Review
BibTex RIS Cite

The Effects of Atmospheric Pollutants on Freshwater Resources and the Protective Role of Meadow and Pasture Ecosystems

Year 2025, Volume: 6 Issue: 4, 290 - 300, 30.12.2025
https://doi.org/10.56430/japro.1789043

Abstract

Globally, freshwater resources are severely constrained in both quantity and quality, and are increasingly threatened by atmospheric pollutants resulting from anthropogenic activities such as industrialization, urbanization, and intensive agriculture. Atmospheric emissions of heavy metals (Cd, Pb, Hg, etc.), nitrogenous compounds (e.g., NOₓ, NH₃), gaseous pollutants (SO₂, NO₂, O₃, CO) and particulate matter (PM₂.₅, PM₁₀, UFP0.1) are deposited into aquatic systems via dry and wet deposition pathways, thereby altering the physicochemical composition of freshwater bodies and compromising the continuity of essential ecosystem services. Notably, processes such as acid deposition, heavy metal accumulation, and eutrophication contribute to biodiversity loss in surface waters, the extinction of sensitive species, and a decline in overall water quality. These effects not only disrupt ecological integrity but also pose substantial risks to public health and economic sustainability. This study comprehensively examines the incorporation of atmospheric pollutants into hydrological systems through deposition mechanisms and reviews their impacts on the structural and functional integrity of freshwater ecosystems. Furthermore, the ecological functions of natural vegetation—particularly meadow and pasture ecosystems—as biological buffers and filters are critically evaluated. These systems mitigate pollutant transport and soil erosion through dense root networks, high vegetative cover, and biochemical interactions. Natural attenuation processes such as phytoremediation enable the uptake, transformation, or sequestration of atmospheric contaminants, highlighting the strategic hydrological and ecological value of such ecosystems. The findings underscore the necessity of integrating nature-based solutions into land and water management frameworks to ensure long-term environmental sustainability. In conclusion, meadow and pasture ecosystems serve not only agricultural functions but also play a pivotal role in the conservation of freshwater resources and environmental resilience. Protecting and managing these natural filtration systems is imperative for mitigating the adverse impacts of atmospheric pollution and for advancing sustainable resource governance.

Ethical Statement

This study does not require ethical committee approval.

Thanks

This study was presented as an oral presentation at the 6th International Congress on Engineering and Life Science held on 2-4 September 2025, in Kyrenia, Turkish Republic of Northern Cyprus.

References

  • Altın, M., Gökkuş, A., & Koç, A. (2011). Çayır ve mera yönetimi. Tarım ve Köy İşleri Bakanlığı, Tarımsal Üretim ve Geliştirme Genel Müdürlüğü Yayınları. (In Turkish)
  • Altın, M., Gökkuş, A., Koç, A. (2021). Çayır mera ıslahı. Palme Yayınevi. (In Turkish)
  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2009). Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere, 74(10), 1292-1300. https://doi.org/10.1016/j.chemosphere.2008.11.063
  • Arena, C., De Maio, A., De Nicola, F., Santorufo, L., Vitale, L., & Maisto, G. (2014). Assessment of eco-physiological performance of Quercus ilex L. leaves in urban area by an integrated approach. Water, Air, & Soil Pollution, 225, 1824. https://doi.org/10.1007/s11270-013-1824-6
  • Azimi, S., Rocher, V., Garnaud, S., Varrault, G., & Thevenot, D. R. (2005). Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere, 61(5), 645-651. https://doi.org/10.1016/j.chemosphere.2005.03.022
  • Badman, D. G., & Jaffé, E. R. (1996). Blood and air pollution; state of knowledge and research needs. Otolaryngology-Head and Neck Surgery, 114(2), 205-208. https://doi.org/10.1016/S0194-59989670166-3
  • Balmes, J. R., Fine, J. M., & Sheppard, D. (1987). Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. American Review of Respiratory Disease, 136(5), 3674573. https://doi.org/10.1164/ajrccm/136.5.1117
  • Bano, H., Rather, R. A., Bhat, J. I., Bhat, T. A., Azad, H., Bhat, S. A., & Bhat, M. A. (2021). Effect of pre-sowing treatments using phytohormones and other dormancy breaking chemicals on seed germination of Dioscorea deltoidea Wall. Ex Griseb.: An endangered medicinal plant species of north western Himalaya. Ecology Environment and Conservation, 27, 253-260.
  • Bano, H., Malik, S., Rather, R. A., Bhat, J. I., Islam, S., Bhat, T. A., & Bhat, M. A. (2022). Impact of anthropogenic activities on physico-chemical properties of sediment of Hokersar wetland: A protected wildlife reserve (Ramsar Site No. 1570) of Kashmir Himalaya. Bangladesh Journal of Botany, 51(1), 83-92. https://doi.org/10.3329/bjb.v51i1.58824
  • Bennama, M. M. (2006). Libya toprak örneklerinin bazı özelliklerinin saptanması (Master’s thesis, Hacettepe University). (In Turkish)
  • Bortoloti, G. A., & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204. https://doi.org/10.1016/j.envadv.2022.100204
  • Bravo, A. G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., & Bertilsson, S. (2017). Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 8, 14255. https://doi.org/10.1038/ncomms14255
  • Brooker, R. W. (2006). Plant–plant interactions and environmental change. New Phytologist, 171(2), 271-284. https://doi.org/10.1111/j.1469-8137.2006.01752.x
  • Budiwati, T., Setyawati, W., & Aries Tanti, D. (2016). Chemical characteristics of rainwater in Sumatera, Indonesia, during 2001–2010. International Journal of Atmospheric Sciences, 2016(1), 1876046. https://doi.org/10.1155/2016/1876046
  • Bui, X. T., Vo, T. D. H., Ngo, H. H., Guo, W., Nguyen, T. V., & Nguyen, P. D. (2020). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Science of The Total Environment, 563-564, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191
  • Dalman, O., & Arslan, A. E. (2012). Trabzon'da yağmur sularının analizi. Ekoloji, 21(85), 107-113. https://doi.org/10.5053/ekoloji.2012.8512 (In Turkish)
  • Denhez, F. (2007). Küresel ısınma atlası. NTV Yayınları. (In Turkish)
  • Dereli, E. M., Ertürk, A., & Çakmakçi, M. (2017). Yüzeysel sularda ağır metallerin etkileri ve ötrofikasyon ile ilişkisi. Turkish Journal of Aquatic Sciences, 32(4), 214-230. https://doi.org/10.18864/TJAS201720 (In Turkish)
  • Desboeufs, K., Fu, F., Bressac, M., Tovar-Sánchez, A., Triquet, S., Doussin, J. F., … & Guieu, C. (2022). Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater. Atmospheric Chemistry and Physics, 22(4), 2309-2332. https://doi.org/10.5194/acp-22-2309-2022
  • Dhir, B., Sharmila, P., & Saradhi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781. https://doi.org/10.1080/10643380801977776
  • Dong, J., Kang, Y., Kuang, S., Ma, H., Li, M., Xiao, J., & Wu, H. (2023). Combined biological effects of polystyrene microplastics and phenanthrene on Tubifex tubifex and microorganisms in wetland sediment. Chemical Engineering Journal, 462, 142260. https://doi.org/10.1016/j.cej.2023.142260
  • DSİ. (2023). 2023 yılı faaliyet raporu. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/Sayfa/759/1107/DosyaGaleri/dsi_2023_yili_faaliyet_raporu.pdf (In Turkish)
  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. https://doi.org/10.1017/S1464793105006950
  • Dündar, M. (2007). Su kaynaklarının uluslararası sorun oluşturması (Master’s thesis, Karadeniz Technical university). (In Turkish)
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Eren, S. (2006). Sahra tozunun biyolojik arıtım prosesine olan etkilerinin araştırılması (Master’s thesis, Hacettepe University). (In Turkish)
  • Ewan, K. B., & Pamphlett, R. (1996). Increased inorganic mercury in spinal motor neurons following chelating agents. Neurotoxicology, 17(2), 343-349.
  • Fageria, N. K. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43(16), 2063-2113. https://doi.org/10.1080/00103624.2012.697234
  • Falkenmark, M., & Rockström, J. (2004). Balancing water for humans and nature: The new approach in ecohydrology. Routledge.
  • Feyzioğlu, A. M., & Öğüt, H. (2005). Sahra tozları: Güneydoğu Karadeniz’de temmuz 2001 yılındaki Gymnodinium sanguineum bloomundan sorumlu olabilirmi? Ulusal Su Günleri, Trabzon. (In Turkish)
  • Fischer, M. L. (2009). Observation of CH4 and other Non-CO2 Green House Gas Emissions from California. Lawrence Berkeley National Laboratory, Pier Final Project Report.
  • Gatidou, G., Oursouzidou, M., Stefanatou, A., & Stasinakis, A. S. (2017). Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Science of the Total Environment, 596-597, 12-17. https://doi.org/10.1016/j.scitotenv.2017.04.051
  • Gatliff, E., Linton, P. J., Riddle, D. J., & Thomas, P. R. (2016). Phytoremediation of soil and groundwater: economic benefits over traditional methodologies. In M. N. V Prasad (Ed.), Bioremediation and bioeconomy (pp. 589-608). Elsevier. https://doi.org/10.1016/B978-0-12-802830-8.00023-X
  • Gheorghe, I. F., & Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In M. K. Khallaf (Ed.), The impact of air pollution on health, economy, environment and agricultural sources (pp. 241-280). IntechOpen. https://doi.org/10.5772/17660
  • Ghio, A. J., & Huang, Y. C. T. (2004). Exposure to concentrated ambient particles (CAPs): A review. Inhalation Toxicology, 16(1), 53-59. https://doi.org/10.1080/08958370490258390
  • Ghose, M. K., & Majee, S. R. (2000). Assessment of dust generation due to opencast coal mining–an Indian case study. Environmental Monitoring and Assessment, 61, 257-265. https://doi.org/10.1023/A:1006127407401
  • Göçmez, S. (2006). Menemen ovası topraklarında iz su kentsel arıtma çamuru uygulamalarının mikrobiyal aktivite ve biyomas ile bazı fiziksel ve kimyasal toprak özellikleri üzerine etkisi (Doctoral thesis, Ege University). (In Turkish)
  • Gökkuş, A. (2024). Tarım kaynaklı sorunlar ve sürdürülebilir bir tarım için çok yıllık yem bitkilerinin önemi: I. Sorunlar. Journal Of Science-Technology-Innovation Ecosystem, 5(1), 67-80.
  • Gross, C., & Hagy III, J. D. (2017). Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution. Journal of Environmental Management, 187, 122-136. https://doi.org/10.1016/j.jenvman.2016.11.018
  • Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592
  • Guan, D. S., Ding, J., & Wang, L. (2000). The impact of tourism and environmental pollution on plants and soil of forests in urban parks of Guangzhou. China Environmental Science, 20(3), 277-280.
  • Hallett, P. D., & Bengough, A. G. (2013). Managing the soil physical environment for plants. In P. J. Gregory & S. Nortcliff (Eds.), Soil conditions and plant growth (pp. 238-268). Blackwell Publishing Ltd. https://doi.org/10.1002/9781118337295.ch8
  • Han, Y., Lee, J., Haiping, G., Kim, K. H., Wanxi, P., Bhardwaj, N., & Brown, R. J. (2022). Plant-based remediation of air pollution: A review. Journal of Environmental Management, 301, 113860. https://doi.org/10.1016/j.jenvman.2021.113860
  • He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: A review. Journal of Hazardous Materials Advances, 9, 100218. https://doi.org/10.1016/j.hazadv.2022.100218
  • Hudnell, H. K., Dortch, Q., & Zenick, H. (2008). An overview of the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB): Advancing the scientific understanding of freshwater harmful algal blooms. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs (pp. 1-16). Springer New York. https://doi.org/10.1007/978-0-387-75865-7_1
  • Hui, C. X., Dan, G., Alamri, S., & Toghraie, D. (2023). Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustainable Cities and Society, 99, 104985. https://doi.org/10.1016/j.scs.2023.104985
  • Jankowska-Huflejt, H. (2006). The function of permanent grasslands in water resources protection. Journal of Water and Land Development, (10), 55-65. https://doi.org/10.2478/v10025-007-0005-7
  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032
  • Jiang, S. Y., Yang, F., Chan, K. L., & Ning, Z. (2014). Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research, 5(2), 236-244. https://doi.org/10.5094/APR.2014.029
  • Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D., Duce, R. A., & Zamora, L. M. (2017). A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles, 31(2), 289-305. https://doi.org/10.1002/2016GB005586
  • Kagawa, J. (1985). Evaluation of biological significance of nitrogen oxides exposure. The Tokai Journal of Experimental and Clinical Medicine, 10(4), 348-353.
  • Kara, M., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., & Bayram, A. (2014). Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmospheric Research, 149, 204-216. https://doi.org/10.1016/j.atmosres.2014.06.009
  • Keresztesi, Á., Nita, I. A., Birsan, M. V., Bodor, Z., Pernyeszi, T., Micheu, M. M., & Szép, R. (2020). Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. Atmospheric Research, 237, 104846. https://doi.org/10.1016/j.atmosres.2020.104846
  • Khayan, K., Heru Husodo, A., Astuti, I., Sudarmadji, S., & Sugandawaty Djohan, T. (2019). Rainwater as a source of drinking water: Health impacts and rainwater treatment. Journal of Environmental and Public Health, 2019(1), 1760950. https://doi.org/10.1155/2019/1760950
  • Kocaer, F. O., & Başkaya, S. H. (2003). Metallerle kirlenmiş toprakların temizlenmesinde uygulanan teknolojiler. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 8(1), 121-131. (In Turkish)
  • Kocataş, A. (1999). Ekoloji, çevre biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları. (In Turkish)
  • Koluman, A. (2002). Dünyada su sorunları ve stratejileri. ASAM Yayınları. (In Turkish)
  • Küçükklavuz, E. (2009). Küresel ısınmanın su kaynakları üzerine etkileri: Türkiye örneği (Master’s thesis, Harran University). (In Turkish)
  • Kulshreshtha, K., Rai, A., Mohanty, C. S., Roy, R. K., & Sharma, S. C. (2009). Particulate pollution mitigating ability of some plant species. International Journal of Environmental Research, 3(1), 137-142.
  • Kumari, D., Thakur, A., Tiwari, A. K., & Singh, R. (2024). Types and sources of agricultural pollution: Identifying the different pollutants generated by farming practices and their origins. In A. Kumar, J. Singh, D. Kumar & R. Kumar (Eds.), A comprehensive exploration of soil, water, and air pollution in agriculture (pp. 71-85). BFC Publications.
  • Kwiatkowska-Malina, J. (2015). The comparison of the structure of humic acids from soil amended with different sources of organic matter. Polish Journal of Soil Science, 48(1), 57-64. https://doi.org/10.17951/pjss.2015.48.1.57
  • Lapointe, B. E., Burkholder, J. M., & Van Alstyne, K. L. (2018). Harmful macroalgal blooms in a changing world: Causes, impacts, and management. In S. E. Shumway, J. M. Burkholder & S. L. Morton (Eds.), Harmful algal blooms: A compendium desk reference (pp. 515-560). John Wiley & Sons. https://doi.org/10.1002/9781118994672.ch15
  • Lapointe, B. E., Herren, L. W., Brewton, R. A., & Alderman, P. K. (2020). Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Science of the Total Environment, 699, 134068. https://doi.org/10.1016/j.scitotenv.2019.134068
  • Lasley, S. M., & Gilbert, M. E. (2000). Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology, 21(6), 1057-1068.
  • Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18(3), 431-439. https://doi.org/10.1007/s12257-013-0193-8
  • Lee, S. H., Park, H., & Kim, J. G. (2023). Current status of and challenges for phytoremediation as a sustainable environmental management plan for abandoned mine areas in Korea. Sustainability, 15(3), 2761. https://doi.org/10.3390/su15032761
  • Li, X., Zhang, X., Zhang, X., Han, L., & Liu, Y. (2020). Impact of industrial wastewater discharge on water quality and aquatic ecosystem in receiving rivers. Journal of Cleaner Production, 267, 122173.
  • Liu, B., Xie, G., Zhang, X., Zhao, Y., Yin, X., Cheng, C. (2015). Vegetation root system, soil erosion and ecohydrology system: A review. International Forum on Energy, Environment Science and Materials (IFEESM 2015). Shenzhen. https://doi.org/10.2991/ifeesm-15.2015.52
  • Liu, K., & Shao, X. (2024). Grassland ecological management and utilization for sustainability. Agronomy, 14(1), 149. https://doi.org/10.3390/agronomy14010149
  • López, J. C., Quijano, G., Souza, T. S., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97, 2277-2303. https://doi.org/10.1007/s00253-013-4734-z
  • Mandal, P. K. (2005). Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. Journal of Comparative Physiology B, 175, 221-230. https://doi.org/10.1007/s00360-005-0483-3
  • McDowell, R., & Wilcock, R. (2008). Water quality and the effects of different pastoral animals. New Zealand Veterinary Journal, 56(6), 289-296. https://doi.org/10.1080/00480169.2008.36849
  • MGM. (2017). Hidrometeoroloji. https://www.mgm.gov.tr/genel/hidrometeoroloji.aspx?s=1 (In Turkish)
  • Mijić, Z., Stojić, A., Perišić, M., Rajšić, S., Tasić, M., Radenković, M., & Joksić, J. (2010). Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmospheric Environment, 44(30), 3630-3637. https://doi.org/10.1016/j.atmosenv.2010.06.045
  • Negral, L., Suárez-Peña, B., Zapico, E., Fernández-Nava, Y., Megido, L., Moreno, J., Marañón, E., & Castrillón, L. (2020). Anthropogenic and meteorological influences on PM10 metal/semi-metal concentrations: Implications for human health. Chemosphere, 243, 125347. https://doi.org/10.1016/j.chemosphere.2019.125347
  • Nortjé, G. P., & Laker, M. C. (2021). Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Minerals, 11(8), 821. https://doi.org/10.3390/min11080821
  • Novák, J., Jankowski, K., Sosnowski, J., Malinowska, E., & Wiśniewska-Kadżajan, B. (2020). Influence of plant species and grasslands quality on sequestration of soil organic carbon. Ekológia, 39(3), 289-300. https://doi.org/10.2478/eko-2020-0023
  • Pandey, J., Verma, R. K., & Singh, S. (2019). Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: A review. International Journal of Phytoremediation, 21(5), 405-418. https://doi.org/10.1080/15226514.2018.1540546
  • Pandey, N., Chandra, J., Xalxo, R., & Sahu, K. (2021). Concept and types of phytoremediation. In M. Hasanuzzaman (Ed.), Approaches to the remediation of inorganic pollutants (pp. 281-302). Springer Singapore. https://doi.org/10.1007/978-981-15-6221-1_14
  • Pattanayak, S. K., Jeuland, M., Lewis, J. J., Usmani, F., Brooks, N., Bhojvaid, V., & Ramanathan, V. (2019). Experimental evidence on promotion of electric and improved biomass cookstoves. Proceedings of the National Academy of Sciences, 116(27), 13282-13287. https://doi.org/10.1073/pnas.1808827116
  • Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485
  • Ratté-Fortin, C., Rousseau, A. N., Thériault, G., & Van Bochove, E. (2019). Evaluating the effects of BMPs on agricultural contaminants using a novel method accounting for uncertainty in water flow and contaminant loads. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques, 44(3), 263-279. https://doi.org/10.1080/07011784.2019.1581093
  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem: Chemistry-Sustainability-Energy-Materials, 1(8‐9), 708-717. https://doi.org/10.1002/cssc.200800125
  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461, 472-475. https://doi.org/10.1038/461472a
  • Ruiz-Fernández, A. C., Ontiveros-Cuadras, J. F., Sericano, J. L., Sanchez-Cabeza, J. A., Kwong, L. L. W., Dunbar, R. B., Mucciarone, D. A., Pérez-Bernal, L. H., & Páez-Osuna, F. (2014). Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. Science of the Total Environment, 493, 505-520. https://doi.org/10.1016/j.scitotenv.2014.05.002
  • Rychnovská, M. (2007). Fungování travinných ekosystémů je klíčem k porozumění jejich funkce v krajině. In V. Krajčovič (Ed.), Ekológia trávneho porastu VII (pp. 16-19). Banská Bystrica. (In Czech)
  • Schartup, A. T., Mason, R. P., Balcom, P. H., Hollweg, T. A., & Chen, C. Y. (2013). Methylmercury production in estuarine sediments: Role of organic matter. Environmental Science & Technology, 47(2), 695-700. https://doi.org/10.1021/es302566w
  • Schlesinger, W. H. (1997). Biogeochemistry: An analysis of global change. Academic Press. https://doi.org/10.1016/C2012-0-01654-7
  • Serin, Y., & Tan, M. (2001). Yem bitkileri kültürüne giriş. Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları. (In Turkish)
  • Shah, N., Irshad, M., Murad, W., Hamayun, M., Qadir, M., Hussain, A., & Ali, S. (2024). IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. BMC Plant Biology, 24, 815. https://doi.org/10.1186/s12870-024-05329-5
  • Shiklomanov, I. A. (1993). World freshwater resources. In P. H. Gleick (Ed.), Water in crisis: A guide to the world's water resources (pp. 13-24). Oxford University Press.
  • Sjöqvist, H., Längkvist, M., & Javed, F. (2020). An analysis of fast learning methods for classifying forest cover types. Applied Artificial Intelligence, 34(10), 691-709. https://doi.org/10.1080/08839514.2020.1771523
  • Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from here? Trends in Ecology & Evolution, 24(4), 201-207. https://doi.org/10.1016/j.tree.2008.11.009
  • Su, R., Wang, Y., Huang, S., Chen, R., & Wang, J. (2022). Application for ecological restoration of contaminated soil: Phytoremediation. International Journal of Environmental Research and Public Health, 19(20), 13124. https://doi.org/10.3390/ijerph192013124
  • Sun, X., Ye, Y., Liao, J., Soromotin, A. V., Smirnov, P. V., & Kuzyakov, Y. (2022). Organic mulching increases microbial activity in urban Forest soil. Forests, 13(9), 1352. https://doi.org/10.3390/f13091352
  • Tang, W. L., Liu, Y. R., Guan, W. Y., Zhong, H., Qu, X. M., & Zhang, T. (2020). Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Science of the Total Environment, 714, 136827. https://doi.org/10.1016/j.scitotenv.2020.136827
  • Thiagarajan, V., Nah, T., & Xin, X. (2024). Impacts of atmospheric particulate matter deposition on phytoplankton: A review. Science of The Total Environment, 950, 175280. https://doi.org/10.1016/j.scitotenv.2024.175280
  • Thömke, F., Jung, D., Besser, R., Röder, R., Konietzko, J., & Hopf, H. C. (1999). Increased risk of sensory neuropathy in workers with chloracne after exposure to 2, 3, 7, 8‐polychlorinated dioxins and furans. Acta Neurologica Scandinavica, 100(1), 1-5. https://doi.org/10.1111/j.1600-0404.1999.tb00716.x
  • UNESCO. (2024). The United Nations World Water development report 2024: Water for prosperity and peace. https://unesdoc.unesco.org/ark:/48223/pf0000388948
  • Uysal, N., & Schapira, R. M. (2003). Effects of ozone on lung function and lung diseases. Current Opinion in Pulmonary Medicine, 9(2), 144-150. https://doi.org/10.1097/00063198-200303000-00009
  • Vermylen, J., Nemmar, A., Nemery, B., & Hoylaerts, M. F. (2005). Ambient air pollution and acute myocardial infarction. Journal of Thrombosis and Haemostasis, 3(9), 1955-1961. https://doi.org/10.1111/j.1538-7836.2005.01471.x
  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440
  • Wang, Y., Jin, W., Che, Y., Huang, D., Wang, J., Zhao, M., & Sun, G. (2019). Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy. Forests, 10(4), 312. https://doi.org/10.3390/f10040312
  • Wei, C., & Wang, M. (2020). Spatial distribution of greenhouse gases (CO2 and CH4) on expressways in the megacity Shanghai, China. Environmental Science and Pollution Research, 27, 31143-31152. https://doi.org/10.1007/s11356-020-09372-1
  • Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences, 16(10), 25576-25604. https://doi.org/10.3390/ijms161025576
  • Wisler, C. O., & Brater, E. F. (1959). Hydrology. John Wiley & Sons Inc.
  • Wróblewska, K., & Jeong, B. R. (2021). Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environmental Sciences Europe, 33, 110. https://doi.org/10.1186/s12302-021-00547-2
  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011(1), 402647. https://doi.org/10.5402/2011/402647
  • Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, 101941. https://doi.org/10.1016/j.scs.2019.101941
  • Yang, J., Ma, L., He, X., Au, W., Miao, Y., Wang, W., & Nah, T. (2023). Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong—Insights into factors that control aerosol metal dissolution in an urban site in South China. Atmospheric Chemistry and Physics, 23(2), 1403-1419. https://doi.org/10.5194/acp-23-1403-2023
  • Yu, C., Duan, P., Yu, Z., & Gao, B. (2019). Experimental and model investigations of vegetative filter strips for contaminant removal: A review. Ecological Engineering, 126, 25-36. https://doi.org/10.1016/j.ecoleng.2018.10.020
  • Yu, M. H., Tsunoda, H., & Tsunoda, M. (2011). Environmental toxicology: Biological and health effects of pollutants. CRC Press. https://doi.org/10.1201/b11677
  • Yuan, Y., Bingner, R. L., & Locke, M. A. (2009). A review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology, 2(3), 321-336. https://doi.org/10.1002/eco.82
  • Yun, H. J., Yi, S. M., & Kim, Y. P. (2002). Dry deposition fluxes of ambient particulate heavy metals in a small city, Korea. Atmospheric Environment, 36(35), 5449-5458. https://doi.org/10.1016/S1352-2310(02)00660-X
  • Zehnle, H., Otersen, C., Benito Merino, D., & Wegener, G. (2023). Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Frontiers in Microbiology, 14, 1279865. https://doi.org/10.3389/fmicb.2023.1279865
  • Zhang, Z., Sun, J., Gong, X., Wang, C., & Wang, H. (2023). Anaerobic biodegradation of pyrene and benzo [a] pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA. Journal of Hazardous Materials, 459, 132053. https://doi.org/10.1016/j.jhazmat.2023.132053
  • Zhao, J., Chen, C., & Ma, W. (2005). Photocatalytic degradation of organic pollutants under visible light irradiation. Topics in Catalysis, 35, 269-278. https://doi.org/10.1007/s11244-005-3834-0
  • Zhao, W., Gan, R., Xian, B., Wu, T., Wu, G., Huang, S., & Zhang, Y. (2024). Overview of methylation and demethylation mechanisms and influencing factors of mercury in water. Toxics, 12(10), 715. https://doi.org/10.3390/toxics12100715
  • Zhou, Y., Shao, Y., Gao, N., & Zhu, S. (2019). Adsorption of organic pollutants from industrial wastewater onto porous materials prepared from sewage sludge. Chemical Engineering Journal, 359, 1445-1455.

Year 2025, Volume: 6 Issue: 4, 290 - 300, 30.12.2025
https://doi.org/10.56430/japro.1789043

Abstract

References

  • Altın, M., Gökkuş, A., & Koç, A. (2011). Çayır ve mera yönetimi. Tarım ve Köy İşleri Bakanlığı, Tarımsal Üretim ve Geliştirme Genel Müdürlüğü Yayınları. (In Turkish)
  • Altın, M., Gökkuş, A., Koç, A. (2021). Çayır mera ıslahı. Palme Yayınevi. (In Turkish)
  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2009). Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere, 74(10), 1292-1300. https://doi.org/10.1016/j.chemosphere.2008.11.063
  • Arena, C., De Maio, A., De Nicola, F., Santorufo, L., Vitale, L., & Maisto, G. (2014). Assessment of eco-physiological performance of Quercus ilex L. leaves in urban area by an integrated approach. Water, Air, & Soil Pollution, 225, 1824. https://doi.org/10.1007/s11270-013-1824-6
  • Azimi, S., Rocher, V., Garnaud, S., Varrault, G., & Thevenot, D. R. (2005). Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere, 61(5), 645-651. https://doi.org/10.1016/j.chemosphere.2005.03.022
  • Badman, D. G., & Jaffé, E. R. (1996). Blood and air pollution; state of knowledge and research needs. Otolaryngology-Head and Neck Surgery, 114(2), 205-208. https://doi.org/10.1016/S0194-59989670166-3
  • Balmes, J. R., Fine, J. M., & Sheppard, D. (1987). Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. American Review of Respiratory Disease, 136(5), 3674573. https://doi.org/10.1164/ajrccm/136.5.1117
  • Bano, H., Rather, R. A., Bhat, J. I., Bhat, T. A., Azad, H., Bhat, S. A., & Bhat, M. A. (2021). Effect of pre-sowing treatments using phytohormones and other dormancy breaking chemicals on seed germination of Dioscorea deltoidea Wall. Ex Griseb.: An endangered medicinal plant species of north western Himalaya. Ecology Environment and Conservation, 27, 253-260.
  • Bano, H., Malik, S., Rather, R. A., Bhat, J. I., Islam, S., Bhat, T. A., & Bhat, M. A. (2022). Impact of anthropogenic activities on physico-chemical properties of sediment of Hokersar wetland: A protected wildlife reserve (Ramsar Site No. 1570) of Kashmir Himalaya. Bangladesh Journal of Botany, 51(1), 83-92. https://doi.org/10.3329/bjb.v51i1.58824
  • Bennama, M. M. (2006). Libya toprak örneklerinin bazı özelliklerinin saptanması (Master’s thesis, Hacettepe University). (In Turkish)
  • Bortoloti, G. A., & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204. https://doi.org/10.1016/j.envadv.2022.100204
  • Bravo, A. G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., & Bertilsson, S. (2017). Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 8, 14255. https://doi.org/10.1038/ncomms14255
  • Brooker, R. W. (2006). Plant–plant interactions and environmental change. New Phytologist, 171(2), 271-284. https://doi.org/10.1111/j.1469-8137.2006.01752.x
  • Budiwati, T., Setyawati, W., & Aries Tanti, D. (2016). Chemical characteristics of rainwater in Sumatera, Indonesia, during 2001–2010. International Journal of Atmospheric Sciences, 2016(1), 1876046. https://doi.org/10.1155/2016/1876046
  • Bui, X. T., Vo, T. D. H., Ngo, H. H., Guo, W., Nguyen, T. V., & Nguyen, P. D. (2020). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Science of The Total Environment, 563-564, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191
  • Dalman, O., & Arslan, A. E. (2012). Trabzon'da yağmur sularının analizi. Ekoloji, 21(85), 107-113. https://doi.org/10.5053/ekoloji.2012.8512 (In Turkish)
  • Denhez, F. (2007). Küresel ısınma atlası. NTV Yayınları. (In Turkish)
  • Dereli, E. M., Ertürk, A., & Çakmakçi, M. (2017). Yüzeysel sularda ağır metallerin etkileri ve ötrofikasyon ile ilişkisi. Turkish Journal of Aquatic Sciences, 32(4), 214-230. https://doi.org/10.18864/TJAS201720 (In Turkish)
  • Desboeufs, K., Fu, F., Bressac, M., Tovar-Sánchez, A., Triquet, S., Doussin, J. F., … & Guieu, C. (2022). Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater. Atmospheric Chemistry and Physics, 22(4), 2309-2332. https://doi.org/10.5194/acp-22-2309-2022
  • Dhir, B., Sharmila, P., & Saradhi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39(9), 754-781. https://doi.org/10.1080/10643380801977776
  • Dong, J., Kang, Y., Kuang, S., Ma, H., Li, M., Xiao, J., & Wu, H. (2023). Combined biological effects of polystyrene microplastics and phenanthrene on Tubifex tubifex and microorganisms in wetland sediment. Chemical Engineering Journal, 462, 142260. https://doi.org/10.1016/j.cej.2023.142260
  • DSİ. (2023). 2023 yılı faaliyet raporu. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/Sayfa/759/1107/DosyaGaleri/dsi_2023_yili_faaliyet_raporu.pdf (In Turkish)
  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182. https://doi.org/10.1017/S1464793105006950
  • Dündar, M. (2007). Su kaynaklarının uluslararası sorun oluşturması (Master’s thesis, Karadeniz Technical university). (In Turkish)
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Eren, S. (2006). Sahra tozunun biyolojik arıtım prosesine olan etkilerinin araştırılması (Master’s thesis, Hacettepe University). (In Turkish)
  • Ewan, K. B., & Pamphlett, R. (1996). Increased inorganic mercury in spinal motor neurons following chelating agents. Neurotoxicology, 17(2), 343-349.
  • Fageria, N. K. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43(16), 2063-2113. https://doi.org/10.1080/00103624.2012.697234
  • Falkenmark, M., & Rockström, J. (2004). Balancing water for humans and nature: The new approach in ecohydrology. Routledge.
  • Feyzioğlu, A. M., & Öğüt, H. (2005). Sahra tozları: Güneydoğu Karadeniz’de temmuz 2001 yılındaki Gymnodinium sanguineum bloomundan sorumlu olabilirmi? Ulusal Su Günleri, Trabzon. (In Turkish)
  • Fischer, M. L. (2009). Observation of CH4 and other Non-CO2 Green House Gas Emissions from California. Lawrence Berkeley National Laboratory, Pier Final Project Report.
  • Gatidou, G., Oursouzidou, M., Stefanatou, A., & Stasinakis, A. S. (2017). Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Science of the Total Environment, 596-597, 12-17. https://doi.org/10.1016/j.scitotenv.2017.04.051
  • Gatliff, E., Linton, P. J., Riddle, D. J., & Thomas, P. R. (2016). Phytoremediation of soil and groundwater: economic benefits over traditional methodologies. In M. N. V Prasad (Ed.), Bioremediation and bioeconomy (pp. 589-608). Elsevier. https://doi.org/10.1016/B978-0-12-802830-8.00023-X
  • Gheorghe, I. F., & Ion, B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In M. K. Khallaf (Ed.), The impact of air pollution on health, economy, environment and agricultural sources (pp. 241-280). IntechOpen. https://doi.org/10.5772/17660
  • Ghio, A. J., & Huang, Y. C. T. (2004). Exposure to concentrated ambient particles (CAPs): A review. Inhalation Toxicology, 16(1), 53-59. https://doi.org/10.1080/08958370490258390
  • Ghose, M. K., & Majee, S. R. (2000). Assessment of dust generation due to opencast coal mining–an Indian case study. Environmental Monitoring and Assessment, 61, 257-265. https://doi.org/10.1023/A:1006127407401
  • Göçmez, S. (2006). Menemen ovası topraklarında iz su kentsel arıtma çamuru uygulamalarının mikrobiyal aktivite ve biyomas ile bazı fiziksel ve kimyasal toprak özellikleri üzerine etkisi (Doctoral thesis, Ege University). (In Turkish)
  • Gökkuş, A. (2024). Tarım kaynaklı sorunlar ve sürdürülebilir bir tarım için çok yıllık yem bitkilerinin önemi: I. Sorunlar. Journal Of Science-Technology-Innovation Ecosystem, 5(1), 67-80.
  • Gross, C., & Hagy III, J. D. (2017). Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution. Journal of Environmental Management, 187, 122-136. https://doi.org/10.1016/j.jenvman.2016.11.018
  • Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592
  • Guan, D. S., Ding, J., & Wang, L. (2000). The impact of tourism and environmental pollution on plants and soil of forests in urban parks of Guangzhou. China Environmental Science, 20(3), 277-280.
  • Hallett, P. D., & Bengough, A. G. (2013). Managing the soil physical environment for plants. In P. J. Gregory & S. Nortcliff (Eds.), Soil conditions and plant growth (pp. 238-268). Blackwell Publishing Ltd. https://doi.org/10.1002/9781118337295.ch8
  • Han, Y., Lee, J., Haiping, G., Kim, K. H., Wanxi, P., Bhardwaj, N., & Brown, R. J. (2022). Plant-based remediation of air pollution: A review. Journal of Environmental Management, 301, 113860. https://doi.org/10.1016/j.jenvman.2021.113860
  • He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: A review. Journal of Hazardous Materials Advances, 9, 100218. https://doi.org/10.1016/j.hazadv.2022.100218
  • Hudnell, H. K., Dortch, Q., & Zenick, H. (2008). An overview of the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB): Advancing the scientific understanding of freshwater harmful algal blooms. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs (pp. 1-16). Springer New York. https://doi.org/10.1007/978-0-387-75865-7_1
  • Hui, C. X., Dan, G., Alamri, S., & Toghraie, D. (2023). Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustainable Cities and Society, 99, 104985. https://doi.org/10.1016/j.scs.2023.104985
  • Jankowska-Huflejt, H. (2006). The function of permanent grasslands in water resources protection. Journal of Water and Land Development, (10), 55-65. https://doi.org/10.2478/v10025-007-0005-7
  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032
  • Jiang, S. Y., Yang, F., Chan, K. L., & Ning, Z. (2014). Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmospheric Pollution Research, 5(2), 236-244. https://doi.org/10.5094/APR.2014.029
  • Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D., Duce, R. A., & Zamora, L. M. (2017). A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles, 31(2), 289-305. https://doi.org/10.1002/2016GB005586
  • Kagawa, J. (1985). Evaluation of biological significance of nitrogen oxides exposure. The Tokai Journal of Experimental and Clinical Medicine, 10(4), 348-353.
  • Kara, M., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., & Bayram, A. (2014). Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmospheric Research, 149, 204-216. https://doi.org/10.1016/j.atmosres.2014.06.009
  • Keresztesi, Á., Nita, I. A., Birsan, M. V., Bodor, Z., Pernyeszi, T., Micheu, M. M., & Szép, R. (2020). Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. Atmospheric Research, 237, 104846. https://doi.org/10.1016/j.atmosres.2020.104846
  • Khayan, K., Heru Husodo, A., Astuti, I., Sudarmadji, S., & Sugandawaty Djohan, T. (2019). Rainwater as a source of drinking water: Health impacts and rainwater treatment. Journal of Environmental and Public Health, 2019(1), 1760950. https://doi.org/10.1155/2019/1760950
  • Kocaer, F. O., & Başkaya, S. H. (2003). Metallerle kirlenmiş toprakların temizlenmesinde uygulanan teknolojiler. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 8(1), 121-131. (In Turkish)
  • Kocataş, A. (1999). Ekoloji, çevre biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları. (In Turkish)
  • Koluman, A. (2002). Dünyada su sorunları ve stratejileri. ASAM Yayınları. (In Turkish)
  • Küçükklavuz, E. (2009). Küresel ısınmanın su kaynakları üzerine etkileri: Türkiye örneği (Master’s thesis, Harran University). (In Turkish)
  • Kulshreshtha, K., Rai, A., Mohanty, C. S., Roy, R. K., & Sharma, S. C. (2009). Particulate pollution mitigating ability of some plant species. International Journal of Environmental Research, 3(1), 137-142.
  • Kumari, D., Thakur, A., Tiwari, A. K., & Singh, R. (2024). Types and sources of agricultural pollution: Identifying the different pollutants generated by farming practices and their origins. In A. Kumar, J. Singh, D. Kumar & R. Kumar (Eds.), A comprehensive exploration of soil, water, and air pollution in agriculture (pp. 71-85). BFC Publications.
  • Kwiatkowska-Malina, J. (2015). The comparison of the structure of humic acids from soil amended with different sources of organic matter. Polish Journal of Soil Science, 48(1), 57-64. https://doi.org/10.17951/pjss.2015.48.1.57
  • Lapointe, B. E., Burkholder, J. M., & Van Alstyne, K. L. (2018). Harmful macroalgal blooms in a changing world: Causes, impacts, and management. In S. E. Shumway, J. M. Burkholder & S. L. Morton (Eds.), Harmful algal blooms: A compendium desk reference (pp. 515-560). John Wiley & Sons. https://doi.org/10.1002/9781118994672.ch15
  • Lapointe, B. E., Herren, L. W., Brewton, R. A., & Alderman, P. K. (2020). Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Science of the Total Environment, 699, 134068. https://doi.org/10.1016/j.scitotenv.2019.134068
  • Lasley, S. M., & Gilbert, M. E. (2000). Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology, 21(6), 1057-1068.
  • Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18(3), 431-439. https://doi.org/10.1007/s12257-013-0193-8
  • Lee, S. H., Park, H., & Kim, J. G. (2023). Current status of and challenges for phytoremediation as a sustainable environmental management plan for abandoned mine areas in Korea. Sustainability, 15(3), 2761. https://doi.org/10.3390/su15032761
  • Li, X., Zhang, X., Zhang, X., Han, L., & Liu, Y. (2020). Impact of industrial wastewater discharge on water quality and aquatic ecosystem in receiving rivers. Journal of Cleaner Production, 267, 122173.
  • Liu, B., Xie, G., Zhang, X., Zhao, Y., Yin, X., Cheng, C. (2015). Vegetation root system, soil erosion and ecohydrology system: A review. International Forum on Energy, Environment Science and Materials (IFEESM 2015). Shenzhen. https://doi.org/10.2991/ifeesm-15.2015.52
  • Liu, K., & Shao, X. (2024). Grassland ecological management and utilization for sustainability. Agronomy, 14(1), 149. https://doi.org/10.3390/agronomy14010149
  • López, J. C., Quijano, G., Souza, T. S., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97, 2277-2303. https://doi.org/10.1007/s00253-013-4734-z
  • Mandal, P. K. (2005). Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. Journal of Comparative Physiology B, 175, 221-230. https://doi.org/10.1007/s00360-005-0483-3
  • McDowell, R., & Wilcock, R. (2008). Water quality and the effects of different pastoral animals. New Zealand Veterinary Journal, 56(6), 289-296. https://doi.org/10.1080/00480169.2008.36849
  • MGM. (2017). Hidrometeoroloji. https://www.mgm.gov.tr/genel/hidrometeoroloji.aspx?s=1 (In Turkish)
  • Mijić, Z., Stojić, A., Perišić, M., Rajšić, S., Tasić, M., Radenković, M., & Joksić, J. (2010). Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmospheric Environment, 44(30), 3630-3637. https://doi.org/10.1016/j.atmosenv.2010.06.045
  • Negral, L., Suárez-Peña, B., Zapico, E., Fernández-Nava, Y., Megido, L., Moreno, J., Marañón, E., & Castrillón, L. (2020). Anthropogenic and meteorological influences on PM10 metal/semi-metal concentrations: Implications for human health. Chemosphere, 243, 125347. https://doi.org/10.1016/j.chemosphere.2019.125347
  • Nortjé, G. P., & Laker, M. C. (2021). Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Minerals, 11(8), 821. https://doi.org/10.3390/min11080821
  • Novák, J., Jankowski, K., Sosnowski, J., Malinowska, E., & Wiśniewska-Kadżajan, B. (2020). Influence of plant species and grasslands quality on sequestration of soil organic carbon. Ekológia, 39(3), 289-300. https://doi.org/10.2478/eko-2020-0023
  • Pandey, J., Verma, R. K., & Singh, S. (2019). Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: A review. International Journal of Phytoremediation, 21(5), 405-418. https://doi.org/10.1080/15226514.2018.1540546
  • Pandey, N., Chandra, J., Xalxo, R., & Sahu, K. (2021). Concept and types of phytoremediation. In M. Hasanuzzaman (Ed.), Approaches to the remediation of inorganic pollutants (pp. 281-302). Springer Singapore. https://doi.org/10.1007/978-981-15-6221-1_14
  • Pattanayak, S. K., Jeuland, M., Lewis, J. J., Usmani, F., Brooks, N., Bhojvaid, V., & Ramanathan, V. (2019). Experimental evidence on promotion of electric and improved biomass cookstoves. Proceedings of the National Academy of Sciences, 116(27), 13282-13287. https://doi.org/10.1073/pnas.1808827116
  • Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485
  • Ratté-Fortin, C., Rousseau, A. N., Thériault, G., & Van Bochove, E. (2019). Evaluating the effects of BMPs on agricultural contaminants using a novel method accounting for uncertainty in water flow and contaminant loads. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques, 44(3), 263-279. https://doi.org/10.1080/07011784.2019.1581093
  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem: Chemistry-Sustainability-Energy-Materials, 1(8‐9), 708-717. https://doi.org/10.1002/cssc.200800125
  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461, 472-475. https://doi.org/10.1038/461472a
  • Ruiz-Fernández, A. C., Ontiveros-Cuadras, J. F., Sericano, J. L., Sanchez-Cabeza, J. A., Kwong, L. L. W., Dunbar, R. B., Mucciarone, D. A., Pérez-Bernal, L. H., & Páez-Osuna, F. (2014). Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. Science of the Total Environment, 493, 505-520. https://doi.org/10.1016/j.scitotenv.2014.05.002
  • Rychnovská, M. (2007). Fungování travinných ekosystémů je klíčem k porozumění jejich funkce v krajině. In V. Krajčovič (Ed.), Ekológia trávneho porastu VII (pp. 16-19). Banská Bystrica. (In Czech)
  • Schartup, A. T., Mason, R. P., Balcom, P. H., Hollweg, T. A., & Chen, C. Y. (2013). Methylmercury production in estuarine sediments: Role of organic matter. Environmental Science & Technology, 47(2), 695-700. https://doi.org/10.1021/es302566w
  • Schlesinger, W. H. (1997). Biogeochemistry: An analysis of global change. Academic Press. https://doi.org/10.1016/C2012-0-01654-7
  • Serin, Y., & Tan, M. (2001). Yem bitkileri kültürüne giriş. Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları. (In Turkish)
  • Shah, N., Irshad, M., Murad, W., Hamayun, M., Qadir, M., Hussain, A., & Ali, S. (2024). IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. BMC Plant Biology, 24, 815. https://doi.org/10.1186/s12870-024-05329-5
  • Shiklomanov, I. A. (1993). World freshwater resources. In P. H. Gleick (Ed.), Water in crisis: A guide to the world's water resources (pp. 13-24). Oxford University Press.
  • Sjöqvist, H., Längkvist, M., & Javed, F. (2020). An analysis of fast learning methods for classifying forest cover types. Applied Artificial Intelligence, 34(10), 691-709. https://doi.org/10.1080/08839514.2020.1771523
  • Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from here? Trends in Ecology & Evolution, 24(4), 201-207. https://doi.org/10.1016/j.tree.2008.11.009
  • Su, R., Wang, Y., Huang, S., Chen, R., & Wang, J. (2022). Application for ecological restoration of contaminated soil: Phytoremediation. International Journal of Environmental Research and Public Health, 19(20), 13124. https://doi.org/10.3390/ijerph192013124
  • Sun, X., Ye, Y., Liao, J., Soromotin, A. V., Smirnov, P. V., & Kuzyakov, Y. (2022). Organic mulching increases microbial activity in urban Forest soil. Forests, 13(9), 1352. https://doi.org/10.3390/f13091352
  • Tang, W. L., Liu, Y. R., Guan, W. Y., Zhong, H., Qu, X. M., & Zhang, T. (2020). Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Science of the Total Environment, 714, 136827. https://doi.org/10.1016/j.scitotenv.2020.136827
  • Thiagarajan, V., Nah, T., & Xin, X. (2024). Impacts of atmospheric particulate matter deposition on phytoplankton: A review. Science of The Total Environment, 950, 175280. https://doi.org/10.1016/j.scitotenv.2024.175280
  • Thömke, F., Jung, D., Besser, R., Röder, R., Konietzko, J., & Hopf, H. C. (1999). Increased risk of sensory neuropathy in workers with chloracne after exposure to 2, 3, 7, 8‐polychlorinated dioxins and furans. Acta Neurologica Scandinavica, 100(1), 1-5. https://doi.org/10.1111/j.1600-0404.1999.tb00716.x
  • UNESCO. (2024). The United Nations World Water development report 2024: Water for prosperity and peace. https://unesdoc.unesco.org/ark:/48223/pf0000388948
  • Uysal, N., & Schapira, R. M. (2003). Effects of ozone on lung function and lung diseases. Current Opinion in Pulmonary Medicine, 9(2), 144-150. https://doi.org/10.1097/00063198-200303000-00009
  • Vermylen, J., Nemmar, A., Nemery, B., & Hoylaerts, M. F. (2005). Ambient air pollution and acute myocardial infarction. Journal of Thrombosis and Haemostasis, 3(9), 1955-1961. https://doi.org/10.1111/j.1538-7836.2005.01471.x
  • Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440
  • Wang, Y., Jin, W., Che, Y., Huang, D., Wang, J., Zhao, M., & Sun, G. (2019). Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy. Forests, 10(4), 312. https://doi.org/10.3390/f10040312
  • Wei, C., & Wang, M. (2020). Spatial distribution of greenhouse gases (CO2 and CH4) on expressways in the megacity Shanghai, China. Environmental Science and Pollution Research, 27, 31143-31152. https://doi.org/10.1007/s11356-020-09372-1
  • Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences, 16(10), 25576-25604. https://doi.org/10.3390/ijms161025576
  • Wisler, C. O., & Brater, E. F. (1959). Hydrology. John Wiley & Sons Inc.
  • Wróblewska, K., & Jeong, B. R. (2021). Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environmental Sciences Europe, 33, 110. https://doi.org/10.1186/s12302-021-00547-2
  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011(1), 402647. https://doi.org/10.5402/2011/402647
  • Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, 101941. https://doi.org/10.1016/j.scs.2019.101941
  • Yang, J., Ma, L., He, X., Au, W., Miao, Y., Wang, W., & Nah, T. (2023). Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong—Insights into factors that control aerosol metal dissolution in an urban site in South China. Atmospheric Chemistry and Physics, 23(2), 1403-1419. https://doi.org/10.5194/acp-23-1403-2023
  • Yu, C., Duan, P., Yu, Z., & Gao, B. (2019). Experimental and model investigations of vegetative filter strips for contaminant removal: A review. Ecological Engineering, 126, 25-36. https://doi.org/10.1016/j.ecoleng.2018.10.020
  • Yu, M. H., Tsunoda, H., & Tsunoda, M. (2011). Environmental toxicology: Biological and health effects of pollutants. CRC Press. https://doi.org/10.1201/b11677
  • Yuan, Y., Bingner, R. L., & Locke, M. A. (2009). A review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology, 2(3), 321-336. https://doi.org/10.1002/eco.82
  • Yun, H. J., Yi, S. M., & Kim, Y. P. (2002). Dry deposition fluxes of ambient particulate heavy metals in a small city, Korea. Atmospheric Environment, 36(35), 5449-5458. https://doi.org/10.1016/S1352-2310(02)00660-X
  • Zehnle, H., Otersen, C., Benito Merino, D., & Wegener, G. (2023). Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Frontiers in Microbiology, 14, 1279865. https://doi.org/10.3389/fmicb.2023.1279865
  • Zhang, Z., Sun, J., Gong, X., Wang, C., & Wang, H. (2023). Anaerobic biodegradation of pyrene and benzo [a] pyrene by a new sulfate-reducing Desulforamulus aquiferis strain DSA. Journal of Hazardous Materials, 459, 132053. https://doi.org/10.1016/j.jhazmat.2023.132053
  • Zhao, J., Chen, C., & Ma, W. (2005). Photocatalytic degradation of organic pollutants under visible light irradiation. Topics in Catalysis, 35, 269-278. https://doi.org/10.1007/s11244-005-3834-0
  • Zhao, W., Gan, R., Xian, B., Wu, T., Wu, G., Huang, S., & Zhang, Y. (2024). Overview of methylation and demethylation mechanisms and influencing factors of mercury in water. Toxics, 12(10), 715. https://doi.org/10.3390/toxics12100715
  • Zhou, Y., Shao, Y., Gao, N., & Zhu, S. (2019). Adsorption of organic pollutants from industrial wastewater onto porous materials prepared from sewage sludge. Chemical Engineering Journal, 359, 1445-1455.
There are 119 citations in total.

Details

Primary Language English
Subjects Pisciculture, Pasture-Meadow Forage Plants
Journal Section Review
Authors

Halit Aktaş 0000-0001-6581-5022

Harun Aslan 0000-0002-5115-3467

Submission Date September 22, 2025
Acceptance Date December 19, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 4

Cite

APA Aktaş, H., & Aslan, H. (2025). The Effects of Atmospheric Pollutants on Freshwater Resources and the Protective Role of Meadow and Pasture Ecosystems. Journal of Agricultural Production, 6(4), 290-300. https://doi.org/10.56430/japro.1789043