Research Article
BibTex RIS Cite

The Effect of Pre-Applied Titanium Dioxide Nanoparticles on Germination in Carthamus tinctorius L. Varieties

Year 2024, , 41 - 49, 31.03.2024
https://doi.org/10.56430/japro.1436131

Abstract

In the present study, to promote sustainable nano-farming, the apparent effects of different concentrations (0, 100, 200, 300, 400, 500 ppm) of titanium dioxide nanoparticle (TiO2NPs) solutions on the germination percentage, index and duration of seeds belonging to Balcı, Dincer, Hasankendi, Koc, Olas, and Zirkon safflower varieties were investigated. Moreover, scanning electron microscopy (SEM) was employed to analyze TiO2NPs in germinated safflower varieties. Germination performance was TiO2NPs concentration and variety depended. It was determined that the seed samples displayed different responses to TiO2NPs concentrations; germination percentages were between 20.0±1.15 and 82.9±0.44%, germination durations were between 2.01±0.021 to 3.82±0.017 days, and germination indices were between 9.97±0.606 and 38.97±0.959. While the highest germination percentage (82.9±0.44%) was obtained from Dincer variety with 100 ppm TiO2NP pre-application, the lowest germination percentage (20.0±1.15% and 20.0±1.92%) was obtained from Balcı and Hasan Kendi varieties with 100 and 300 ppm TiO2NP pre-application. According to this result, although the highest germination percentage based on variety was obtained from the Dincer variety, the Balcı variety with the lowest germination percentage provided the most significant increase in the 200 ppm TiO2NPs application dose compared to the control. According to the germination percentage, it can be said that the most effective TiO2NPs application dose in Safflower varieties is 200 ppm. Further research on nanoparticles is needed to determine both the economical doses of TiO2NP pre-application and its uptake by the plant.

References

  • Ahmad, I., & Akhtar, M. S. (2019). Use of nanoparticles in alleviating salt stress. In M. S. Akhtar (Ed.), Salt stress, microbes and plant interactions: Causes and solution (pp. 199-215). Springer. https://doi.org/10.1007/978-981-13-8801-9_9
  • Arezoo, E., Mohammadreza, E., Maryam, M., & Abdorreza, M. N. (2020). The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, 743-751. https://doi.org/10.1016/j.ijbiomac.2019.11.244
  • Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle-induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66(3), 303-310. https://doi.org/10.1007/s10725-011-9649-z
  • Ateş, H. (2015). Nano parçacıklar ve nano teller. Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji, 3(1), 437-442. (In Turkish)
  • Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., & Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282-285.
  • Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G., & Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10(9), 1763. https://doi.org/10.3390/nano10091763
  • Conte, R., Gullich, L. M. D., Bilibio, D., Zanella, O., Bender, J. P., Carniel, N., & Priamo, W. L. (2016). Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods. Food Chemistry, 213, 425-430. https://doi.org/10.1016/j.foodchem.2016.06.111
  • Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386-396. https://doi.org/10.1093/forestscience/8.4.386
  • Dogaroglu, Z. G., & Köleli, N. (2016). Effect of titanium dioxide and titanium dioxide-silver nanoparticles on seed germination of lettuce (Lactuca sativa). Çukurova University Journal of the Faculty of Engineering, 31(ÖS2), 193-198. https://doi.org/10.21605/cukurovaummfd.316762
  • Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2), 373-409.
  • Faraji, J., Sepehri, A., & Salcedo-Reyes, J. C. (2018). Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Universitas Scientiarum, 23(1), 61-87. https://doi.org/10.11144/Javeriana.SC23-1.tdna
  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 912. https://doi.org/10.1038/s41598-020-57794-1
  • Guha, T., Ravikumar, K. V. G., Mukherjee, A., Mukherjee, A., & Kundu. R. (2018). Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 127, 403-413. https://doi.org/10.1016/j.plaphy.2018.04.014
  • Gürsoy, M. (2019). Importance of some oil crops in human nutrition. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2154-2158. https://doi.org/10.24925/turjaf.v7i12.2154-2158.2916
  • Hatami, M., Ghorbanpour, M., & Salehiarjomand, H. (2014). Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences, 8(22), 53-59.
  • Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stress in safflower: A review. Agronomy for Sustainable Development, 36, 1-31. https://doi.org/10.1007/s13593-015-0344-8
  • Jabeen, N., & Ahmad, R. (2013). Variations in accessions of sunflower and safflower under stress conditions. Pakistan Journal of Botany, 45(2), 383-389.
  • Javed, B., & Mashwani, Z. U. R. (2020). Synergistic effects of physicochemical parameters on bio-fabrication of mint silver nanoparticles: Structural evaluation and action against HCT116 colon cancer cells. International Journal of Nanomedicine, 15, 3621-3637. https://doi.org/10.2147/IJN.S254402
  • Javed, B., Nadhman, A., & Mashwani, Z. U. R. (2020). Photosynthesis of Ag nanoparticles from Mentha longifolia: Their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial, and bacterial cells. Applied Nanoscience, 10, 3503-3515. https://doi.org/10.1007/s13204-020-01428-5
  • Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., Khamlich, S., & Maaza, M. (2017). Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine, 12(15), 1767-1789. https://doi.org/10.2217/nnm-2017-0124
  • Li, Q., Duan, M., Liu, L., Chen, X., Fu, Y., Li, J., Zhao, T., & McClements, D. J. (2021). Impact of polyphenol interactions with titanium dioxide nanoparticles on their bioavailability and antioxidant activity. Journal of Agricultural and Food Chemistry, 69(33), 9661-9670. https://doi.org/10.1021/acs.jafc.1c01970
  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
  • Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nano priming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089-1102. https://doi.org/10.1016/j.scitotenv.2016.08.120
  • Kamal, R., & Mogazy, A. M. (2021). Effect of doping on TiO2 nanoparticles characteristics: Studying of fertilizing effect on cowpea plant growth and yield. Journal of Soil Science and Plant Nutrition, 23, 325-337. https://doi.org/10.1007/s42729-021-00648-0
  • Kumari, A. (2009). Germination behaviour, viability and longevity of safflower (Carthamus tinctorius L.) seeds. Biosciences, 3(1), 11-15.
  • Mehrian, K. S., Heidari, R., Rahmani, F., & Najafi, S. (2016). Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. Journal of Cluster Science, 27, 327-340. https://doi.org/10.1007/s10876-015-0932-4
  • Omidi, A. H., Khazaei, H., Monneveux, P., & Stoddard, F. (2012). Effect of cultivar and water regime on yield and yield components in safflower (Carthamus tinctorius L.). Turkish Journal of Field Crops, 17(1), 10-15.
  • Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  • Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. Biotech, 9, 1-11. https://doi.org/10.1007/s13205-019-1626-7
  • Ravindran, A., Prathna, T. C., Verma, V. K., Chandrasekaran, N., Mukherjee, A. (2012). Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: Root elongation and seed germination assay. Toxicological & Environmental Chemistry, 94(1), 91-98. https://doi.org/10.1080/02772248.2011.617034
  • Regier, N., Cosio, C., Von Moos, N., & Slaveykova, V. I. (2015). Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis, and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 128, 56-61. https://doi.org/10.1016/j.chemosphere.2014.12.078
  • Rizvi, S. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64-70. https://doi.org/10.1016/j.jsps.2017.10.012
  • Roccisano, D., Kumaratilake, J., Saniotis, A., & Henneberg, M. (2016). Dietary fats and oils: Some evolutionary and historical perspectives concerning edible lipids for human consumption. Food and Nutrition Sciences, 7(8), 689-702. https://doi.org/10.4236/fns.2016.78070
  • Sanoubar, R., Calone, R., Noli, E., & Barbanti, L. (2018). Data on seed germination using LED versus fluorescent light under growth chamber conditions. Data in Brief., 19, 594-600. https://doi.org/10.1016/j.dib.2018.05.040
  • Sardar, R., Ahmed, S., & Yasin, N. A. (2022). Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating the antioxidant system, stress markers and reducing cadmium uptake. Environmental Pollution, 292(Part A), 118373. https://doi.org/10.1016/j.envpol.2021.118373
  • Satti, S. H., Raja, N. I., Javed, B., Akram, A., Mashwani, Z.-u.-R., Ahmad, M. S., & Ikram, M. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. Plos One, 16(2), e0246880. https://doi.org/10.1371/journal.pone.0246880
  • Shoja, A. A., Çirak, C., Ganjeali, A., & Cheniany, M. (2022). Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture of Salvia tebesana Bunge in response to nano-TiO2 and methyl jasmonate elicitors. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1-2), 423-440. https://doi.org/10.1007/s11240-022-02251-2
  • Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., & Lee, E. J. (2013). Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biological Trace Element Research, 155, 93-103. https://doi.org/10.1007/s12011-013-9765-x
  • Toma, W., Guimarães, L. L., Brito, R. M. S., Santos, A. R., Cortez, F. S., Pusceddu, F. H., Cesar, A., Júnior, L. S., Pacheco, M. T. T., & Pereira, C. D. S. (2014). Safflower oil: An integrated assessment of photochemistry, antiulcerogenic activity, and rodent and environmental toxicity. Revista Brasilera de Farmacognosia, 24(5), 538-544. https://doi.org/10.1016/j.bjp.2014.09.004
  • Torres, J. A., Nogueira, A. E., da Silva, G. T., Lopes, O. F., Wang, Y., He, T., & Ribeiro, C. (2020). Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. Journal of CO2 Utilization, 35, 106-114. https://doi.org/10.1016/j.jcou.2019.09.008
  • Wu, J., Zhan, M., Chang, Y., Su, Q., & Yu, R. (2018). Adaption and recovery of Nitrosomonas europaea to chronic TiO2 nanoparticle exposure. Water Research, 147, 429-439. https://doi.org/10.1016/j.watres.2018.09.043
  • Yang, L., Jiang, X., Ruan, W., Zhao, B., Xu, W., & Lombardi, J. R. (2008). Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. The Journal of Physical Chemistry, 112(50), 20095-20098. https://doi.org/10.1021/jp8074145
  • Younes, N. A., Hassan, H. S., Elkady, M. F., Hamed, A. M., & Dawood M. F. A. (2020). Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon, 6(1), e03188. https://doi.org/10.1016/j.heliyon.2020.e03188
  • Zhou, Y., Zhao, W., Lai, Y., Zhang, B., & Zhang, D. (2020). Edible plant oil: Global status, health issues, and perspectives. Frontiers in Plant Science, 11, 1315. https://doi.org/10.3389/fpls.2020.01315
Year 2024, , 41 - 49, 31.03.2024
https://doi.org/10.56430/japro.1436131

Abstract

References

  • Ahmad, I., & Akhtar, M. S. (2019). Use of nanoparticles in alleviating salt stress. In M. S. Akhtar (Ed.), Salt stress, microbes and plant interactions: Causes and solution (pp. 199-215). Springer. https://doi.org/10.1007/978-981-13-8801-9_9
  • Arezoo, E., Mohammadreza, E., Maryam, M., & Abdorreza, M. N. (2020). The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, 743-751. https://doi.org/10.1016/j.ijbiomac.2019.11.244
  • Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle-induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66(3), 303-310. https://doi.org/10.1007/s10725-011-9649-z
  • Ateş, H. (2015). Nano parçacıklar ve nano teller. Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji, 3(1), 437-442. (In Turkish)
  • Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., & Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282-285.
  • Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G., & Vega-Baudrit, J. R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10(9), 1763. https://doi.org/10.3390/nano10091763
  • Conte, R., Gullich, L. M. D., Bilibio, D., Zanella, O., Bender, J. P., Carniel, N., & Priamo, W. L. (2016). Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods. Food Chemistry, 213, 425-430. https://doi.org/10.1016/j.foodchem.2016.06.111
  • Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science, 8(4), 386-396. https://doi.org/10.1093/forestscience/8.4.386
  • Dogaroglu, Z. G., & Köleli, N. (2016). Effect of titanium dioxide and titanium dioxide-silver nanoparticles on seed germination of lettuce (Lactuca sativa). Çukurova University Journal of the Faculty of Engineering, 31(ÖS2), 193-198. https://doi.org/10.21605/cukurovaummfd.316762
  • Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2), 373-409.
  • Faraji, J., Sepehri, A., & Salcedo-Reyes, J. C. (2018). Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Universitas Scientiarum, 23(1), 61-87. https://doi.org/10.11144/Javeriana.SC23-1.tdna
  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 912. https://doi.org/10.1038/s41598-020-57794-1
  • Guha, T., Ravikumar, K. V. G., Mukherjee, A., Mukherjee, A., & Kundu. R. (2018). Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 127, 403-413. https://doi.org/10.1016/j.plaphy.2018.04.014
  • Gürsoy, M. (2019). Importance of some oil crops in human nutrition. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2154-2158. https://doi.org/10.24925/turjaf.v7i12.2154-2158.2916
  • Hatami, M., Ghorbanpour, M., & Salehiarjomand, H. (2014). Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences, 8(22), 53-59.
  • Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stress in safflower: A review. Agronomy for Sustainable Development, 36, 1-31. https://doi.org/10.1007/s13593-015-0344-8
  • Jabeen, N., & Ahmad, R. (2013). Variations in accessions of sunflower and safflower under stress conditions. Pakistan Journal of Botany, 45(2), 383-389.
  • Javed, B., & Mashwani, Z. U. R. (2020). Synergistic effects of physicochemical parameters on bio-fabrication of mint silver nanoparticles: Structural evaluation and action against HCT116 colon cancer cells. International Journal of Nanomedicine, 15, 3621-3637. https://doi.org/10.2147/IJN.S254402
  • Javed, B., Nadhman, A., & Mashwani, Z. U. R. (2020). Photosynthesis of Ag nanoparticles from Mentha longifolia: Their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial, and bacterial cells. Applied Nanoscience, 10, 3503-3515. https://doi.org/10.1007/s13204-020-01428-5
  • Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., Khamlich, S., & Maaza, M. (2017). Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine, 12(15), 1767-1789. https://doi.org/10.2217/nnm-2017-0124
  • Li, Q., Duan, M., Liu, L., Chen, X., Fu, Y., Li, J., Zhao, T., & McClements, D. J. (2021). Impact of polyphenol interactions with titanium dioxide nanoparticles on their bioavailability and antioxidant activity. Journal of Agricultural and Food Chemistry, 69(33), 9661-9670. https://doi.org/10.1021/acs.jafc.1c01970
  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
  • Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nano priming agent for promoting maize seed germination. Science of the Total Environment, 573, 1089-1102. https://doi.org/10.1016/j.scitotenv.2016.08.120
  • Kamal, R., & Mogazy, A. M. (2021). Effect of doping on TiO2 nanoparticles characteristics: Studying of fertilizing effect on cowpea plant growth and yield. Journal of Soil Science and Plant Nutrition, 23, 325-337. https://doi.org/10.1007/s42729-021-00648-0
  • Kumari, A. (2009). Germination behaviour, viability and longevity of safflower (Carthamus tinctorius L.) seeds. Biosciences, 3(1), 11-15.
  • Mehrian, K. S., Heidari, R., Rahmani, F., & Najafi, S. (2016). Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. Journal of Cluster Science, 27, 327-340. https://doi.org/10.1007/s10876-015-0932-4
  • Omidi, A. H., Khazaei, H., Monneveux, P., & Stoddard, F. (2012). Effect of cultivar and water regime on yield and yield components in safflower (Carthamus tinctorius L.). Turkish Journal of Field Crops, 17(1), 10-15.
  • Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  • Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N. I., & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. Biotech, 9, 1-11. https://doi.org/10.1007/s13205-019-1626-7
  • Ravindran, A., Prathna, T. C., Verma, V. K., Chandrasekaran, N., Mukherjee, A. (2012). Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: Root elongation and seed germination assay. Toxicological & Environmental Chemistry, 94(1), 91-98. https://doi.org/10.1080/02772248.2011.617034
  • Regier, N., Cosio, C., Von Moos, N., & Slaveykova, V. I. (2015). Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis, and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 128, 56-61. https://doi.org/10.1016/j.chemosphere.2014.12.078
  • Rizvi, S. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64-70. https://doi.org/10.1016/j.jsps.2017.10.012
  • Roccisano, D., Kumaratilake, J., Saniotis, A., & Henneberg, M. (2016). Dietary fats and oils: Some evolutionary and historical perspectives concerning edible lipids for human consumption. Food and Nutrition Sciences, 7(8), 689-702. https://doi.org/10.4236/fns.2016.78070
  • Sanoubar, R., Calone, R., Noli, E., & Barbanti, L. (2018). Data on seed germination using LED versus fluorescent light under growth chamber conditions. Data in Brief., 19, 594-600. https://doi.org/10.1016/j.dib.2018.05.040
  • Sardar, R., Ahmed, S., & Yasin, N. A. (2022). Titanium dioxide nanoparticles mitigate cadmium toxicity in Coriandrum sativum L. through modulating the antioxidant system, stress markers and reducing cadmium uptake. Environmental Pollution, 292(Part A), 118373. https://doi.org/10.1016/j.envpol.2021.118373
  • Satti, S. H., Raja, N. I., Javed, B., Akram, A., Mashwani, Z.-u.-R., Ahmad, M. S., & Ikram, M. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. Plos One, 16(2), e0246880. https://doi.org/10.1371/journal.pone.0246880
  • Shoja, A. A., Çirak, C., Ganjeali, A., & Cheniany, M. (2022). Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture of Salvia tebesana Bunge in response to nano-TiO2 and methyl jasmonate elicitors. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1-2), 423-440. https://doi.org/10.1007/s11240-022-02251-2
  • Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., & Lee, E. J. (2013). Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biological Trace Element Research, 155, 93-103. https://doi.org/10.1007/s12011-013-9765-x
  • Toma, W., Guimarães, L. L., Brito, R. M. S., Santos, A. R., Cortez, F. S., Pusceddu, F. H., Cesar, A., Júnior, L. S., Pacheco, M. T. T., & Pereira, C. D. S. (2014). Safflower oil: An integrated assessment of photochemistry, antiulcerogenic activity, and rodent and environmental toxicity. Revista Brasilera de Farmacognosia, 24(5), 538-544. https://doi.org/10.1016/j.bjp.2014.09.004
  • Torres, J. A., Nogueira, A. E., da Silva, G. T., Lopes, O. F., Wang, Y., He, T., & Ribeiro, C. (2020). Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. Journal of CO2 Utilization, 35, 106-114. https://doi.org/10.1016/j.jcou.2019.09.008
  • Wu, J., Zhan, M., Chang, Y., Su, Q., & Yu, R. (2018). Adaption and recovery of Nitrosomonas europaea to chronic TiO2 nanoparticle exposure. Water Research, 147, 429-439. https://doi.org/10.1016/j.watres.2018.09.043
  • Yang, L., Jiang, X., Ruan, W., Zhao, B., Xu, W., & Lombardi, J. R. (2008). Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. The Journal of Physical Chemistry, 112(50), 20095-20098. https://doi.org/10.1021/jp8074145
  • Younes, N. A., Hassan, H. S., Elkady, M. F., Hamed, A. M., & Dawood M. F. A. (2020). Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon, 6(1), e03188. https://doi.org/10.1016/j.heliyon.2020.e03188
  • Zhou, Y., Zhao, W., Lai, Y., Zhang, B., & Zhang, D. (2020). Edible plant oil: Global status, health issues, and perspectives. Frontiers in Plant Science, 11, 1315. https://doi.org/10.3389/fpls.2020.01315
There are 44 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section Research Articles
Authors

Volkan Gül 0000-0003-4899-2822

Burcu Seckın Dınler 0000-0001-6289-380X

Fırat Sefaoğlu 0000-0002-8485-6564

Hatice Çetinkaya 0000-0002-9792-5928

Fatma Nur Koç 0000-0001-5906-3274

Early Pub Date March 31, 2024
Publication Date March 31, 2024
Submission Date February 13, 2024
Acceptance Date March 3, 2024
Published in Issue Year 2024

Cite

APA Gül, V., Seckın Dınler, B., Sefaoğlu, F., Çetinkaya, H., et al. (2024). The Effect of Pre-Applied Titanium Dioxide Nanoparticles on Germination in Carthamus tinctorius L. Varieties. Journal of Agricultural Production, 5(1), 41-49. https://doi.org/10.56430/japro.1436131