Review
BibTex RIS Cite

Importance of Nano-Sized Feed Additives in Animal Nutrition

Year 2024, , 55 - 72, 31.03.2024
https://doi.org/10.56430/japro.1433614

Abstract

"Nano", which derives from the Latin word nanus and means dwarf, refers to a very small unit of measurement equal to one billionth of a meter. Nanotechnology, which deals with the manipulation of matter at the atomic and molecular level, has an application area in animal husbandry as well as in many fields. Nano-sized feed additives, which have come to the forefront in the livestock sector in recent years, have become an innovative application used to increase the nutritional value of feeds and optimize animal health and performance. Since these additives are nano-sized particles with increased specific surface area, they can have a positive effect on a number of factors such as digestibility, nutrient absorption, immune system, growth and development. Minerals in the form of nanoparticles used as feed additives can increase bioavailability by passing through the intestinal wall to body cells faster compared to larger particles. The nano level of the substance not only increases the productivity of animals, but also brings the potential to improve the functionality of feed molecules. Nano feed additives increase the digestion and absorption of feed, allowing animals to benefit from feed more effectively. However, there are several challenges associated with this approach. These include the potential for endotoxin production, reduced nutrient absorption due to interaction with natural nutrients, the possibility of nanoparticle accumulation in the animal body, health risks, ethical considerations, environmental concerns and some negative effects such as interference with natural nutrients that can be avoided by encapsulation. This article discusses recent studies on nano-sized feed additives that offer potential benefits in animal nutrition.

References

  • Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. N., Alghamdi, E. S., Hassan, F. U., Bilal, R. M., Elnesr, S. S., Dawood M. A. O., Nagadi S. A., Elwan H. A. M., ALmasoudi, A. G., & Attia, Y. A. (2021). Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916. https://doi.org/10.3390/ani11071916
  • Abdel-Rahman, H. G., Alian, H. A., & Mahmoud, M. (2022). Impacts of dietary supplementation with nano-iron and methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed broiler chickens. Tropical Animal Health and Production, 54, 126. https://doi.org/10.1007/s11250-022-03130-w
  • Abedini, M., Shariatmadari, F., Torshizi, M. A. K., & Ahmedi, H. (2018). Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition, 102(3), 736-745. https://doi.org/10.1111/jpn.12871
  • Adegbeye, M. J., Elghandour, M. M. M. Y., Barbabosa-Pliego, A., Monroy, J. C., Mellado, M., Reddy, P. R. K., & Salem, A. Z. M. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78, 29-37. https://doi.org/10.1016/j.jevs.2019.04.001
  • Ahmadi, F., & Rahimi, F. (2011). The effect of different levels of nano silver on performance and retention of silver in edible tissues of broilers. World Applied Sciences Journal, 12, 1-4.
  • Ahmadi, M., Poorghasemi, M., Seidavi, A., Hatzigiannakis, E., & Milis, Ch. (2020). An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. Journal of Elementology, 25(3), 1187-1198. https://doi.org/10.5601/jelem.2020.25.2.1954
  • Akhavan-Salamat, H., & Ghasemi, H. A. (2019). Effect of different sources and contents of zinc on growth performance, carcass characteristics, humoral immunity and antioxidant status of broiler chickens exposed to high environmental temperatures. Livestock Science, 223, 76-83. https://doi.org/10.1016/j.livsci.2019.03.008
  • Al-Beitawi, N. A., Momani Shaker, M., El-Shuraydeh, K. N., & Bláha, J. (2017). Effect of nanoclay minerals on growth performance, internal organs and blood biochemistry of broiler chickens compared to vaccines and antibiotics. Journal of Applied Animal Research, 45(1), 543-549. https://doi.org/10.1080/09712119.2016.1221827
  • Albuquerque, J., Casal, S., Páscoa, R. N. M. dJ. Dorpe, I. V., Fonseca, A. J. M., Cabrita, A. R. J., Neves, A. R., Reis, S. (2020). Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Scientific Reports, 10, 6830. https://doi.org/10.1038/s41598-020-63793-z
  • Alhashmi Alamer, F., & Beyari, R. F. (2022). Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials, 12(9), 1609. https://doi.org/10.3390/nano12091609
  • Alruwaili, M. A., Jararr, B., Jarrar, Q., Al-doaiss, A. A., Alshehri, M. A., & Melhem, W. (2022). Renal ultrastructural damage induced by chronic exposure to copper oxide nanomaterials: Electron microscopy study. Sage Journals, 38(2). https://doi.org/10.1177/07482337211062674
  • Azlan, Z. H. Z., Junaini, S. N., Bolhassan, N. A., Wahi, R., & Arip, M. A. (2024). Harvesting a sustainable future: An overview of smart agriculture's role in social, economic, and environmental sustainability. Journal of Cleaner Production, 434, 140338. https://doi.org/10.1016/j.jclepro.2023.140338
  • Bai, S. C., Hamidoğlu, A., & Bae, J. (2022). 7 - Feed additives: An overview. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture (second edition) (pp. 195-229). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00015-1
  • Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology, 12, 109.
  • Bhanja, S., Hotowy, A., Mehra, M., Sawosz, E., Pineda, L., Vadalasetty, K., Kurantowicz, N., & Chwalibog, A. (2015). In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences, 16(5), 9484-9503. https://doi.org/10.3390/ijms16059484
  • Bölükbaşı, Ş. C., Dumlu, B., & Yağanoğlu, A. M. (2023). Improved biological value of eggs due to the addition of pomegranate seed oil to laying-hen diets. Archives Animal Breeding, 66(1), 121-129. https://doi.org/10.5194/aab-66-121-2023
  • Boxall, A. B. A., Tiede, K., & Chaudhry, Q. (2007). Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health? Nanomedicine, 2(6), 919. https://doi.org/10.2217/17435889.2.6.919
  • Budak, D. (2018). Nanotechnology in animal nutrition. Nanotechnology in Animal Nutrition, 3(3), 90-97.
  • Bunglavan, S. J., Garg, A. K., Dass, R. S. & Shrivastava, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2(3), 36-47.
  • Chairuangkitti, P., Lawanprasert, S., Roytrakul, S., Aueviriyavit, S., Phummiratch, D., Kulthong, K., Chanvorachote, P., & Maniratanachote, R. (2013). Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology in Vitro, 27, 330-338. https://doi.org/10.1016/j.tiv.2012.08.021
  • Dei, H. K. (2021). Advances in poultry nutrition research-a review. In A. K. Patra (Ed.), Advances in poultry nutrition research. IntechOpen. https://doi.org/10.5772/intechopen.95990
  • Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418. https://doi.org/10.3389/fvets.2022.920418
  • Dubey, M., Singh, V., Pandey, R. K., & Chaubey, A. K. (2017). Effect of feed additives on nutrient intake and feed efficiency of lactating crossbred cows. International Journal of Current Microbiology and Applied Sciences, 6(2), 752-758. https://doi.org/10.20546/ijcmas.2017.602.083
  • Dumlu, B., & Bölükbaşı, Ş. C. (2023). Effect of solid state fermentation with whey on nutrient composition of pomegranate peel supplemented sunflower meal: Effect of fermentation on nutritional value of sunflower meal. Journal of the Hellenic Veterinary Medical Society, 74(3), 6163-6170. https://doi.org/10.12681/jhvms.31023
  • Dupuis, V., Cerbu, C., Witkowski, L., Potarniche, A. V., Timar, M. C., Żychska, M., & Sabliov, C. M. (2022). Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Delivery, 29(1), 1007-1024. https://doi.org/10.1080/10717544.2022.2056663
  • El Basuini, M. F., El-Hais, A. M., Dawood, M. A. O., Abou-Zeid, A. E. S., EL-Damrawy, S. Z., Khalafalla, M. M. E. S., Koshio, S., Ishikawa, M., & Dossou, S. (2016). Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture, 455, 32-40. https://doi.org/10.1016/j.aquaculture.2016.01.007
  • El Basuini, M. F., El-Hais, A. M., Dawood, M. A. O., Abou-Zeid, A. E. S., EL-Damrawy, S. Z., Khalafalla, M. M. E. S., Koshio, S., Ishikawa, M., & Dossou, S. (2017). Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquaculture Nutrition, 23(6), 1329-1340. https://doi.org/10.1111/anu.12508
  • El-Nile, A. E., Elazab, M. A., Soltan, Y. A., Elkomy, A. E., El-Zaiat, H. M., Sallam, S. M. A., & El-Azrak, K. E. (2023). Nano and natural zeolite feed supplements for dairy goats: Feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Animal Feed Science and Technology, 295, 115522. https://doi.org/10.1016/j.anifeedsci.2022.115522
  • El-Sayed, A., & Kamel, M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Research, 27, 19073-19086. https://doi.org/10.1007/s11356-018-3913-y
  • Evcim, H. Ü., Değirmencioğlu, A., Ertuğrul, G. Ö., & Aygün, İ. (2012). Advancements and transitions in technologies for sustainable agricultural production. Economic and Environmental Studies, 12(4), 459-466.
  • Fawaz, M. A., Abdel-Wareth, A. A. A., Hassan, H. A., & Südekum, K. H. (2019). Applications of nanoparticles of zinc oxide on productive performance of laying hens. International Journal of Agriculture and Biology, 1(1), 34-45. https://doi.org/10.21608/SVUIJAS.2019.67083
  • Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375. https://doi.org/10.3390/ijms21072375
  • Fesseha, H., Degu, T., & Getachew, Y. (2020). Nanotechnology and its application in animal production: A review. Veterinary Medicine, 5(2), 43-50. https://doi.org/10.17140/VMOJ-5-148
  • Feynman, R. P. (1959). Plenty of room at the bottom. Journal of Microelectromechanical Systems, 1(1), 60-66. https://doi.org/10.1109/84.128057
  • Fondevila, M., Herrer, R., Casallas, M. C., Abecia, L., & Ducha, J. J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology, 150(3-4), 259-269. https://doi.org/10.1016/j.anifeedsci.2008.09.003
  • Gao, C., Zhu, L., Zhu, F., Sun, J., & Zhu, Z. (2014). Effects of different sources of copper on Ctr1, ATP7A, ATP7B, MT and DMT1 protein and gene expression in Caco-2 cells. Journal of Trace Elements in Medicine and Biology, 28(3), 344-350. https://doi.org/10.1016/j.jtemb.2014.04.004
  • Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood, Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomedical Research International, 2014, 1-8. https://doi.org/10.1155/2014/498420
  • Gelaye, Y. (2024). Application of nanotechnology in animal nutrition: Bibliographic review. Animal Husbandry & Veterinary Science, 10(1), 2290308. https://doi.org/10.1080/23311932.2023.2290308
  • Gilbert, N. (2012). Rules tighten on use of antibiotics on farms. Nature, 481, 125. https://doi.org/10.1038/481125a
  • Gopi, M., Pearlin, B., Kumar, R. D., Shanmathy, M., & Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • Gu, L., Zhang, F., Wu, J., & Zhuge, Y. (2022). Nanotechnology in drug delivery for liver fibrosis. Frontiers in Molecular Biosciences, 8, 804396. https://doi.org/10.3389/fmolb.2021.804396
  • Hassan, A. A., Sayed El-Ahl, R. M. H., Oraby, N. H., El-Hamaky, A. M. A., & Mansour, M. K. (2021). Zinc nanomaterials: Toxicological effects and veterinary applications. In K. A. Abd-Elsalam (Ed.), Zinc-based nanostructures for environmental and agricultural applications (pp. 509-541). Elsevier. https://doi.org/10.1016/b978-0-12-822836-4.00019-7
  • Hassan, H. M. A., Samy, A., El-Sherbiny, A. E., Mohamed, M. A., & Abd-Elsamee, M. O. (2016). Application of nano-dicalcium phosphate in broiler nutrition: Performance and excreted calcium and phosphorus. Asian Journal of Animal and Veterinary Advances, 11(8), 477-483. https://doi.org/10.3923/ajava.2016.477.483
  • Hatab, M. H., Rashad, E., Saleh, H. M., El-Sayed E. R., & Abu Taleb, A. M. (2022). Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Scientific Reports, 12, 18791. https://doi.org/10.1038/s41598-022-22836-3
  • Hedberg, J., Karlsson, H. L., Hedberg, Y., Blomberg, E., & Wallinder, I. O. (2016). The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids and Surfaces B: Biointerfaces, 141, 291-300. https://doi.org/10.1016/j.colsurfb.2016.01.052
  • Hemathilake, D., & Gunathilake, D. (2022). Agricultural productivity and food supply to meet increased demands, future foods. In R. Bhat (Ed.), Future foods (pp. 539-553). Elsevier. https://doi.org/10.1016/B978-0-323-91001-9.00016-5
  • Hill, E. H., Hanske, C., Johnson, A., Yate, L., Jelitto, H., Schneider, G. A., & Liz-Marzán, L. M. (2017). Metal nanoparticle growth within clay–polymer nacre-inspired materials for improved catalysis and plasmonic detection in complex biofluids. Langmuir, 33(35), 8774-8783. https://doi.org/10.1021/acs.langmuir.7b00754
  • Hu, C. H., Li, Y. L., Xiong, L., Zhang, H. M., Song, J., & Xia, M. S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology, 177(3-4), 204-210. https://doi.org/10.1016/j.anifeedsci.2012.08.010
  • Hua, J., Vijver, M. G., Ahmad, F., Richardson, M. K., & Peijnenburg, W. J. (2014). Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environmental Toxicology and Chemistry, 33(8), 1774-1782. https://doi.org/10.1002/etc.2615
  • Hussain, S. M., Naeem, E., Ali, S., Adrees, M., Riaz, D., Paray, B. A., & Naeem, A. (2023). Evaluation of growth, nutrient absorption, body composition and blood indices under dietary exposure of iron oxide N-anoparticles in Common carp (Cyprinus carpio). Journal of Animal Physiology and Animal Nutrition, 108(2), 366-373. https://doi.org/10.1111/jpn.13898
  • Hussan, F., Krishna, D., Preetam, V. C., Reddy, P. B., & Gurram, S. (2022). Dietary supplementation of nano zinc oxide on performance, carcass, serum and meat quality parameters of commercial broilers. Biological Trace Element Research, 200, 348-353. https://doi.org/10.1007/s12011-021-02635-z
  • Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223-245. https://doi.org/10.1080/17518253.2020.1802517
  • Islam, M. R., Martinez-Soto, C. E., Lin, J. T., Khursigara, C. M., Barbut, S., & Anany, H. (2023). A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Critical Reviews in Food Science and Nutrition, 63(18), 3097-3129. https://doi.org/10.1080/10408398.2021.1984200
  • Jafari, S. M., & McClements, D. J. (2017). Chapter one - Nanotechnology approaches for increasing nutrient bioavailability. Advances in Food and Nutrition Research, 81, 1-30. https://doi.org/10.1016/bs.afnr.2016.12.008
  • Jamuna, B. A., & Ravishankar, R. V. (2014). Environmental risk, human health, and toxic effects of nanoparticles. In B. I. Kharisov, O. V. Kharissova & H. V. Rasika Dias (Eds.), Nanomaterials for environmental protection (pp. 523-535). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118845530.ch31
  • Jankowski, J., Ognik, K., Stepniowska, A., Zdunczyk, Z., & Kozoowski, K. (2018). The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS One, 13, e0201487. https://doi.org/10.1371/journal.pone.0201487
  • Jararweh, Y., Fatima, S., Jarrah, M., & AlZu'bi, S. (2023). Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions. Computers and Electrical Engineering, 110, 108799. https://doi.org/10.1016/j.compeleceng.2023.108799
  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074. https://doi.org/10.3762/bjnano.9.98
  • Jia, J., Ahmed, I., Liu, L., Liu, Y., Xu, Z., Duan, X., Li, Q., Dou, T., Gu, D., Rong, H., Wang, K., Li, Z., Talpur, M. Z., Huang, Y., Wang, S., Yan, S., Tong, H., Zhao, S., Zhao, G., te Pas, M. F. W., Su, Z., & Ge, C. (2018). Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS One, 13(4), e0195378. https://doi.org/10.1371/journal.pone.0195378
  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20, 262. https://doi.org/10.1186/s12951-022-01477-8
  • Jozwik, A., Marchewka, J., Strzałkowska, N., Horbanczuk, J. O., Strabel, M. S., Cieslak, A., Palka, P. L., Jopzefiak, D., Kaminska, A., & Atanasov, A. G. (2018) The effect of different levels of Cu, Zn and Mn nanoparticles in hen Turkey diet on the activity of aminopeptidases. Molecules, 23(5), 1150. https://doi.org/10.3390/molecules23051150
  • Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Dovepress, 11, 2871-2890. https://doi.org/10.2147/DDDT.S142337
  • Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14, 532-540. https://doi.org/10.1038/s41565-019-0439-5
  • Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles. In S. M. Rangappa, J. Parameswaranpillai & M. O. Seydibeyoglu (Eds.), Nanoparticle-based polymer composites (pp. 15-54). Elsevier. https://doi.org/10.1016/B978-0-12-824272-8.00009-9
  • Khan, S., Mansoor, S., Rafi, Z., Kumari, B., Shoaib, A., Saeed, M., Alshehri, S., Ghoneim, M. M., Rahamathulla, M., Hani, U., & Shakeel, F. (2022). A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 348, 118008. https://doi.org/10.1016/j.molliq.2021.118008
  • Khizar, S., Ahmad, N. M., Zine, N., Jaffrezic-Renault, N., Errachid-el-salhi, A., & Elaissari, A. (2021). Magnetic nanoparticles: From synthesis to theranostic applications. ACS Applied Nano Materials, 4(5), 4284-4306. https://doi.org/10.1021/acsanm.1c00852
  • Kumar, D., Mutreja, I., Chitcholtan, K., & Sykes, P. (2017). Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells. Nanotechnology, 28, 475101. https://doi.org/10.1088/1361-6528/aa935e
  • Kumari, A., & Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59, 3319-3335. https://doi.org/10.1007/s13197-021-05184-4
  • Latino, L. R., Pica-Ciamarra, U., & Wisser, D. (2020). Africa: The livestock revolution urbanizes. Global Food Security, 26, 100399, https://doi.org/10.1016/j.gfs.2020.100399
  • Lee, J., Hosseindoust, A., Kim, M., Kim, K., Choi, Y., Lee, S., Lee, S., Cho, H., Kang, W. S., & Chae, B. (2020). Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biological Trace Element Research, 194, 536-544. https://doi.org/10.1007/s12011-019-01801-8
  • Li, Y., & Lee, J.-S. (2020). Insights into characterization methods and biomedical applications of nanoparticle-protein corona. Materials, 13(14), 3093. https://doi.org/10.3390/ma13143093
  • Li, Y., & Wang, W. (2021). Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere, 281, 2021, 130762. https://doi.org/10.1016/j.chemosphere.2021.130762
  • Liu, W., Worms, I. A., Jakšić, Ž., & Slaveykova, V. I. (2022). Aquatic organisms modulate the bioreactivity of engineered nanoparticles: Focus on biomolecular corona. Frontiers in Toxicology, 4, 933186. https://doi.org/10.3389/ftox.2022.933186
  • Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine: Nanotechnology, Biology and Medicine, 14(1), 1-12. https://doi.org/10.1016/j.nano.2017.08.011
  • Mantovani, A., Aquilina, G., Cubadda, F., & Marcon, F. (2022). Risk-benefit assessment of feed additives in the one health perspective. Frontiers in Nutrition, 10(9), 843124. https://doi.org/10.3389/fnut.2022.843124
  • Manzoor, Q., Sajid, A., Ali, Z., Nazir, A., Sajid, A., Imtiaz, F., Iqbal, S., Younas, U., Arif, H., & Iqbal, M. (2024). Toxicity spectrum and detrimental effects of titanium dioxide nanoparticles as an emerging pollutant: A review. Desalination and Water Treatment, 317, 100025. https://doi.org/10.1016/j.dwt.2024.100025
  • Marappan, G., Beulah, P., Kumar, R. D., Muthuvel, S., & Govindasamy, P. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • McClements, D. J., Xiao, H. & Demokritou, P. (2017). Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 246, 165-180. https://doi.org/10.1016/j.cis.2017.05.010
  • Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., Emran, T. B., & Dhama, K. (2022). The effect of metal-containing Nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly, 42(1), 68-94. https://doi.org/10.1080/01652176.2022.2073399
  • Milani, N. C., Sbardella, M., Ikeda, N. Y., Arno, A., Mascarenhas, B. C., & Miyada, V. S. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Animal Feed Science and Technology, 227, 13-23. https://doi.org/10.1016/j.anifeedsci.2017.03.001
  • Miller, G., & Senjen, R. (2008). Out of the laboratory and on to our plates: Nanotechnology in food & agriculture. Friends of the Earth.
  • Minglei, S., Zheng, L., Xiaoye, G., & Xiu’an, Z. (2013). Copper silicate nanoparticles: Effects of intestinal microflora, nitrogen metabolism and ammonia emission from excreta of yellow-feathered broilers. Chinese Journal of Animal Nutrition, 25(8), 1843-1850. https://doi.org/10.3969/j.issn.1006-267x.2013.08.022
  • Miroshnikov, S., Yausheva, E., Sizova, E., & Miroshnikova, E. (2015). Comparative assessment of effect of copper nano- and microparticles in chicken. Oriental Journal of Chemistry, 31, 2327-2336. https://doi.org/10.13005/ojc/310461
  • Mishra, A., Swain, R. K., Mishra, S. K., Panda, N., & Sethy, K. (2014). Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian Journal of Animal Nutrition, 31(4), 384-388.
  • Mohamed, M. A., Hassan, H. M. A., Samy, A., Abd-Elsamee, M. O., & El-Sherbiny, A. E. (2016). Carcass characteristics and bone measurements of broilers fed nano dicalcium phosphate containing diets. Asian Journal of Animal and Veterinary Advances, 11(8), 484-490. https://doi.org/10.3923/ajava.2016.484.490
  • Mortensen, N. P., Pathmasiri, W., Snyder, R. W., Caffaro, M. M., Watson, S. L., Patel, P. R., Beeravalli, L., Prattipati, S., Aravamudhan, S., & Sumner, S. J. (2022). Oral administration of TiO2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Particle and Fibre Toxicology, 19(1), 1-18. https://doi.org/10.1186/s12989-021-00444-9
  • Mroczek-Sosnowska, N., Łukasiewicz, M., Adamek, D., Kamaszewski, M., Niemiec, J., Wnuk-Gnich, A., Scott, A., Chwalibog, A., & Sawosz, E. (2017). Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Archives of Animal Nutrition, 71(4), 327-332. https://doi.org/10.1080/1745039X.2017.1331619
  • Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., Jaworski, S., & Chwalibog, A. (2015b). In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance: Effect of Cu on chicken performance. Journal of the Science of Food and Agriculture, 96(9), 3058-3062. https://doi.org/10.1002/jsfa.7477
  • Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K., Łukasiewicz, M., Niemiec, J., Wierzbicki, M., Kutwin, M., Jaworski, S., & Chwalibog, A. (2015a). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences, 16(3), 4838-4849. https://doi.org/10.3390/ijms16034838
  • Mulvaney, P. (2015). Nanoscience vs nanotechnology - defining the field. ACS Nano, 9(3), 2215-3396. https://doi.org/10.1021/acsnano.5b01418
  • Muralisankar, T., Bhavan, P. S., Radhakrishnan, S., Seenivasan, C., & Srinivasan, V. (2016). The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. Journal of Trace Elements in Medicine and Biology, 34, 39-49. https://doi.org/10.1016/j.jtemb.2015.12.003
  • Nabi, F., Arain, M. A., Hassan, F., Umar, M., Rajput, N., Alagawany, M., Syed, S. F., Soomro, J., Somroo, F., & Liu, J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. World's Poultry Science Journal, 76(3), 459-471. https://doi.org/10.1080/00439339.2020.1789535
  • Nguyen, Q. K., Nguyen, D. D., Nguyen, V. K., Nguyen, K. T., Nguyen, H, C., Tran, X. T., Nguyen, H, C., & Phung, D. T. (2015). Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(3), 35017. https://doi.org/10.1088/2043-6262/6/3/035017
  • Özdemir, V. F., Yanar, M., & Koçyiğit, R. (2022). General properties of propolis and its usage in ruminants. Journal of the Hellenic Veterinary Medical Society, 73(2), 3905-3912. https://doi.org/10.12681/jhvms.26334
  • Pandey, A. K., Kumar, P., & Saxena, M. J. (2019). Feed additives in animal health. In R. C. Gupta, A. Srivastava & R. Lall (Eds.), Nutraceuticals in veterinary medicine (pp. 345-362). Springer. https://doi.org/10.1007/978-3-030-04624-8_23
  • Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6), 1547. https://doi.org/10.3390/molecules26061547
  • Patra, A. K., Amasheh, S., & Aschenbach, J. R. (2019) Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds - A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(20), 3237-3266. https://doi.org/10.1080/10408398.2018.1486284
  • Peters, R. J. B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H. J. P., Makine, A., Moniz, F. B., Pesudo, L. Q., Rauscher, H., Schoonjans, R., Undas A. K., Vettori M. V., Weigel, S., & Aschberger, K. (2016). Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology, 54, 155-164. https://doi.org/10.1016/j.tifs.2016.06.008
  • Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., & Elnif, J. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66(5), 416-429. https://doi.org/10.1080/1745039X.2012.710081
  • Pirgozliev, V., Rose, S. P., & Ivanova, S. (2019). Feed additives in poultry nutrition. Bulgarian Journal of Agricultural Science, 25(Suppl 1), 8-11.
  • Placha, I., Gai, F., & Simonová, M. P. (2022a). Editorial: Natural feed additives in animal nutrition-Their potential as functional feed. Frontiers in Veterinary Science, 9, 1062724. https://doi.org/10.3389/fvets.2022.1062724
  • Placha, I., Simonová, M. P., & Lauková A. (2022b). Natural feed additives and novel approaches for healthy rabbit breeding. Animals, 12(16), 2111. https://doi.org/10.3390/ani12162111
  • Poddar, K., & Kishore, A. V. (2022). Chapter seven - nanotechnology in animal production. In S. Mondal & R. Lakhan (Eds.), Biological tools and techniques (pp. 149-170). Elsevier. https://doi.org/10.1016/B978-0-12-822265-2.00009-0
  • Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P., & Lohita, D. (2022). Green synthesis of bismuth based nanoparticles and its applications-A review. Sustainable Chemistry and Pharmacy, 25, 100547. https://doi.org/10.1016/j.scp.2021.100547
  • Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S. N., Sayed, S. R. M., & Gan, J. (2023). Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. Journal of Environmental Management, 347, 119147. https://doi.org/10.1016/j.jenvman.2023.119147
  • Radi, A. M., Azeem, N. A., & El-Nahass, E. (2021). Comparative effects of zinc oxide and zinc oxide nanoparticle as feed additives on growth, feed choice test, tissue residues, and histopathological changes in broiler chickens. Environmental Science and Pollution Research, 28, 5158-5167. https://doi.org/10.1007/s11356-020-09888-6
  • Rajendran, D., Ezhuthupurakkal, P. B., Lakshman, R., Gowda, N. K. S., Manimaran, A., & Rao, S. B. N. (2022). Application of encapsulated nano materials as feed additive in livestock and poultry: A review. Veterinary Research Communications, 46, 315-328. https://doi.org/10.1007/s11259-022-09895-7
  • Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A. A., Ahmed, S. Y. A., Madkour, M., & Alagawany, M. (2021). Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324-335. https://doi.org/10.1080/1828051X.2021.1886001
  • Reddy, P. R. K., Yasaswini, D., Reddy, P. P. R., Zeineldin, M., Adegbeye, M. J., & Hyder, I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Veterinary World, 13(8), 1685-1696. https://doi.org/10.14202/vetworld.2020.1685-1696
  • Riley, P. R., & Narayan, R. J. (2021). Recent advances in carbon nanomaterials for biomedical applications: A review. Current Opinion in Biomedical Engineering, 17, 100262. https://doi.org/10.1016/j.cobme.2021.100262
  • Sadiq, R., Khan, Q. M., Mobeen, A., & Hashmat, A. J. (2015). In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug and Chemical Toxicology, 38(2), 152-161. https://doi.org/10.3109/01480545.2014.919584
  • Sagar, P. D., Mandal, A. B., Akbar, N., & Dinani, O. P. (2018). Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. International Journal of Current Microbiology and Applied Sciences, 7(5), 459-471. https://doi.org/10.20546/ijcmas.2018.705.058
  • Sawosz, E., Binek, M., Grodzik, M., Zielińska-Górska, M. K., Sysa, P., Szmidt, M., Niemiec, T., & Chwalibog, A. (2008). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition, 61(6), 444-451. https://doi.org/10.1080/17450390701664314
  • Sawosz, E., Pineda, L., Hotowy, A., Hyttel, P., Sawosz, E., Szmidt, M., Niemiec, T., & Chwalibog, A. (2012). Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Comparative Biochemistry and Physiology, Part A, 161(3), 315-319. https://doi.org/10.7136/bjccsb.2012.2.0029
  • Schmidt, C. W. (2009). Nanotechnology-related environment, health, and safety research: Examining the national strategy. Environmental Health Perspectives, 117(4), A158-A161. https://doi.org/10.1289/ehp.117-a158
  • Seaton, A., Tran, L., Aitken, R., & Donaldson, K. (2010). Nanoparticles, human health hazard and regulation. Journal of the Royal Society Interface, 7, S119-S129. https://doi.org/10.1098/rsif.2009.0252.focus
  • Sertova, N. M. (2020). Contribution of nanotechnology in animal and human health care. Advanced Materials Letters, 11(9), 1-7. https://doi.org/10.5185/amlett.2020.091552
  • Seven, P. T., Seven, İ., Baykalir, B. G., Mutlu, S. İ., & Salem, A. Z. M. (2018). Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science, 17(4), 921-930. https://doi.org/10.1080/1828051X.2018.1448726
  • Shabani, R., Fakhraei, J., Yarahmadi, H. M., & Seidavi, A. (2019). Effect of different sources of selenium on performance and characteristics of immune system of broiler chickens. Revista Brasileira de Zootecnia, 48, e20180256. https://doi.org/10.1590/rbz4820180256
  • Shah, M. A., Mir, S., & Mir, M. B. (2016). Nanoencapsulation of food ingredients. In B. K. Nayak, A. Nanda & M. A. Bhat (Eds.), Integrating biologically- inspired nanotechnology into medical practice (pp.132-152). IGI Global. https://doi.org/10.4018/978-1-5225-0610-2.ch006
  • Sharif, M., Rahman, M. A., Ahmed, B., Abbas, R. Z., & Hassan, F. (2021). Copper nanoparticles as growth promoter, antioxidant and anti-bacterial agents in poultry nutrition: Prospects and future implications. Biological Trace Element Research, 199, 3825-3836. https://doi.org/10.1007/s12011-020-02485-1
  • Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., & Shi, L. (2011). Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology, 163(2-4), 136-142. https://doi.org/10.1016/j.anifeedsci.2010.10.016
  • Siemer, S., Hahlbrock, A., Vallet, C., McClements, D. J., Balszuweit, J., Voskuhl, J., Docter, D., Wessler, S., Knauner, S. K., & Westmeier, D. (2018). Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: A simulated gastrointestinal study. Npj Science of Food, 2, 22. https://doi.org/10.1038/s41538-018-0030-8
  • Singh, P. K. (2016). Use of nano feed additives in livestock feeding. International Journal of Livestock Research, 6(1), 1-14. https://doi.org/10.5455/ijlr.20150816121040
  • Sirirat, N., Lu, J., Hung, A. T., Chen, S., & Lien, T. (2012). Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. Journal of Agricultural Science, 4(12), 48-58. https://doi.org/10.5539/jas.v4n12p48
  • Song, L., Connolly, M., Fernández-Cruz, M. L., Vijver, M. G., Fernández, M., Conde, E., de Snoo, G. R., Peijnenburg, W. J., & Navas, J. M. (2014). Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 8(4), 383-393. https://doi.org/10.3109/17435390.2013.790997
  • Song, W., Zhao, B., Wang, C., Ozaki, Y., & Lu, X. (2019). Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 7(6), 850-875. https://doi.org/10.1039/C8TB02878H
  • Surendhiran, D., Cui, H., & Lin, L. (2020). Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In C. M. Hussain (Ed.), The ELSI handbook of nanotechnology: Risk, safety, ELSI and commercialization (pp. 165-204). Wiley Online Library. https://doi.org/10.1002/9781119592990.ch9
  • Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. https://doi.org/10.1016/j.aninu.2016.06.003
  • Talarska, P., Błaszkiewicz, P., Kostrzewa, A., Wirstlein, P., Cegłowski, M., Nowaczyk, G., Dudkowiak, A., Grabarek, B. O., Głowacka-Stalmach, P., Szarpak, A., & Zurawski, J. (2024). Effects of spherical and rod-like gold nanoparticles on the reactivity of human peripheral blood leukocytes. Antioxidants, 13(2), 157. https://doi.org/10.3390/antiox13020157
  • Tasho, R. P., & Cho, J. Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Science of The Total Environment, 563-564, 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140
  • Thapa, S., Singh, K. R., Verma, R., Singh, J., & Singh, R. P. (2022). State-of-the-art smart and intelligent nanobiosensors for SARS-CoV-2 diagnosis. Biosensors, 12(8), 637. https://doi.org/10.3390/bios12080637
  • Tolve, R., Tchuenbou-Magaia, F., Cairano, M. D., Caruso, M. C., Scarpa, T., & Galgano, F. (2021). Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Animal Feed Science and Technology, 279, 115036. https://doi.org/10.1016/j.anifeedsci.2021.115036
  • Tomaszewska, E., Muszyński, S., Ognik K, Dobrowolski, P., Kwiecień, M., Juśkiewicz, J., Chocyk, D., Świetlicki, M., Blicharski, T., & Gładyszewska, B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. Journal of Trace Elements in Medicine and Biology, 42, 103-110. https://doi.org/10.1016/j.jtemb.2017.05.002
  • Tona, G. O. (2017). Current and future improvements in livestock nutrition and feed resources. In B. Yücel & T. Taşkin (Eds.), Animal husbandry and nutrition (pp. 147-169). IntechOpen. https://doi.org/10.5772/intechopen.73088
  • Tüylek, Z. (2021). Nanotıp ve yeni tedavi yöntemleri. Eurasian Journal of Health Sciences, 4(2), 121-131. (In Turkish)
  • Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  • Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D'Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51-67. https://doi.org/10.1111/agec.12089
  • Wang, B., Wang, H., Li, Y., & Song, L. (2022b). Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids in Health and Disease, 21, 5. https://doi.org/10.1186/s12944-021-01615-5
  • Wang, D., & White, J. C. (2022). Benefit of nano-enabled agrochemicals. Nature Food, 3, 983-984. https://doi.org/10.1038/s43016-022-00665-x
  • Wang, K., Lu, X., Lu, Y., Wang, J., Lu, Q., Cao, X., Yang, Y., & Yang, Z. (2022a). Nanomaterials in animal husbandry: Research and prospects. Frontiers in Genetics, 13, 915911 https://doi.org/10.3389/fgene.2022.915911
  • Wang, L., Mello, D. F., Zucker, R. M., Rivera, N. A., Rogers, N. M., Geitner, N. K., Boyes, W. K., Wiesner, M. R., Hsu-Kim, H., & Meyer, J. N. (2021). Lack of detectable direct effects of silver and silver nanoparticles on mitochondria in mouse hepatocytes. Environmental Science & Technology, 55(16), 11166-11175. https://doi.org/10.1021/acs.est.1c02295
  • Xiong, R. G., Zhou, D. D., Wu, S. X., Huang, S. Y., Saimaiti, A., Yang, Z. J., Shang, A., Zhao, C. N., Gan, R. Y., & Li, H. B. (2022). Health benefits and side effects of short-chain fatty acids. Foods, 11(18), 2863. https://doi.org/10.3390/foods11182863
  • Yadav, S. P. S., Ghimire, N. P., & Yadav, B. (2022). Assessment of nano-derived particles, devices, and systems in animal science: A review. Malaysian Animal Husbandry Journal, 2(1), 09-18. http://doi.org/10.26480/mahj.01.2022.09.18
  • Yusof, H. M., Rahman, N. A., Mohamad, R., Zaidan, U. H., Arshad, M. A., & Samsudin, A. A. (2023). Effects of dietary zinc oxide nanoparticles supplementation on broiler growth performance, zinc retention, liver health status, and gastrointestinal microbial load. Journal of Trace Elements and Minerals, 4, 100072. https://doi.org/10.1016/j.jtemin.2023.100072
  • Zaheer, T. (2021). Fabrication of ultra-pure anisotropic nanoparticles, spectroscopic studies and biological applications. In K. Pal (Ed.), Nanomaterials for spectroscopic applications (pp. 18). Jenny Stanford Publishing.
  • Zhang, L., Bai, R., Liu, Y., Meng, L., Li, B., Wang, L., Xu, L., Le Guyader, L., & Chen, C. (2012). The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology, 6(5), 562-575. https://doi.org/10.3109/17435390.2011.590906
  • Zhang, Z., Zhao, L., Ma, Y., Liu, J., Huang, Y., Fu, X., Peng, S., Wang, X., Yang, Y., Zhang, X., Ding, W., Yu, J., Zhu, Y., Yan, H., & Yang, S. (2022). Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. Journal of Nanobiotechnology, 20, 146. https://doi.org/10.1186/s12951-022-01326-8
Year 2024, , 55 - 72, 31.03.2024
https://doi.org/10.56430/japro.1433614

Abstract

References

  • Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. N., Alghamdi, E. S., Hassan, F. U., Bilal, R. M., Elnesr, S. S., Dawood M. A. O., Nagadi S. A., Elwan H. A. M., ALmasoudi, A. G., & Attia, Y. A. (2021). Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916. https://doi.org/10.3390/ani11071916
  • Abdel-Rahman, H. G., Alian, H. A., & Mahmoud, M. (2022). Impacts of dietary supplementation with nano-iron and methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed broiler chickens. Tropical Animal Health and Production, 54, 126. https://doi.org/10.1007/s11250-022-03130-w
  • Abedini, M., Shariatmadari, F., Torshizi, M. A. K., & Ahmedi, H. (2018). Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition, 102(3), 736-745. https://doi.org/10.1111/jpn.12871
  • Adegbeye, M. J., Elghandour, M. M. M. Y., Barbabosa-Pliego, A., Monroy, J. C., Mellado, M., Reddy, P. R. K., & Salem, A. Z. M. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science, 78, 29-37. https://doi.org/10.1016/j.jevs.2019.04.001
  • Ahmadi, F., & Rahimi, F. (2011). The effect of different levels of nano silver on performance and retention of silver in edible tissues of broilers. World Applied Sciences Journal, 12, 1-4.
  • Ahmadi, M., Poorghasemi, M., Seidavi, A., Hatzigiannakis, E., & Milis, Ch. (2020). An optimum level of nano-selenium supplementation of a broiler diet according to the performance, economical parameters, plasma constituents and immunity. Journal of Elementology, 25(3), 1187-1198. https://doi.org/10.5601/jelem.2020.25.2.1954
  • Akhavan-Salamat, H., & Ghasemi, H. A. (2019). Effect of different sources and contents of zinc on growth performance, carcass characteristics, humoral immunity and antioxidant status of broiler chickens exposed to high environmental temperatures. Livestock Science, 223, 76-83. https://doi.org/10.1016/j.livsci.2019.03.008
  • Al-Beitawi, N. A., Momani Shaker, M., El-Shuraydeh, K. N., & Bláha, J. (2017). Effect of nanoclay minerals on growth performance, internal organs and blood biochemistry of broiler chickens compared to vaccines and antibiotics. Journal of Applied Animal Research, 45(1), 543-549. https://doi.org/10.1080/09712119.2016.1221827
  • Albuquerque, J., Casal, S., Páscoa, R. N. M. dJ. Dorpe, I. V., Fonseca, A. J. M., Cabrita, A. R. J., Neves, A. R., Reis, S. (2020). Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Scientific Reports, 10, 6830. https://doi.org/10.1038/s41598-020-63793-z
  • Alhashmi Alamer, F., & Beyari, R. F. (2022). Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials, 12(9), 1609. https://doi.org/10.3390/nano12091609
  • Alruwaili, M. A., Jararr, B., Jarrar, Q., Al-doaiss, A. A., Alshehri, M. A., & Melhem, W. (2022). Renal ultrastructural damage induced by chronic exposure to copper oxide nanomaterials: Electron microscopy study. Sage Journals, 38(2). https://doi.org/10.1177/07482337211062674
  • Azlan, Z. H. Z., Junaini, S. N., Bolhassan, N. A., Wahi, R., & Arip, M. A. (2024). Harvesting a sustainable future: An overview of smart agriculture's role in social, economic, and environmental sustainability. Journal of Cleaner Production, 434, 140338. https://doi.org/10.1016/j.jclepro.2023.140338
  • Bai, S. C., Hamidoğlu, A., & Bae, J. (2022). 7 - Feed additives: An overview. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture (second edition) (pp. 195-229). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00015-1
  • Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology, 12, 109.
  • Bhanja, S., Hotowy, A., Mehra, M., Sawosz, E., Pineda, L., Vadalasetty, K., Kurantowicz, N., & Chwalibog, A. (2015). In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences, 16(5), 9484-9503. https://doi.org/10.3390/ijms16059484
  • Bölükbaşı, Ş. C., Dumlu, B., & Yağanoğlu, A. M. (2023). Improved biological value of eggs due to the addition of pomegranate seed oil to laying-hen diets. Archives Animal Breeding, 66(1), 121-129. https://doi.org/10.5194/aab-66-121-2023
  • Boxall, A. B. A., Tiede, K., & Chaudhry, Q. (2007). Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health? Nanomedicine, 2(6), 919. https://doi.org/10.2217/17435889.2.6.919
  • Budak, D. (2018). Nanotechnology in animal nutrition. Nanotechnology in Animal Nutrition, 3(3), 90-97.
  • Bunglavan, S. J., Garg, A. K., Dass, R. S. & Shrivastava, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2(3), 36-47.
  • Chairuangkitti, P., Lawanprasert, S., Roytrakul, S., Aueviriyavit, S., Phummiratch, D., Kulthong, K., Chanvorachote, P., & Maniratanachote, R. (2013). Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology in Vitro, 27, 330-338. https://doi.org/10.1016/j.tiv.2012.08.021
  • Dei, H. K. (2021). Advances in poultry nutrition research-a review. In A. K. Patra (Ed.), Advances in poultry nutrition research. IntechOpen. https://doi.org/10.5772/intechopen.95990
  • Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418. https://doi.org/10.3389/fvets.2022.920418
  • Dubey, M., Singh, V., Pandey, R. K., & Chaubey, A. K. (2017). Effect of feed additives on nutrient intake and feed efficiency of lactating crossbred cows. International Journal of Current Microbiology and Applied Sciences, 6(2), 752-758. https://doi.org/10.20546/ijcmas.2017.602.083
  • Dumlu, B., & Bölükbaşı, Ş. C. (2023). Effect of solid state fermentation with whey on nutrient composition of pomegranate peel supplemented sunflower meal: Effect of fermentation on nutritional value of sunflower meal. Journal of the Hellenic Veterinary Medical Society, 74(3), 6163-6170. https://doi.org/10.12681/jhvms.31023
  • Dupuis, V., Cerbu, C., Witkowski, L., Potarniche, A. V., Timar, M. C., Żychska, M., & Sabliov, C. M. (2022). Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Delivery, 29(1), 1007-1024. https://doi.org/10.1080/10717544.2022.2056663
  • El Basuini, M. F., El-Hais, A. M., Dawood, M. A. O., Abou-Zeid, A. E. S., EL-Damrawy, S. Z., Khalafalla, M. M. E. S., Koshio, S., Ishikawa, M., & Dossou, S. (2016). Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture, 455, 32-40. https://doi.org/10.1016/j.aquaculture.2016.01.007
  • El Basuini, M. F., El-Hais, A. M., Dawood, M. A. O., Abou-Zeid, A. E. S., EL-Damrawy, S. Z., Khalafalla, M. M. E. S., Koshio, S., Ishikawa, M., & Dossou, S. (2017). Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquaculture Nutrition, 23(6), 1329-1340. https://doi.org/10.1111/anu.12508
  • El-Nile, A. E., Elazab, M. A., Soltan, Y. A., Elkomy, A. E., El-Zaiat, H. M., Sallam, S. M. A., & El-Azrak, K. E. (2023). Nano and natural zeolite feed supplements for dairy goats: Feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Animal Feed Science and Technology, 295, 115522. https://doi.org/10.1016/j.anifeedsci.2022.115522
  • El-Sayed, A., & Kamel, M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Research, 27, 19073-19086. https://doi.org/10.1007/s11356-018-3913-y
  • Evcim, H. Ü., Değirmencioğlu, A., Ertuğrul, G. Ö., & Aygün, İ. (2012). Advancements and transitions in technologies for sustainable agricultural production. Economic and Environmental Studies, 12(4), 459-466.
  • Fawaz, M. A., Abdel-Wareth, A. A. A., Hassan, H. A., & Südekum, K. H. (2019). Applications of nanoparticles of zinc oxide on productive performance of laying hens. International Journal of Agriculture and Biology, 1(1), 34-45. https://doi.org/10.21608/SVUIJAS.2019.67083
  • Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375. https://doi.org/10.3390/ijms21072375
  • Fesseha, H., Degu, T., & Getachew, Y. (2020). Nanotechnology and its application in animal production: A review. Veterinary Medicine, 5(2), 43-50. https://doi.org/10.17140/VMOJ-5-148
  • Feynman, R. P. (1959). Plenty of room at the bottom. Journal of Microelectromechanical Systems, 1(1), 60-66. https://doi.org/10.1109/84.128057
  • Fondevila, M., Herrer, R., Casallas, M. C., Abecia, L., & Ducha, J. J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology, 150(3-4), 259-269. https://doi.org/10.1016/j.anifeedsci.2008.09.003
  • Gao, C., Zhu, L., Zhu, F., Sun, J., & Zhu, Z. (2014). Effects of different sources of copper on Ctr1, ATP7A, ATP7B, MT and DMT1 protein and gene expression in Caco-2 cells. Journal of Trace Elements in Medicine and Biology, 28(3), 344-350. https://doi.org/10.1016/j.jtemb.2014.04.004
  • Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood, Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomedical Research International, 2014, 1-8. https://doi.org/10.1155/2014/498420
  • Gelaye, Y. (2024). Application of nanotechnology in animal nutrition: Bibliographic review. Animal Husbandry & Veterinary Science, 10(1), 2290308. https://doi.org/10.1080/23311932.2023.2290308
  • Gilbert, N. (2012). Rules tighten on use of antibiotics on farms. Nature, 481, 125. https://doi.org/10.1038/481125a
  • Gopi, M., Pearlin, B., Kumar, R. D., Shanmathy, M., & Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • Gu, L., Zhang, F., Wu, J., & Zhuge, Y. (2022). Nanotechnology in drug delivery for liver fibrosis. Frontiers in Molecular Biosciences, 8, 804396. https://doi.org/10.3389/fmolb.2021.804396
  • Hassan, A. A., Sayed El-Ahl, R. M. H., Oraby, N. H., El-Hamaky, A. M. A., & Mansour, M. K. (2021). Zinc nanomaterials: Toxicological effects and veterinary applications. In K. A. Abd-Elsalam (Ed.), Zinc-based nanostructures for environmental and agricultural applications (pp. 509-541). Elsevier. https://doi.org/10.1016/b978-0-12-822836-4.00019-7
  • Hassan, H. M. A., Samy, A., El-Sherbiny, A. E., Mohamed, M. A., & Abd-Elsamee, M. O. (2016). Application of nano-dicalcium phosphate in broiler nutrition: Performance and excreted calcium and phosphorus. Asian Journal of Animal and Veterinary Advances, 11(8), 477-483. https://doi.org/10.3923/ajava.2016.477.483
  • Hatab, M. H., Rashad, E., Saleh, H. M., El-Sayed E. R., & Abu Taleb, A. M. (2022). Effects of dietary supplementation of myco-fabricated zinc oxide nanoparticles on performance, histological changes, and tissues Zn concentration in broiler chicks. Scientific Reports, 12, 18791. https://doi.org/10.1038/s41598-022-22836-3
  • Hedberg, J., Karlsson, H. L., Hedberg, Y., Blomberg, E., & Wallinder, I. O. (2016). The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids and Surfaces B: Biointerfaces, 141, 291-300. https://doi.org/10.1016/j.colsurfb.2016.01.052
  • Hemathilake, D., & Gunathilake, D. (2022). Agricultural productivity and food supply to meet increased demands, future foods. In R. Bhat (Ed.), Future foods (pp. 539-553). Elsevier. https://doi.org/10.1016/B978-0-323-91001-9.00016-5
  • Hill, E. H., Hanske, C., Johnson, A., Yate, L., Jelitto, H., Schneider, G. A., & Liz-Marzán, L. M. (2017). Metal nanoparticle growth within clay–polymer nacre-inspired materials for improved catalysis and plasmonic detection in complex biofluids. Langmuir, 33(35), 8774-8783. https://doi.org/10.1021/acs.langmuir.7b00754
  • Hu, C. H., Li, Y. L., Xiong, L., Zhang, H. M., Song, J., & Xia, M. S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology, 177(3-4), 204-210. https://doi.org/10.1016/j.anifeedsci.2012.08.010
  • Hua, J., Vijver, M. G., Ahmad, F., Richardson, M. K., & Peijnenburg, W. J. (2014). Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos. Environmental Toxicology and Chemistry, 33(8), 1774-1782. https://doi.org/10.1002/etc.2615
  • Hussain, S. M., Naeem, E., Ali, S., Adrees, M., Riaz, D., Paray, B. A., & Naeem, A. (2023). Evaluation of growth, nutrient absorption, body composition and blood indices under dietary exposure of iron oxide N-anoparticles in Common carp (Cyprinus carpio). Journal of Animal Physiology and Animal Nutrition, 108(2), 366-373. https://doi.org/10.1111/jpn.13898
  • Hussan, F., Krishna, D., Preetam, V. C., Reddy, P. B., & Gurram, S. (2022). Dietary supplementation of nano zinc oxide on performance, carcass, serum and meat quality parameters of commercial broilers. Biological Trace Element Research, 200, 348-353. https://doi.org/10.1007/s12011-021-02635-z
  • Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223-245. https://doi.org/10.1080/17518253.2020.1802517
  • Islam, M. R., Martinez-Soto, C. E., Lin, J. T., Khursigara, C. M., Barbut, S., & Anany, H. (2023). A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Critical Reviews in Food Science and Nutrition, 63(18), 3097-3129. https://doi.org/10.1080/10408398.2021.1984200
  • Jafari, S. M., & McClements, D. J. (2017). Chapter one - Nanotechnology approaches for increasing nutrient bioavailability. Advances in Food and Nutrition Research, 81, 1-30. https://doi.org/10.1016/bs.afnr.2016.12.008
  • Jamuna, B. A., & Ravishankar, R. V. (2014). Environmental risk, human health, and toxic effects of nanoparticles. In B. I. Kharisov, O. V. Kharissova & H. V. Rasika Dias (Eds.), Nanomaterials for environmental protection (pp. 523-535). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118845530.ch31
  • Jankowski, J., Ognik, K., Stepniowska, A., Zdunczyk, Z., & Kozoowski, K. (2018). The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. PLoS One, 13, e0201487. https://doi.org/10.1371/journal.pone.0201487
  • Jararweh, Y., Fatima, S., Jarrah, M., & AlZu'bi, S. (2023). Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions. Computers and Electrical Engineering, 110, 108799. https://doi.org/10.1016/j.compeleceng.2023.108799
  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074. https://doi.org/10.3762/bjnano.9.98
  • Jia, J., Ahmed, I., Liu, L., Liu, Y., Xu, Z., Duan, X., Li, Q., Dou, T., Gu, D., Rong, H., Wang, K., Li, Z., Talpur, M. Z., Huang, Y., Wang, S., Yan, S., Tong, H., Zhao, S., Zhao, G., te Pas, M. F. W., Su, Z., & Ge, C. (2018). Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS One, 13(4), e0195378. https://doi.org/10.1371/journal.pone.0195378
  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20, 262. https://doi.org/10.1186/s12951-022-01477-8
  • Jozwik, A., Marchewka, J., Strzałkowska, N., Horbanczuk, J. O., Strabel, M. S., Cieslak, A., Palka, P. L., Jopzefiak, D., Kaminska, A., & Atanasov, A. G. (2018) The effect of different levels of Cu, Zn and Mn nanoparticles in hen Turkey diet on the activity of aminopeptidases. Molecules, 23(5), 1150. https://doi.org/10.3390/molecules23051150
  • Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Dovepress, 11, 2871-2890. https://doi.org/10.2147/DDDT.S142337
  • Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14, 532-540. https://doi.org/10.1038/s41565-019-0439-5
  • Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles. In S. M. Rangappa, J. Parameswaranpillai & M. O. Seydibeyoglu (Eds.), Nanoparticle-based polymer composites (pp. 15-54). Elsevier. https://doi.org/10.1016/B978-0-12-824272-8.00009-9
  • Khan, S., Mansoor, S., Rafi, Z., Kumari, B., Shoaib, A., Saeed, M., Alshehri, S., Ghoneim, M. M., Rahamathulla, M., Hani, U., & Shakeel, F. (2022). A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 348, 118008. https://doi.org/10.1016/j.molliq.2021.118008
  • Khizar, S., Ahmad, N. M., Zine, N., Jaffrezic-Renault, N., Errachid-el-salhi, A., & Elaissari, A. (2021). Magnetic nanoparticles: From synthesis to theranostic applications. ACS Applied Nano Materials, 4(5), 4284-4306. https://doi.org/10.1021/acsanm.1c00852
  • Kumar, D., Mutreja, I., Chitcholtan, K., & Sykes, P. (2017). Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells. Nanotechnology, 28, 475101. https://doi.org/10.1088/1361-6528/aa935e
  • Kumari, A., & Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59, 3319-3335. https://doi.org/10.1007/s13197-021-05184-4
  • Latino, L. R., Pica-Ciamarra, U., & Wisser, D. (2020). Africa: The livestock revolution urbanizes. Global Food Security, 26, 100399, https://doi.org/10.1016/j.gfs.2020.100399
  • Lee, J., Hosseindoust, A., Kim, M., Kim, K., Choi, Y., Lee, S., Lee, S., Cho, H., Kang, W. S., & Chae, B. (2020). Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biological Trace Element Research, 194, 536-544. https://doi.org/10.1007/s12011-019-01801-8
  • Li, Y., & Lee, J.-S. (2020). Insights into characterization methods and biomedical applications of nanoparticle-protein corona. Materials, 13(14), 3093. https://doi.org/10.3390/ma13143093
  • Li, Y., & Wang, W. (2021). Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere, 281, 2021, 130762. https://doi.org/10.1016/j.chemosphere.2021.130762
  • Liu, W., Worms, I. A., Jakšić, Ž., & Slaveykova, V. I. (2022). Aquatic organisms modulate the bioreactivity of engineered nanoparticles: Focus on biomolecular corona. Frontiers in Toxicology, 4, 933186. https://doi.org/10.3389/ftox.2022.933186
  • Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine: Nanotechnology, Biology and Medicine, 14(1), 1-12. https://doi.org/10.1016/j.nano.2017.08.011
  • Mantovani, A., Aquilina, G., Cubadda, F., & Marcon, F. (2022). Risk-benefit assessment of feed additives in the one health perspective. Frontiers in Nutrition, 10(9), 843124. https://doi.org/10.3389/fnut.2022.843124
  • Manzoor, Q., Sajid, A., Ali, Z., Nazir, A., Sajid, A., Imtiaz, F., Iqbal, S., Younas, U., Arif, H., & Iqbal, M. (2024). Toxicity spectrum and detrimental effects of titanium dioxide nanoparticles as an emerging pollutant: A review. Desalination and Water Treatment, 317, 100025. https://doi.org/10.1016/j.dwt.2024.100025
  • Marappan, G., Beulah, P., Kumar, R. D., Muthuvel, S., & Govindasamy, P. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. https://doi.org/10.3923/ijp.2017.724.731
  • McClements, D. J., Xiao, H. & Demokritou, P. (2017). Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 246, 165-180. https://doi.org/10.1016/j.cis.2017.05.010
  • Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., Emran, T. B., & Dhama, K. (2022). The effect of metal-containing Nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly, 42(1), 68-94. https://doi.org/10.1080/01652176.2022.2073399
  • Milani, N. C., Sbardella, M., Ikeda, N. Y., Arno, A., Mascarenhas, B. C., & Miyada, V. S. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Animal Feed Science and Technology, 227, 13-23. https://doi.org/10.1016/j.anifeedsci.2017.03.001
  • Miller, G., & Senjen, R. (2008). Out of the laboratory and on to our plates: Nanotechnology in food & agriculture. Friends of the Earth.
  • Minglei, S., Zheng, L., Xiaoye, G., & Xiu’an, Z. (2013). Copper silicate nanoparticles: Effects of intestinal microflora, nitrogen metabolism and ammonia emission from excreta of yellow-feathered broilers. Chinese Journal of Animal Nutrition, 25(8), 1843-1850. https://doi.org/10.3969/j.issn.1006-267x.2013.08.022
  • Miroshnikov, S., Yausheva, E., Sizova, E., & Miroshnikova, E. (2015). Comparative assessment of effect of copper nano- and microparticles in chicken. Oriental Journal of Chemistry, 31, 2327-2336. https://doi.org/10.13005/ojc/310461
  • Mishra, A., Swain, R. K., Mishra, S. K., Panda, N., & Sethy, K. (2014). Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian Journal of Animal Nutrition, 31(4), 384-388.
  • Mohamed, M. A., Hassan, H. M. A., Samy, A., Abd-Elsamee, M. O., & El-Sherbiny, A. E. (2016). Carcass characteristics and bone measurements of broilers fed nano dicalcium phosphate containing diets. Asian Journal of Animal and Veterinary Advances, 11(8), 484-490. https://doi.org/10.3923/ajava.2016.484.490
  • Mortensen, N. P., Pathmasiri, W., Snyder, R. W., Caffaro, M. M., Watson, S. L., Patel, P. R., Beeravalli, L., Prattipati, S., Aravamudhan, S., & Sumner, S. J. (2022). Oral administration of TiO2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Particle and Fibre Toxicology, 19(1), 1-18. https://doi.org/10.1186/s12989-021-00444-9
  • Mroczek-Sosnowska, N., Łukasiewicz, M., Adamek, D., Kamaszewski, M., Niemiec, J., Wnuk-Gnich, A., Scott, A., Chwalibog, A., & Sawosz, E. (2017). Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Archives of Animal Nutrition, 71(4), 327-332. https://doi.org/10.1080/1745039X.2017.1331619
  • Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., Jaworski, S., & Chwalibog, A. (2015b). In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance: Effect of Cu on chicken performance. Journal of the Science of Food and Agriculture, 96(9), 3058-3062. https://doi.org/10.1002/jsfa.7477
  • Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K., Łukasiewicz, M., Niemiec, J., Wierzbicki, M., Kutwin, M., Jaworski, S., & Chwalibog, A. (2015a). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences, 16(3), 4838-4849. https://doi.org/10.3390/ijms16034838
  • Mulvaney, P. (2015). Nanoscience vs nanotechnology - defining the field. ACS Nano, 9(3), 2215-3396. https://doi.org/10.1021/acsnano.5b01418
  • Muralisankar, T., Bhavan, P. S., Radhakrishnan, S., Seenivasan, C., & Srinivasan, V. (2016). The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. Journal of Trace Elements in Medicine and Biology, 34, 39-49. https://doi.org/10.1016/j.jtemb.2015.12.003
  • Nabi, F., Arain, M. A., Hassan, F., Umar, M., Rajput, N., Alagawany, M., Syed, S. F., Soomro, J., Somroo, F., & Liu, J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. World's Poultry Science Journal, 76(3), 459-471. https://doi.org/10.1080/00439339.2020.1789535
  • Nguyen, Q. K., Nguyen, D. D., Nguyen, V. K., Nguyen, K. T., Nguyen, H, C., Tran, X. T., Nguyen, H, C., & Phung, D. T. (2015). Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(3), 35017. https://doi.org/10.1088/2043-6262/6/3/035017
  • Özdemir, V. F., Yanar, M., & Koçyiğit, R. (2022). General properties of propolis and its usage in ruminants. Journal of the Hellenic Veterinary Medical Society, 73(2), 3905-3912. https://doi.org/10.12681/jhvms.26334
  • Pandey, A. K., Kumar, P., & Saxena, M. J. (2019). Feed additives in animal health. In R. C. Gupta, A. Srivastava & R. Lall (Eds.), Nutraceuticals in veterinary medicine (pp. 345-362). Springer. https://doi.org/10.1007/978-3-030-04624-8_23
  • Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6), 1547. https://doi.org/10.3390/molecules26061547
  • Patra, A. K., Amasheh, S., & Aschenbach, J. R. (2019) Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds - A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(20), 3237-3266. https://doi.org/10.1080/10408398.2018.1486284
  • Peters, R. J. B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H. J. P., Makine, A., Moniz, F. B., Pesudo, L. Q., Rauscher, H., Schoonjans, R., Undas A. K., Vettori M. V., Weigel, S., & Aschberger, K. (2016). Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology, 54, 155-164. https://doi.org/10.1016/j.tifs.2016.06.008
  • Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., & Elnif, J. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66(5), 416-429. https://doi.org/10.1080/1745039X.2012.710081
  • Pirgozliev, V., Rose, S. P., & Ivanova, S. (2019). Feed additives in poultry nutrition. Bulgarian Journal of Agricultural Science, 25(Suppl 1), 8-11.
  • Placha, I., Gai, F., & Simonová, M. P. (2022a). Editorial: Natural feed additives in animal nutrition-Their potential as functional feed. Frontiers in Veterinary Science, 9, 1062724. https://doi.org/10.3389/fvets.2022.1062724
  • Placha, I., Simonová, M. P., & Lauková A. (2022b). Natural feed additives and novel approaches for healthy rabbit breeding. Animals, 12(16), 2111. https://doi.org/10.3390/ani12162111
  • Poddar, K., & Kishore, A. V. (2022). Chapter seven - nanotechnology in animal production. In S. Mondal & R. Lakhan (Eds.), Biological tools and techniques (pp. 149-170). Elsevier. https://doi.org/10.1016/B978-0-12-822265-2.00009-0
  • Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P., & Lohita, D. (2022). Green synthesis of bismuth based nanoparticles and its applications-A review. Sustainable Chemistry and Pharmacy, 25, 100547. https://doi.org/10.1016/j.scp.2021.100547
  • Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S. N., Sayed, S. R. M., & Gan, J. (2023). Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. Journal of Environmental Management, 347, 119147. https://doi.org/10.1016/j.jenvman.2023.119147
  • Radi, A. M., Azeem, N. A., & El-Nahass, E. (2021). Comparative effects of zinc oxide and zinc oxide nanoparticle as feed additives on growth, feed choice test, tissue residues, and histopathological changes in broiler chickens. Environmental Science and Pollution Research, 28, 5158-5167. https://doi.org/10.1007/s11356-020-09888-6
  • Rajendran, D., Ezhuthupurakkal, P. B., Lakshman, R., Gowda, N. K. S., Manimaran, A., & Rao, S. B. N. (2022). Application of encapsulated nano materials as feed additive in livestock and poultry: A review. Veterinary Research Communications, 46, 315-328. https://doi.org/10.1007/s11259-022-09895-7
  • Reda, F. M., El-Saadony, M. T., El-Rayes, T. K., Attia, A. I., El-Sayed, S. A. A., Ahmed, S. Y. A., Madkour, M., & Alagawany, M. (2021). Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Italian Journal of Animal Science, 20(1), 324-335. https://doi.org/10.1080/1828051X.2021.1886001
  • Reddy, P. R. K., Yasaswini, D., Reddy, P. P. R., Zeineldin, M., Adegbeye, M. J., & Hyder, I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Veterinary World, 13(8), 1685-1696. https://doi.org/10.14202/vetworld.2020.1685-1696
  • Riley, P. R., & Narayan, R. J. (2021). Recent advances in carbon nanomaterials for biomedical applications: A review. Current Opinion in Biomedical Engineering, 17, 100262. https://doi.org/10.1016/j.cobme.2021.100262
  • Sadiq, R., Khan, Q. M., Mobeen, A., & Hashmat, A. J. (2015). In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug and Chemical Toxicology, 38(2), 152-161. https://doi.org/10.3109/01480545.2014.919584
  • Sagar, P. D., Mandal, A. B., Akbar, N., & Dinani, O. P. (2018). Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. International Journal of Current Microbiology and Applied Sciences, 7(5), 459-471. https://doi.org/10.20546/ijcmas.2018.705.058
  • Sawosz, E., Binek, M., Grodzik, M., Zielińska-Górska, M. K., Sysa, P., Szmidt, M., Niemiec, T., & Chwalibog, A. (2008). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition, 61(6), 444-451. https://doi.org/10.1080/17450390701664314
  • Sawosz, E., Pineda, L., Hotowy, A., Hyttel, P., Sawosz, E., Szmidt, M., Niemiec, T., & Chwalibog, A. (2012). Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Comparative Biochemistry and Physiology, Part A, 161(3), 315-319. https://doi.org/10.7136/bjccsb.2012.2.0029
  • Schmidt, C. W. (2009). Nanotechnology-related environment, health, and safety research: Examining the national strategy. Environmental Health Perspectives, 117(4), A158-A161. https://doi.org/10.1289/ehp.117-a158
  • Seaton, A., Tran, L., Aitken, R., & Donaldson, K. (2010). Nanoparticles, human health hazard and regulation. Journal of the Royal Society Interface, 7, S119-S129. https://doi.org/10.1098/rsif.2009.0252.focus
  • Sertova, N. M. (2020). Contribution of nanotechnology in animal and human health care. Advanced Materials Letters, 11(9), 1-7. https://doi.org/10.5185/amlett.2020.091552
  • Seven, P. T., Seven, İ., Baykalir, B. G., Mutlu, S. İ., & Salem, A. Z. M. (2018). Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science, 17(4), 921-930. https://doi.org/10.1080/1828051X.2018.1448726
  • Shabani, R., Fakhraei, J., Yarahmadi, H. M., & Seidavi, A. (2019). Effect of different sources of selenium on performance and characteristics of immune system of broiler chickens. Revista Brasileira de Zootecnia, 48, e20180256. https://doi.org/10.1590/rbz4820180256
  • Shah, M. A., Mir, S., & Mir, M. B. (2016). Nanoencapsulation of food ingredients. In B. K. Nayak, A. Nanda & M. A. Bhat (Eds.), Integrating biologically- inspired nanotechnology into medical practice (pp.132-152). IGI Global. https://doi.org/10.4018/978-1-5225-0610-2.ch006
  • Sharif, M., Rahman, M. A., Ahmed, B., Abbas, R. Z., & Hassan, F. (2021). Copper nanoparticles as growth promoter, antioxidant and anti-bacterial agents in poultry nutrition: Prospects and future implications. Biological Trace Element Research, 199, 3825-3836. https://doi.org/10.1007/s12011-020-02485-1
  • Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., & Shi, L. (2011). Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology, 163(2-4), 136-142. https://doi.org/10.1016/j.anifeedsci.2010.10.016
  • Siemer, S., Hahlbrock, A., Vallet, C., McClements, D. J., Balszuweit, J., Voskuhl, J., Docter, D., Wessler, S., Knauner, S. K., & Westmeier, D. (2018). Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: A simulated gastrointestinal study. Npj Science of Food, 2, 22. https://doi.org/10.1038/s41538-018-0030-8
  • Singh, P. K. (2016). Use of nano feed additives in livestock feeding. International Journal of Livestock Research, 6(1), 1-14. https://doi.org/10.5455/ijlr.20150816121040
  • Sirirat, N., Lu, J., Hung, A. T., Chen, S., & Lien, T. (2012). Effects different levels of nanoparticles chromium picolinate supplementation on growth performance, mineral retention, and immune responses in broiler chickens. Journal of Agricultural Science, 4(12), 48-58. https://doi.org/10.5539/jas.v4n12p48
  • Song, L., Connolly, M., Fernández-Cruz, M. L., Vijver, M. G., Fernández, M., Conde, E., de Snoo, G. R., Peijnenburg, W. J., & Navas, J. M. (2014). Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, 8(4), 383-393. https://doi.org/10.3109/17435390.2013.790997
  • Song, W., Zhao, B., Wang, C., Ozaki, Y., & Lu, X. (2019). Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 7(6), 850-875. https://doi.org/10.1039/C8TB02878H
  • Surendhiran, D., Cui, H., & Lin, L. (2020). Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In C. M. Hussain (Ed.), The ELSI handbook of nanotechnology: Risk, safety, ELSI and commercialization (pp. 165-204). Wiley Online Library. https://doi.org/10.1002/9781119592990.ch9
  • Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. https://doi.org/10.1016/j.aninu.2016.06.003
  • Talarska, P., Błaszkiewicz, P., Kostrzewa, A., Wirstlein, P., Cegłowski, M., Nowaczyk, G., Dudkowiak, A., Grabarek, B. O., Głowacka-Stalmach, P., Szarpak, A., & Zurawski, J. (2024). Effects of spherical and rod-like gold nanoparticles on the reactivity of human peripheral blood leukocytes. Antioxidants, 13(2), 157. https://doi.org/10.3390/antiox13020157
  • Tasho, R. P., & Cho, J. Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Science of The Total Environment, 563-564, 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140
  • Thapa, S., Singh, K. R., Verma, R., Singh, J., & Singh, R. P. (2022). State-of-the-art smart and intelligent nanobiosensors for SARS-CoV-2 diagnosis. Biosensors, 12(8), 637. https://doi.org/10.3390/bios12080637
  • Tolve, R., Tchuenbou-Magaia, F., Cairano, M. D., Caruso, M. C., Scarpa, T., & Galgano, F. (2021). Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Animal Feed Science and Technology, 279, 115036. https://doi.org/10.1016/j.anifeedsci.2021.115036
  • Tomaszewska, E., Muszyński, S., Ognik K, Dobrowolski, P., Kwiecień, M., Juśkiewicz, J., Chocyk, D., Świetlicki, M., Blicharski, T., & Gładyszewska, B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. Journal of Trace Elements in Medicine and Biology, 42, 103-110. https://doi.org/10.1016/j.jtemb.2017.05.002
  • Tona, G. O. (2017). Current and future improvements in livestock nutrition and feed resources. In B. Yücel & T. Taşkin (Eds.), Animal husbandry and nutrition (pp. 147-169). IntechOpen. https://doi.org/10.5772/intechopen.73088
  • Tüylek, Z. (2021). Nanotıp ve yeni tedavi yöntemleri. Eurasian Journal of Health Sciences, 4(2), 121-131. (In Turkish)
  • Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  • Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D'Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51-67. https://doi.org/10.1111/agec.12089
  • Wang, B., Wang, H., Li, Y., & Song, L. (2022b). Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids in Health and Disease, 21, 5. https://doi.org/10.1186/s12944-021-01615-5
  • Wang, D., & White, J. C. (2022). Benefit of nano-enabled agrochemicals. Nature Food, 3, 983-984. https://doi.org/10.1038/s43016-022-00665-x
  • Wang, K., Lu, X., Lu, Y., Wang, J., Lu, Q., Cao, X., Yang, Y., & Yang, Z. (2022a). Nanomaterials in animal husbandry: Research and prospects. Frontiers in Genetics, 13, 915911 https://doi.org/10.3389/fgene.2022.915911
  • Wang, L., Mello, D. F., Zucker, R. M., Rivera, N. A., Rogers, N. M., Geitner, N. K., Boyes, W. K., Wiesner, M. R., Hsu-Kim, H., & Meyer, J. N. (2021). Lack of detectable direct effects of silver and silver nanoparticles on mitochondria in mouse hepatocytes. Environmental Science & Technology, 55(16), 11166-11175. https://doi.org/10.1021/acs.est.1c02295
  • Xiong, R. G., Zhou, D. D., Wu, S. X., Huang, S. Y., Saimaiti, A., Yang, Z. J., Shang, A., Zhao, C. N., Gan, R. Y., & Li, H. B. (2022). Health benefits and side effects of short-chain fatty acids. Foods, 11(18), 2863. https://doi.org/10.3390/foods11182863
  • Yadav, S. P. S., Ghimire, N. P., & Yadav, B. (2022). Assessment of nano-derived particles, devices, and systems in animal science: A review. Malaysian Animal Husbandry Journal, 2(1), 09-18. http://doi.org/10.26480/mahj.01.2022.09.18
  • Yusof, H. M., Rahman, N. A., Mohamad, R., Zaidan, U. H., Arshad, M. A., & Samsudin, A. A. (2023). Effects of dietary zinc oxide nanoparticles supplementation on broiler growth performance, zinc retention, liver health status, and gastrointestinal microbial load. Journal of Trace Elements and Minerals, 4, 100072. https://doi.org/10.1016/j.jtemin.2023.100072
  • Zaheer, T. (2021). Fabrication of ultra-pure anisotropic nanoparticles, spectroscopic studies and biological applications. In K. Pal (Ed.), Nanomaterials for spectroscopic applications (pp. 18). Jenny Stanford Publishing.
  • Zhang, L., Bai, R., Liu, Y., Meng, L., Li, B., Wang, L., Xu, L., Le Guyader, L., & Chen, C. (2012). The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology, 6(5), 562-575. https://doi.org/10.3109/17435390.2011.590906
  • Zhang, Z., Zhao, L., Ma, Y., Liu, J., Huang, Y., Fu, X., Peng, S., Wang, X., Yang, Y., Zhang, X., Ding, W., Yu, J., Zhu, Y., Yan, H., & Yang, S. (2022). Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. Journal of Nanobiotechnology, 20, 146. https://doi.org/10.1186/s12951-022-01326-8
There are 148 citations in total.

Details

Primary Language English
Subjects Animal Feeding
Journal Section Reviews
Authors

Büşra Dumlu 0000-0002-3339-1322

Early Pub Date March 31, 2024
Publication Date March 31, 2024
Submission Date February 7, 2024
Acceptance Date March 1, 2024
Published in Issue Year 2024

Cite

APA Dumlu, B. (2024). Importance of Nano-Sized Feed Additives in Animal Nutrition. Journal of Agricultural Production, 5(1), 55-72. https://doi.org/10.56430/japro.1433614