanoğlu, R. (2021). New generation production technology: additive manufacturing via FDM. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339–352. [Turkish] [CrossRef]
  • [2] Altıparmak, S. C., & Xiao, B. (2021). A market assessment of additive manufacturing potential for the aerospace industry. Journal of Manufacturing Processes, 68, 728–738. [CrossRef]
  • [3] Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The potential of additive manufacturing in the smart factory industrial 4.0: A review. Applied Sciences, 9(18), Article 3865.
  • [4] Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and Performance, 23, 1917–1928. [CrossRef]
  • [5] Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., & Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586.
  • [6] Iakovakis, E., Avcu, E., Roy, M. J., Gee, M., & Matthews, A. (2022). Wear resistance of an additively manufactured high-carbon martensitic stainless steel. Scientific Reports, 12(1), Article 12554. [CrossRef]
  • [7] Moussaoui, K., Rubio, W., Mousseigne, M., Sultan, T., & Rezai, F. (2018). Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Materials Science and Engineering: A, 735, 182–190. [CrossRef]
  • [8] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112–224. [CrossRef]
  • [9] Paraschiv, A., Matache, G., Condruz, M. R., Frigioescu, T. F., & Pambaguian, L. (2022). Laser powder bed fusion process parameters’ optimization for fabrication of dense IN 625. Materials, 15(16), Article 5777. [CrossRef]
  • [10] Tonelli, L., Fortunato, A., & Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness. Journal of Manufacturing Processes, 52, 106–119. [CrossRef]
  • [11] Başcı, Ü. G., & Yamanoğlu, R. (2022). Additive manufacturing via vat photopolymerization. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 914–928. [Turkish] [CrossRef]
  • [12] Field, A. C., Carter, L. N., Adkins, N. J. E., Attallah, M. M., Gorley, M. J., & Strangwood, M. (2020). The effect of powder characteristics on build quality of high-purity tungsten produced via laser powder bed fusion (LPBF). Metallurgical and Materials Transactions A, 51, 1367–1378. [CrossRef]
  • [13] Harun, W. S. W., Kamariah, M. S. I. N., Muhamad, N., Ghani, S. A. C., Ahmad, F., & Mohamed, Z. (2018). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128–151. [CrossRef]
  • [14] Bascı, Ü.G. & Yamanoglu R. (2019). Eklemeli metal imalat teknolojileri için metal tozu üretim yöntemleri. International Marmara Sciences Congress (pp. 220–228). Kocaeli, Türkiye. [Turkish]
  • [15] Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), Article 041101. [CrossRef]
  • [16] Chowdhury, S., Yadaiah, N., Prakash, C., Ramakrishna, S., Dixit, S., Gupta, L. R., & Buddhi, D. (2022). Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. Journal of Materials Research and Technology, 20, 2109–2172. [CrossRef]
  • [17] Gu, D., & Shen, Y. (2009). Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. Journal of Alloys and Compounds, 473(1–2), 107–115. [CrossRef]
  • [18] Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., Johansson, S., & Smurov, I. (2013). Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. Journal of Materials Processing Technology, 213(4), 606–613. [CrossRef]
  • [19] Larimian, T., Kannan, M., Grzesiak, D., AlMangour, B., & Borkar, T. (2020). Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, 770, Article 138455. [CrossRef]
  • [20] Ma, M., Wang, Z., & Zeng, X. (2015). Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Materials Characterization, 106, 420–427. [CrossRef]
  • [21] Greco, S., Gutzeit, K., Hotz, H., Kirsch, B., & Aurich, J. C. (2020). Selective laser melting (SLM) of AISI 316L— impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. The International Journal of Advanced Manufacturing Technology, 108, 1551– 1562. [CrossRef]
  • [22] Wang, W., Wang, S., Zhang, X., Chen, F., Xu, Y., & Tian, Y. (2021). Process parameter optimization for selective laser melting of Inconel 718 superalloy and the effects of subsequent heat treatment on the microstructural evolution and mechanical properties. Journal of Manufacturing Processes, 64, 530–543. [CrossRef]
  • [23] Sadowski, M., Ladani, L., Brindley, W., & Romano, J. (2016). Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Additive Manufacturing, 11, 60–70. [CrossRef]
  • [24] Yi, J. H., Kang, J. W., Wang, T. J., Wang, X., Hu, Y. Y., Feng, T., ... & Wu, P. Y. (2019). Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. Journal of Alloys and Compounds, 786, 481488. [CrossRef]
  • [25] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J. P. R., & Schoenung, J. M. (2017). On the limitations of volumetric energy density as a design parameter for selective laser melting. Materials & Design, 113, 331–340. [CrossRef]
  • [26] Bascı, U.G. & Yamanoğlu R. (2020). Eklemeli metal imalat teknolojileri ve uygulama alanları. International Marmara Sciences Congress (pp. 307-314). Kocaeli, Türkiye. [Turkish]
  • [27] Spierings, A. B., Schneider, M. U., & Eggenberger, R. (2011). Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping Journal, 17(5), 380–386. [CrossRef]
  • [28] Fayazfar, H., Salarian, M., Rogalsky, A., Sarker, D., Russo, P., Paserin, V., & Toyserkani, E. (2018). A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Materials & Design, 144, 98–128. [CrossRef]
  • [29] Gor, M., Soni, H., Wankhede, V., Sahlot, P., Grzelak K., Szachgluchowicz I., & Kluczyński J. (2021). A critical review on effect of process parameters on mechanical and microstructural properties of powder-bed fusion additive manufacturing of SS316L. Materials, 14(21), Article 6527. [CrossRef]
  • [30] Kladovasilakis, N., Charalampous, P., Kostavelis, I., Tzetzis, D., & Tzovaras, D. (2021). Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review. Progress in Additive Manufacturing, 6, 349–365. [CrossRef]
  • [31] Pleass, C., & Jothi, S. (2018). Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Additive Manufacturing, 24, 419–431. [CrossRef]
  • [32] Oliveira, J. P., LaLonde, A. D., & Ma, J. (2020). Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 193, Article 108762. [CrossRef]
  • [33] Sefene, E. M. (2022). State-of-the-art of selective laser melting process: A comprehensive review. Journal of Manufacturing Systems, 63, 250–274. [CrossRef] [34] Dietrich, K., Diller, J., Dubiez-Le Goff, S., Bauer, D., Forêt, P., & Witt, G. (2020). The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Additive Manufacturing, 32, Article 100980. [CrossRef]
  • [35] Sutton, A. T., Kriewall, C. S., Leu, M. C., & Newkirk, J. W. (2017). Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and Physical Prototyping, 12(1), 3–29. [CrossRef]
  • [36] Kokareva, V. V., Smelov, V. G., Agapovichev, A. V., Sotov, A. V., & Sufiiarov, V. S. (2018). Development of SLM quality system for gas turbines engines parts production. In IOP Conference Series: Materials Science and Engineering, 441(1), Article 012024. [CrossRef]
  • [37] Ravichander, B. B., Mamidi, K., Rajendran, V., Farhang, B., Ganesh-Ram, A., Hanumantha, M., Amerinatanzi, A. (2022). Experimental investigation of laser scan strategy on the microstructure and properties of Inconel 718 parts fabricated by laser powder bed fusion. Materials Characterization, 186, Article 111765. [CrossRef]
  • [38] Yamanoglu, R., Bahador, A., & Kondoh, K. (2023). Support recycling in additive manufacturing: A case study for enhanced wear performance of Ti6Al4V alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 237(7), 1603–1608. [CrossRef]
  • [39] Du, C., Zhao, Y., Jiang, J., Wang, Q., Wang, H., Li, N., & Sun, J. (2023). Pore defects in Laser Powder Bed Fusion: Formation mechanism, control method, and perspectives. Journal of Alloys and Compounds, 944, Article 169215. [CrossRef]
  • [40] Wang, L., Zhang, Y., Chia, H. Y., & Yan, W. (2022). Mechanism of keyhole pore formation in metal additive manufacturing. NPJ Computational Materials, 8(1), Article 22. [CrossRef]
  • [41] Sanaei, N., & Fatemi, A. (2021). Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Progress in Materials Science, 117, Article 100724. [CrossRef]
  • [42] Narasimharaju, S. R., Zeng, W., See, T. L., Zhu, Z., Scott, P., Jiang, X., & Lou, S. (2022). A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. Journal of Manufacturing Processes, 75, 375–414. [CrossRef]
  • [43] Sing, S. L., An, J., Yeong, W. Y., & Wiria, F. E. (2016). Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 34(3), 369–385. [CrossRef]
  • [44] Song, B., Zhao, X., Li, S., Han, C., Wei, Q., Wen, S., ... & Shi, Y. (2015). Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, 10, 111–125. [CrossRef]
  • [45] Ding, H., Zhang, J., Liu, J., Wang, J., Niu, L., & Chen, Y. (2023). Effect of volume energy density on microstructure and mechanical properties of TC4 alloy by selective laser melting. Journal of Alloys and Compounds, 968, Article 171769. [CrossRef]
  • [46] Yusuf, S. M., & Gao, N. (2017). Influence of energy density on metallurgy and properties in metal additive manufacturing. Materials Science and Technology, 33(11), 1269–1289. [CrossRef]
  • [47] Fousová, M., Vojtěch, D., Kubásek, J., Jablonská, E., & Fojt, J. (2017). Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. Journal of the Mechanical Behavior of Biomedical Materials, 69, 368–376. [CrossRef]

Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting

Year 2024, Volume: 5 Issue: 2, 84 - 93, 31.12.2024

Abstract

The main aim of this study is to investigate the microstructural properties of selective laser melted (SLM) Inconel 625 alloy as a function of laser energy density (LED) value. The layer thickness was selected as 30 µm for all samples. The samples were produced with 9 different LED values (0.78–2.80 J/mm3) using a 350 W laser power and scanning speeds ranging from 125 to 450 mm.s-1. Optical microscope images of the polished and etched samples in the XY, XZ, and XY planes were studied. The influence of the LED intensity on both the quantity and morphology of the pores in the structure was evaluated. A large number of pores with spherical shapes were observed in the samples with LED values of 1 J/mm3 and higher. The application of high energy density to the powders led to an increase in the solubility of gas, resulting in the formation of numerous spherical pores. This study indicated that the optimum LED value for IN625 alloy with a layer thickness of 30 µm is 0.78 J/mm3.

Supporting Institution

TUBITAK

Project Number

121D015

Thanks

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) through the Industrial Innovation Network Mechanism (SAYEM) programme

References

  • REFERENCES
  • [1] Başcı, Ü. G., & Yamanoğlu, R. (2021). New generation production technology: additive manufacturing via FDM. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339–352. [Turkish] [CrossRef]
  • [2] Altıparmak, S. C., & Xiao, B. (2021). A market assessment of additive manufacturing potential for the aerospace industry. Journal of Manufacturing Processes, 68, 728–738. [CrossRef]
  • [3] Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The potential of additive manufacturing in the smart factory industrial 4.0: A review. Applied Sciences, 9(18), Article 3865.
  • [4] Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and Performance, 23, 1917–1928. [CrossRef]
  • [5] Kok, Y., Tan, X. P., Wang, P., Nai, M. L. S., Loh, N. H., Liu, E., & Tor, S. B. (2018). Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials & Design, 139, 565–586.
  • [6] Iakovakis, E., Avcu, E., Roy, M. J., Gee, M., & Matthews, A. (2022). Wear resistance of an additively manufactured high-carbon martensitic stainless steel. Scientific Reports, 12(1), Article 12554. [CrossRef]
  • [7] Moussaoui, K., Rubio, W., Mousseigne, M., Sultan, T., & Rezai, F. (2018). Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Materials Science and Engineering: A, 735, 182–190. [CrossRef]
  • [8] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112–224. [CrossRef]
  • [9] Paraschiv, A., Matache, G., Condruz, M. R., Frigioescu, T. F., & Pambaguian, L. (2022). Laser powder bed fusion process parameters’ optimization for fabrication of dense IN 625. Materials, 15(16), Article 5777. [CrossRef]
  • [10] Tonelli, L., Fortunato, A., & Ceschini, L. (2020). CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness. Journal of Manufacturing Processes, 52, 106–119. [CrossRef]
  • [11] Başcı, Ü. G., & Yamanoğlu, R. (2022). Additive manufacturing via vat photopolymerization. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 914–928. [Turkish] [CrossRef]
  • [12] Field, A. C., Carter, L. N., Adkins, N. J. E., Attallah, M. M., Gorley, M. J., & Strangwood, M. (2020). The effect of powder characteristics on build quality of high-purity tungsten produced via laser powder bed fusion (LPBF). Metallurgical and Materials Transactions A, 51, 1367–1378. [CrossRef]
  • [13] Harun, W. S. W., Kamariah, M. S. I. N., Muhamad, N., Ghani, S. A. C., Ahmad, F., & Mohamed, Z. (2018). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128–151. [CrossRef]
  • [14] Bascı, Ü.G. & Yamanoglu R. (2019). Eklemeli metal imalat teknolojileri için metal tozu üretim yöntemleri. International Marmara Sciences Congress (pp. 220–228). Kocaeli, Türkiye. [Turkish]
  • [15] Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), Article 041101. [CrossRef]
  • [16] Chowdhury, S., Yadaiah, N., Prakash, C., Ramakrishna, S., Dixit, S., Gupta, L. R., & Buddhi, D. (2022). Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. Journal of Materials Research and Technology, 20, 2109–2172. [CrossRef]
  • [17] Gu, D., & Shen, Y. (2009). Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. Journal of Alloys and Compounds, 473(1–2), 107–115. [CrossRef]
  • [18] Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., Johansson, S., & Smurov, I. (2013). Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. Journal of Materials Processing Technology, 213(4), 606–613. [CrossRef]
  • [19] Larimian, T., Kannan, M., Grzesiak, D., AlMangour, B., & Borkar, T. (2020). Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, 770, Article 138455. [CrossRef]
  • [20] Ma, M., Wang, Z., & Zeng, X. (2015). Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Materials Characterization, 106, 420–427. [CrossRef]
  • [21] Greco, S., Gutzeit, K., Hotz, H., Kirsch, B., & Aurich, J. C. (2020). Selective laser melting (SLM) of AISI 316L— impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. The International Journal of Advanced Manufacturing Technology, 108, 1551– 1562. [CrossRef]
  • [22] Wang, W., Wang, S., Zhang, X., Chen, F., Xu, Y., & Tian, Y. (2021). Process parameter optimization for selective laser melting of Inconel 718 superalloy and the effects of subsequent heat treatment on the microstructural evolution and mechanical properties. Journal of Manufacturing Processes, 64, 530–543. [CrossRef]
  • [23] Sadowski, M., Ladani, L., Brindley, W., & Romano, J. (2016). Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Additive Manufacturing, 11, 60–70. [CrossRef]
  • [24] Yi, J. H., Kang, J. W., Wang, T. J., Wang, X., Hu, Y. Y., Feng, T., ... & Wu, P. Y. (2019). Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. Journal of Alloys and Compounds, 786, 481488. [CrossRef]
  • [25] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J. P. R., & Schoenung, J. M. (2017). On the limitations of volumetric energy density as a design parameter for selective laser melting. Materials & Design, 113, 331–340. [CrossRef]
  • [26] Bascı, U.G. & Yamanoğlu R. (2020). Eklemeli metal imalat teknolojileri ve uygulama alanları. International Marmara Sciences Congress (pp. 307-314). Kocaeli, Türkiye. [Turkish]
  • [27] Spierings, A. B., Schneider, M. U., & Eggenberger, R. (2011). Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping Journal, 17(5), 380–386. [CrossRef]
  • [28] Fayazfar, H., Salarian, M., Rogalsky, A., Sarker, D., Russo, P., Paserin, V., & Toyserkani, E. (2018). A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Materials & Design, 144, 98–128. [CrossRef]
  • [29] Gor, M., Soni, H., Wankhede, V., Sahlot, P., Grzelak K., Szachgluchowicz I., & Kluczyński J. (2021). A critical review on effect of process parameters on mechanical and microstructural properties of powder-bed fusion additive manufacturing of SS316L. Materials, 14(21), Article 6527. [CrossRef]
  • [30] Kladovasilakis, N., Charalampous, P., Kostavelis, I., Tzetzis, D., & Tzovaras, D. (2021). Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review. Progress in Additive Manufacturing, 6, 349–365. [CrossRef]
  • [31] Pleass, C., & Jothi, S. (2018). Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Additive Manufacturing, 24, 419–431. [CrossRef]
  • [32] Oliveira, J. P., LaLonde, A. D., & Ma, J. (2020). Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 193, Article 108762. [CrossRef]
  • [33] Sefene, E. M. (2022). State-of-the-art of selective laser melting process: A comprehensive review. Journal of Manufacturing Systems, 63, 250–274. [CrossRef] [34] Dietrich, K., Diller, J., Dubiez-Le Goff, S., Bauer, D., Forêt, P., & Witt, G. (2020). The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Additive Manufacturing, 32, Article 100980. [CrossRef]
  • [35] Sutton, A. T., Kriewall, C. S., Leu, M. C., & Newkirk, J. W. (2017). Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and Physical Prototyping, 12(1), 3–29. [CrossRef]
  • [36] Kokareva, V. V., Smelov, V. G., Agapovichev, A. V., Sotov, A. V., & Sufiiarov, V. S. (2018). Development of SLM quality system for gas turbines engines parts production. In IOP Conference Series: Materials Science and Engineering, 441(1), Article 012024. [CrossRef]
  • [37] Ravichander, B. B., Mamidi, K., Rajendran, V., Farhang, B., Ganesh-Ram, A., Hanumantha, M., Amerinatanzi, A. (2022). Experimental investigation of laser scan strategy on the microstructure and properties of Inconel 718 parts fabricated by laser powder bed fusion. Materials Characterization, 186, Article 111765. [CrossRef]
  • [38] Yamanoglu, R., Bahador, A., & Kondoh, K. (2023). Support recycling in additive manufacturing: A case study for enhanced wear performance of Ti6Al4V alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 237(7), 1603–1608. [CrossRef]
  • [39] Du, C., Zhao, Y., Jiang, J., Wang, Q., Wang, H., Li, N., & Sun, J. (2023). Pore defects in Laser Powder Bed Fusion: Formation mechanism, control method, and perspectives. Journal of Alloys and Compounds, 944, Article 169215. [CrossRef]
  • [40] Wang, L., Zhang, Y., Chia, H. Y., & Yan, W. (2022). Mechanism of keyhole pore formation in metal additive manufacturing. NPJ Computational Materials, 8(1), Article 22. [CrossRef]
  • [41] Sanaei, N., & Fatemi, A. (2021). Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Progress in Materials Science, 117, Article 100724. [CrossRef]
  • [42] Narasimharaju, S. R., Zeng, W., See, T. L., Zhu, Z., Scott, P., Jiang, X., & Lou, S. (2022). A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. Journal of Manufacturing Processes, 75, 375–414. [CrossRef]
  • [43] Sing, S. L., An, J., Yeong, W. Y., & Wiria, F. E. (2016). Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 34(3), 369–385. [CrossRef]
  • [44] Song, B., Zhao, X., Li, S., Han, C., Wei, Q., Wen, S., ... & Shi, Y. (2015). Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Frontiers of Mechanical Engineering, 10, 111–125. [CrossRef]
  • [45] Ding, H., Zhang, J., Liu, J., Wang, J., Niu, L., & Chen, Y. (2023). Effect of volume energy density on microstructure and mechanical properties of TC4 alloy by selective laser melting. Journal of Alloys and Compounds, 968, Article 171769. [CrossRef]
  • [46] Yusuf, S. M., & Gao, N. (2017). Influence of energy density on metallurgy and properties in metal additive manufacturing. Materials Science and Technology, 33(11), 1269–1289. [CrossRef]
  • [47] Fousová, M., Vojtěch, D., Kubásek, J., Jablonská, E., & Fojt, J. (2017). Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. Journal of the Mechanical Behavior of Biomedical Materials, 69, 368–376. [CrossRef]
There are 47 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Machine Design and Machine Equipment, Material Design and Behaviors
Journal Section Research Articles
Authors

Rıdvan Yamanoğlu 0000-0002-4661-8215

Egemen Avcu 0000-0002-3244-1316

Hasan İsmail Yavuz 0000-0001-6198-2560

Mertcan Kiraç 0000-0003-0793-8117

Ümit Gencay Başcı 0000-0001-7205-2764

Enes Furkan Sevinç 0009-0000-9069-797X

Ertuğrul Bayram 0000-0001-9745-2000

Project Number 121D015
Publication Date December 31, 2024
Submission Date August 29, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Yamanoğlu, R., Avcu, E., Yavuz, H. İ., Kiraç, M., et al. (2024). Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting. Journal of Advances in Manufacturing Engineering, 5(2), 84-93.
AMA Yamanoğlu R, Avcu E, Yavuz Hİ, Kiraç M, Başcı ÜG, Sevinç EF, Bayram E. Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting. J Adv Manuf Eng. December 2024;5(2):84-93.
Chicago Yamanoğlu, Rıdvan, Egemen Avcu, Hasan İsmail Yavuz, Mertcan Kiraç, Ümit Gencay Başcı, Enes Furkan Sevinç, and Ertuğrul Bayram. “Effect of Laser Energy Density on Microstructural Properties of Inconel 625 Alloy Produced by Selective Laser Melting”. Journal of Advances in Manufacturing Engineering 5, no. 2 (December 2024): 84-93.
EndNote Yamanoğlu R, Avcu E, Yavuz Hİ, Kiraç M, Başcı ÜG, Sevinç EF, Bayram E (December 1, 2024) Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting. Journal of Advances in Manufacturing Engineering 5 2 84–93.
IEEE R. Yamanoğlu, E. Avcu, H. İ. Yavuz, M. Kiraç, Ü. G. Başcı, E. F. Sevinç, and E. Bayram, “Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting”, J Adv Manuf Eng, vol. 5, no. 2, pp. 84–93, 2024.
ISNAD Yamanoğlu, Rıdvan et al. “Effect of Laser Energy Density on Microstructural Properties of Inconel 625 Alloy Produced by Selective Laser Melting”. Journal of Advances in Manufacturing Engineering 5/2 (December 2024), 84-93.
JAMA Yamanoğlu R, Avcu E, Yavuz Hİ, Kiraç M, Başcı ÜG, Sevinç EF, Bayram E. Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting. J Adv Manuf Eng. 2024;5:84–93.
MLA Yamanoğlu, Rıdvan et al. “Effect of Laser Energy Density on Microstructural Properties of Inconel 625 Alloy Produced by Selective Laser Melting”. Journal of Advances in Manufacturing Engineering, vol. 5, no. 2, 2024, pp. 84-93.
Vancouver Yamanoğlu R, Avcu E, Yavuz Hİ, Kiraç M, Başcı ÜG, Sevinç EF, Bayram E. Effect of laser energy density on microstructural properties of Inconel 625 alloy produced by selective laser melting. J Adv Manuf Eng. 2024;5(2):84-93.