Research Article
BibTex RIS Cite

Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method

Year 2024, Volume: 5 Issue: 2, 61 - 73, 31.12.2024

Abstract

As a result of the development of additive manufacturing technology and the decrease in device and consumable costs, 3D printers have become widespread. With 3D printers, beyond the production of prototypes, the commercial product itself is now produced. The transition from prototype production to final product production is possible by increasing product strength. For this purpose, many factors such as filament type, infill density, infill geometry, nozzle diameter and temperature are studied in detail. In many studies where production is carried out with the FDM (Fused Deposition Method), it is seen that PLA (Polylactic Acid) or ABS (Acrylonitrile Butadiene Styrene) consumables are used. In addition, infill geometry and infill density properties have been examined with limited filament types with different compositions in the literature. This article is designed to fill this gap in the literature. The research aims to increase product performance by examining the effects of fill geometry and fill density with different filament types and compositions. In this study, in order to investigate the mechanical properties of the product printed with FDM, samples were produced with 2 different fill geometries and 2 different fill densities using filaments with 5 different compositions and the tensile test results were examined.

Ethical Statement

There are no ethical issues with the publication of this manuscript.

Supporting Institution

None

References

  • References
  • [1] Jayawardane H., Davies I., J., Gamage J.R., John M., Biswas W.K., Sustainability perspectives – a review of additive and subtractive manufacturing. Sustainable Manufacturing and Service Economics, Volume 2, 100015, ISSN 2667-3444, 2023
  • [2] Aral M., Diş Hekimliğinde 3 Boyutlu - Eklemeli Üretim: Derleme. Uluslararası Diş Hekimliği Bilimleri Dergisi, 10(1): 01-11, 2024
  • [3] URL 1: https://blog.armadayazilim.com/2015/07/31/ileri-imalat-yontemleri/
  • [4] Şahin K., Turan B.O., Üç Boyutlu Yazıcı Teknolojilerinin Karşılaştırmalı Analizi, Stratejik ve Sosyal Araştırmalar Dergisi Cilt 2, Sayı 2, 97-116, 2018
  • [5] Özmen E., Ertek C., Biomaterials Used in Additive Manufacturing Technologies And Biomedical Applications, Journal Of Science, Part C: Design And Technology, 10(4): 733-747, 2022
  • [6] Demir S., 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, doi: 10.5505/pajes.2023.49404, 2023
  • [7] Özer, G., 2020. “Eklemeli Üretim Teknolojileri Üzerine Bir Derleme”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1): 606-621, ISSN: 2564-6605, doi: 10.28948/ngumuh.626011
  • [8] Akbaba A.İ., Akbulut E., 3 Boyutlu Yazıcılar ve Kullanım Alanları. ETÜ Sentez iktisadi ve idari bilimler dergisi, 3, 19-46, 2021.
  • [9] Islam M.A., Mobarak M.H., Rimon M.I.H., Mahmud M.Z.A., Ghosh J., Ahmed M.M.S., Hossain N., Additive manufacturing in polymer research: Advances, synthesis, and applications, Polymer Testing, Volume 132,108364, ISSN 0142-9418, https://doi.org/10.1016/j.polymertesting.2024.108364, 2024
  • [10] Yeşiloğlu, R., Eklemeli İmalat İle Üretilen Farklı Dolgu Geometrisi Ve Yoğunluğa Sahip Pla Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması, Yüksek Lisans Tezi, Karabük Üniversitesi, Makine Mühendisliği Ana Bilim Dalı, Nisan 2022 [11] Mobarak M.H., Islam M.A., Hossain N., Al Mahmud M.Z., Rayhan M.T., Nishi N.J., Chowdhury M.A., Recent advances of additive manufacturing in implant fabrication – a review, Applied Surface Science Advances, 18, 100462, (2023) https://doi.org/ 10.1016/j.apsadv.2023.100462.
  • [12] Tian X., Wu L., Gu D., Yuan S., Z Y., Li X., Ouyang L., Gao., Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1 100014, 2022.
  • [13] Auras, R, Castro-Aquirre, E., Fang, X., Iniguez-Franco, F. ve Samsudin, H. (2016) Poly(lactic acid) – Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews 107 (2016) 333-366.
  • [14] Bom T. T., Costa A., Encarnaçao T., Mateus A. ve Tavares R., Bioplastics: Innovation for Green Transition. Polymers 2023, 15,517. https://doi.org/10.3390/polym15030517, 2022
  • [15] Deri F., Hamad K., Kaseem M., Ko G. ve Yang H. W., Properties and medical applications of polylactic acid: A Review, eXPRESS Polymer Letters Vol.9, No.5 (2015) 435–455, 2014
  • [16] Figueras, A., Gonzales P., Gonzales-Rodriguez L., Lama L., Lopez-Alvarez M., Novoa B., Oliveira L. A., Perez- Davila, S. ve Serra, J., 3D-Printed PLA Medical Devices: Physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers, 14, 4117. https://doi.org/10.3390/polym14194117, 2022
  • [17] Hassan, N. E. ve Omer, S. S. (2024) Application of biodegradable plastic and their environmental impacts: A review. World Journal of Advanced Research and Reviews, 2024, 21 (01), 2139-2148
  • [18] Pawar R., Shisoida S., Tekale S. U. ve Totre,J. T., Biomedical Applications of Poly(Lactic Acid). Recent Patents on Regenerative Medicine, 2014, 4, 40-51, 2014
  • [19] Kaygusuz B. ve Özerinç S., 3 Boyutlu Yazıcı ile Üretilen PLA Bazlı Yapıların Mekanik Özelliklerinin İncelenmesi, Makine Tasarım ve İmalat Dergisi, Cilt 16, Sayı 1, Mayıs 2018
  • [20] Aydın M., Yıldırım F., Çantı E., Farklı yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi, International Journal of 3D Printing Technologies And Digital Industry 3:2, 102-115, 2019
  • [21] Özsoy K., Erçetin A., Çevik Z.A., Comparison of mechanical properties of PLA and ABS based structures produced by fused deposition modelling additive manufacturing, European Journal of Science and Technology, (27), 802-809, 2021.
  • [22] Karakoç B., Uzun G., Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi, Journal of Polytechnic, Erken görünüm, DOI: 10.2339/politeknik.1262855 2023
  • [23] Alkhatib F., Cabibihan, J.J., Mahdi, E., 2019. “Data for benchmarking low-cost, 3D printed prosthetic hands” Data in brief 25, 104163, https://doi.org/10.1016/j.dib.2019.104163
  • [24] Gonçalves, V.P.D., Vieira, C.M.F., Lopera, H.A.C., 2024. “The production and materials of mouthguards: Conventional vs additive manufacturing - A systematic review, Heliyon, Volume 10, Issue 14, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e34294.
  • [25] Park J. H., Jung H.K ve Lee J.R., Development and Evaluation of Fall Impact Protection Pads Using Additive Manufacturing, Materials 2019, 12, 3440; doi:10.3390/ma12203440, 2019
  • [26] Yahaya S.A., Ripin Z.M, Ridzwan M.I.Z., Assessment of the force attenuation capability of 3D printed hip protector in simulated sideways fall., Materials Research Express, 8, 015401, 2021
  • [27] Habib F.N., Development of High Performing 3D Printed Polymeric Cellular Structures for Wearable Impact Protection., Doktora Tezi, Engineering and Technology Swinburne University of Technology Melbourne, Department of Mechanical and Product Design Engineering, School of Engineering, Faculty of Science, Australia July 2020
  • [28] Narlıoğlu N., Effect of 3D printing speed on mechanical and thermal properties of wood-PLA composite filament, Furniture and Wooden Material Research Journal, 7 (1), 97-106. DOI: 10.33725/mamad.1486558, 2024
  • [29] Kaya E., Bayar İ., Akpınar A.F., Dolgu Desenlerinin ve Oranlarının Ergiyik Biriktirme Modellemede PLA Malzemesinin Mekanik Performansına Olan Etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Erken Görünüm doi: 10.28948/ngmuh.1442158, 2024.
  • [30] Taşdelen M.A., Bingöl M., Yılmaz Y., Kahramaner H., Geri Dönüştürülmüş Termoplastiklerin Üç Boyutlu Yazıcılardaki Performansları”, 4th International Congress On 3d Printing (Additive Manufacturing) Technologies And Digital Industry, 11-14 Nisan 2019, Antalya Türkiye Kongrede bildiri, 2019
  • [31] Özsoy K. ve Kayacan M. C., Ergiyik biriktirme yöntemiyle hafifletilmiş kişiye özel kafatası implantın hızlı prototiplenmesi, Uluborlu Mesleki Bilimler Dergisi, 1(1): 1-11, 2018.
  • [32] Eryıldız M., Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation., European Mechanical Science, 5 (3) pp. 116-120, 2021
  • [33] Tunçel O, Kahya Ç, Tüfekci K., Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method., Polymers (Basel). Jul 15;16(14):2020. doi: 10.3390/polym16142020. PMID: 39065337; PMCID: PMC11281088. 2024
  • [34] Lakshman Sri S.V., Karthick A., Dinesh C., Evalution of Mechanical Properties of 3D Printed PETG and Polyamide (6) Polymers., Chemical Physics Impact, 8, 100491, 2024
  • [35] Plămădială I., Croitoru C., Pop M.A., Mechanical Properties of PETG-Based Materials Destined For 3D-Printing., Technical University of Cluj-Napoca Acta Technica Napocensis Series: Applied Mathematics, Mechanics, and Engineering Vol. 66, Issue Special II, October, 2023
  • [36] URL 2: https://bigrep.com/filaments/petg/
Year 2024, Volume: 5 Issue: 2, 61 - 73, 31.12.2024

Abstract

References

  • References
  • [1] Jayawardane H., Davies I., J., Gamage J.R., John M., Biswas W.K., Sustainability perspectives – a review of additive and subtractive manufacturing. Sustainable Manufacturing and Service Economics, Volume 2, 100015, ISSN 2667-3444, 2023
  • [2] Aral M., Diş Hekimliğinde 3 Boyutlu - Eklemeli Üretim: Derleme. Uluslararası Diş Hekimliği Bilimleri Dergisi, 10(1): 01-11, 2024
  • [3] URL 1: https://blog.armadayazilim.com/2015/07/31/ileri-imalat-yontemleri/
  • [4] Şahin K., Turan B.O., Üç Boyutlu Yazıcı Teknolojilerinin Karşılaştırmalı Analizi, Stratejik ve Sosyal Araştırmalar Dergisi Cilt 2, Sayı 2, 97-116, 2018
  • [5] Özmen E., Ertek C., Biomaterials Used in Additive Manufacturing Technologies And Biomedical Applications, Journal Of Science, Part C: Design And Technology, 10(4): 733-747, 2022
  • [6] Demir S., 3B yazıcı ile Poli laktik asit (PLA) esaslı numune üretiminde yazıcı parametrelerinin sertlik üzerindeki etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, doi: 10.5505/pajes.2023.49404, 2023
  • [7] Özer, G., 2020. “Eklemeli Üretim Teknolojileri Üzerine Bir Derleme”, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1): 606-621, ISSN: 2564-6605, doi: 10.28948/ngumuh.626011
  • [8] Akbaba A.İ., Akbulut E., 3 Boyutlu Yazıcılar ve Kullanım Alanları. ETÜ Sentez iktisadi ve idari bilimler dergisi, 3, 19-46, 2021.
  • [9] Islam M.A., Mobarak M.H., Rimon M.I.H., Mahmud M.Z.A., Ghosh J., Ahmed M.M.S., Hossain N., Additive manufacturing in polymer research: Advances, synthesis, and applications, Polymer Testing, Volume 132,108364, ISSN 0142-9418, https://doi.org/10.1016/j.polymertesting.2024.108364, 2024
  • [10] Yeşiloğlu, R., Eklemeli İmalat İle Üretilen Farklı Dolgu Geometrisi Ve Yoğunluğa Sahip Pla Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması, Yüksek Lisans Tezi, Karabük Üniversitesi, Makine Mühendisliği Ana Bilim Dalı, Nisan 2022 [11] Mobarak M.H., Islam M.A., Hossain N., Al Mahmud M.Z., Rayhan M.T., Nishi N.J., Chowdhury M.A., Recent advances of additive manufacturing in implant fabrication – a review, Applied Surface Science Advances, 18, 100462, (2023) https://doi.org/ 10.1016/j.apsadv.2023.100462.
  • [12] Tian X., Wu L., Gu D., Yuan S., Z Y., Li X., Ouyang L., Gao., Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1 100014, 2022.
  • [13] Auras, R, Castro-Aquirre, E., Fang, X., Iniguez-Franco, F. ve Samsudin, H. (2016) Poly(lactic acid) – Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews 107 (2016) 333-366.
  • [14] Bom T. T., Costa A., Encarnaçao T., Mateus A. ve Tavares R., Bioplastics: Innovation for Green Transition. Polymers 2023, 15,517. https://doi.org/10.3390/polym15030517, 2022
  • [15] Deri F., Hamad K., Kaseem M., Ko G. ve Yang H. W., Properties and medical applications of polylactic acid: A Review, eXPRESS Polymer Letters Vol.9, No.5 (2015) 435–455, 2014
  • [16] Figueras, A., Gonzales P., Gonzales-Rodriguez L., Lama L., Lopez-Alvarez M., Novoa B., Oliveira L. A., Perez- Davila, S. ve Serra, J., 3D-Printed PLA Medical Devices: Physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers, 14, 4117. https://doi.org/10.3390/polym14194117, 2022
  • [17] Hassan, N. E. ve Omer, S. S. (2024) Application of biodegradable plastic and their environmental impacts: A review. World Journal of Advanced Research and Reviews, 2024, 21 (01), 2139-2148
  • [18] Pawar R., Shisoida S., Tekale S. U. ve Totre,J. T., Biomedical Applications of Poly(Lactic Acid). Recent Patents on Regenerative Medicine, 2014, 4, 40-51, 2014
  • [19] Kaygusuz B. ve Özerinç S., 3 Boyutlu Yazıcı ile Üretilen PLA Bazlı Yapıların Mekanik Özelliklerinin İncelenmesi, Makine Tasarım ve İmalat Dergisi, Cilt 16, Sayı 1, Mayıs 2018
  • [20] Aydın M., Yıldırım F., Çantı E., Farklı yazdırma parametrelerinde PLA filamentin işlem performansının incelenmesi, International Journal of 3D Printing Technologies And Digital Industry 3:2, 102-115, 2019
  • [21] Özsoy K., Erçetin A., Çevik Z.A., Comparison of mechanical properties of PLA and ABS based structures produced by fused deposition modelling additive manufacturing, European Journal of Science and Technology, (27), 802-809, 2021.
  • [22] Karakoç B., Uzun G., Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi, Journal of Polytechnic, Erken görünüm, DOI: 10.2339/politeknik.1262855 2023
  • [23] Alkhatib F., Cabibihan, J.J., Mahdi, E., 2019. “Data for benchmarking low-cost, 3D printed prosthetic hands” Data in brief 25, 104163, https://doi.org/10.1016/j.dib.2019.104163
  • [24] Gonçalves, V.P.D., Vieira, C.M.F., Lopera, H.A.C., 2024. “The production and materials of mouthguards: Conventional vs additive manufacturing - A systematic review, Heliyon, Volume 10, Issue 14, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e34294.
  • [25] Park J. H., Jung H.K ve Lee J.R., Development and Evaluation of Fall Impact Protection Pads Using Additive Manufacturing, Materials 2019, 12, 3440; doi:10.3390/ma12203440, 2019
  • [26] Yahaya S.A., Ripin Z.M, Ridzwan M.I.Z., Assessment of the force attenuation capability of 3D printed hip protector in simulated sideways fall., Materials Research Express, 8, 015401, 2021
  • [27] Habib F.N., Development of High Performing 3D Printed Polymeric Cellular Structures for Wearable Impact Protection., Doktora Tezi, Engineering and Technology Swinburne University of Technology Melbourne, Department of Mechanical and Product Design Engineering, School of Engineering, Faculty of Science, Australia July 2020
  • [28] Narlıoğlu N., Effect of 3D printing speed on mechanical and thermal properties of wood-PLA composite filament, Furniture and Wooden Material Research Journal, 7 (1), 97-106. DOI: 10.33725/mamad.1486558, 2024
  • [29] Kaya E., Bayar İ., Akpınar A.F., Dolgu Desenlerinin ve Oranlarının Ergiyik Biriktirme Modellemede PLA Malzemesinin Mekanik Performansına Olan Etkisi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Erken Görünüm doi: 10.28948/ngmuh.1442158, 2024.
  • [30] Taşdelen M.A., Bingöl M., Yılmaz Y., Kahramaner H., Geri Dönüştürülmüş Termoplastiklerin Üç Boyutlu Yazıcılardaki Performansları”, 4th International Congress On 3d Printing (Additive Manufacturing) Technologies And Digital Industry, 11-14 Nisan 2019, Antalya Türkiye Kongrede bildiri, 2019
  • [31] Özsoy K. ve Kayacan M. C., Ergiyik biriktirme yöntemiyle hafifletilmiş kişiye özel kafatası implantın hızlı prototiplenmesi, Uluborlu Mesleki Bilimler Dergisi, 1(1): 1-11, 2018.
  • [32] Eryıldız M., Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation., European Mechanical Science, 5 (3) pp. 116-120, 2021
  • [33] Tunçel O, Kahya Ç, Tüfekci K., Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method., Polymers (Basel). Jul 15;16(14):2020. doi: 10.3390/polym16142020. PMID: 39065337; PMCID: PMC11281088. 2024
  • [34] Lakshman Sri S.V., Karthick A., Dinesh C., Evalution of Mechanical Properties of 3D Printed PETG and Polyamide (6) Polymers., Chemical Physics Impact, 8, 100491, 2024
  • [35] Plămădială I., Croitoru C., Pop M.A., Mechanical Properties of PETG-Based Materials Destined For 3D-Printing., Technical University of Cluj-Napoca Acta Technica Napocensis Series: Applied Mathematics, Mechanics, and Engineering Vol. 66, Issue Special II, October, 2023
  • [36] URL 2: https://bigrep.com/filaments/petg/
There are 36 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Pınar Köymen Çağar 0000-0001-7337-7931

Publication Date December 31, 2024
Submission Date October 1, 2024
Acceptance Date November 22, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Köymen Çağar, P. (2024). Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method. Journal of Advances in Manufacturing Engineering, 5(2), 61-73.
AMA Köymen Çağar P. Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method. J Adv Manuf Eng. December 2024;5(2):61-73.
Chicago Köymen Çağar, Pınar. “Effects of Material, Infill Pattern and Infill Density on the Tensile Strength of Products Produced by Fused Filament Fabrication Method”. Journal of Advances in Manufacturing Engineering 5, no. 2 (December 2024): 61-73.
EndNote Köymen Çağar P (December 1, 2024) Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method. Journal of Advances in Manufacturing Engineering 5 2 61–73.
IEEE P. Köymen Çağar, “Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method”, J Adv Manuf Eng, vol. 5, no. 2, pp. 61–73, 2024.
ISNAD Köymen Çağar, Pınar. “Effects of Material, Infill Pattern and Infill Density on the Tensile Strength of Products Produced by Fused Filament Fabrication Method”. Journal of Advances in Manufacturing Engineering 5/2 (December 2024), 61-73.
JAMA Köymen Çağar P. Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method. J Adv Manuf Eng. 2024;5:61–73.
MLA Köymen Çağar, Pınar. “Effects of Material, Infill Pattern and Infill Density on the Tensile Strength of Products Produced by Fused Filament Fabrication Method”. Journal of Advances in Manufacturing Engineering, vol. 5, no. 2, 2024, pp. 61-73.
Vancouver Köymen Çağar P. Effects of material, infill pattern and infill density on the tensile strength of products produced by fused filament fabrication method. J Adv Manuf Eng. 2024;5(2):61-73.