Research Article
BibTex RIS Cite

Effect of Plant Growth-Promoting Bacteria (PGPB) on the Development of Pea crop (Pisum sativum L.)

Year 2024, Volume: 5 Issue: 1, 50 - 54, 31.03.2024
https://doi.org/10.56430/japro.1446563

Abstract

Microorganisms are of great importance in agriculture in terms of plant nutrients by reducing the need for chemical fertilization. In recent years, plant growth-promoting bacteria (PGPB) have been widely used as biological fertilizers (BF) in agriculture. This study was conducted to determine the effect of plant growth-promoting bacteria on the development of pea plants. Firstly the phosphate solubilization and nitrogen fixation potentials of the bacteria used in this study were determined. In the study, the effects of 4 different combinations, F1 [(Rhizobium sp. (FR-13) and Pseudomonas alcaligenes (FDG121)], F2 [(Pseudomonas fluorescens biotype F (FDG-7), Rhizobium sp. (FR-18) and Bacillus-megaterium-GC subgroup B(FDG-134)], F3 [Arthrobacter oxydans (FDG-72), Bacillus-megaterium-GC subgroup B (FDG-146), Rhizobium sp. (FR-11)] and F4 [Acinetobacter genospecies 9 (FDG-116), Brevibacillus agri (FDG-118), Methylobacterium zatmanii (FDG-123) and Bacillus-megaterium-GC subgroup A (FDG-153)] were investigated. Formulations made with bacteria that were found to be the best in terms of the properties specified among these strains were tested against pea plants under greenhouse conditions and their effects on the plant's total fresh and dry weight were investigated. The study was set up to have 3 replications. As a result of the statistical analysis made with the data obtained, the formulations used compared to the control; F2, F3 and F1 applications were important in total fresh weight, respectively, and F2 and F3 applications were important in total dry weight. As a result, these 3 formulations are especially effective on the yield of pea plants and can be used as potential biofertilizers.

References

  • Abeed, A. H. A., Mahdy, R. E., Alshehri, D., Hammami, I., Eissa, M. A., Abdel Latef, A. A. H., & Mahmoud, G. A.-E. (2022). Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. Frontiers in Plant Science, 13, 1004173. https://doi.org/10.3389/fpls.2022.1004173
  • Angın, H., & Dadaşoğlu, E. (2022). Effect of PGPR isolates on plant development in some bean genotypes. Journal of the Institute of Science and Technology, 12(4), 2495-2505. https://doi.org/10.21597/jist.1146090
  • Antoun, H., & Prevost, D. (2006). Ecology of plant growth promoting Rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 1-38). Springer. https://doi.org/10.1007/1-4020-4152-7_1
  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by Rhizobacteria. Current Opinion in Plant Biotechnology, 4(4), 343-350. https://doi.org/10.1016/s1369-5266(00)00183-7
  • Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advances in the use of plant growth promoting Rhizobacteria (PGPR) in agriculture. In N. Subba Rao & Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (pp 229-250). Science Publishers Inc.
  • Çakmakçi, R., Dönmez, F., Aydın, A., & Şahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38(6), 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  • de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting Rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088
  • Demir, H., Sönmez, I., Uçan, U., & Akgün, I. H. (2023). Biofertilizers improve the plant growth, yield, and mineral concentration of lettuce and broccoli. Agronomy, 13(8), 2031. https://doi.org/10.3390/agronomy13082031
  • Fuentes-Ramirez, E. L., & Caballero-Mellado, J. (2006). Bacterial biofertilizers. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 143-172). Springer. https://doi.org/10.1007/1-4020-4152-7_5
  • Janusauskaite, D. (2023). Productivity of three pea (Pisum sativum L.) varieties as influenced by nutrient supply and meteorological conditions in boreal environmental zone. Plants, 12(10), 1938.
  • Klement, Z., Rudolph, K., & Sands, D. C. (1990). Methods in phytopathology. Akademiai Kiado.
  • Maharjan, P., Penny, J., Partington, D. L., & Panozzo, J. F. (2019). Genotype and environment effects on the chemical composition and rheological properties of field peas. Journal of the Science of Food and Agriculture, 99(12), 5409-5416. https://doi.org/10.1002/jsfa.9801
  • Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate solubilizing bacteria. Current Microbiology, 43(1), 51-56. https://doi.org/10.1007/s002840010259
  • Nautiyal, C. S. (1997). Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiology Ecology, 23(2), 145-158. https://doi.org/10.1111/j.1574-6941.1997.tb00398.x
  • Niranjan Raj, S., Shetty, H. S., & Reddy, M. S. (2006). Plant growth promoting Rhizobacteria: Potential gren alternative for plant productivity. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 197-216). Springer. https://doi.org/10.1007/1-4020-4152-7_7
  • Poblaciones, M. J., & Rengel, Z. (2016). Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains. Food Chemistry, 212, 427-433. https://doi.org/10.1016/j.foodchem.2016.05.189
  • Powers, S. E., & Thavarajah, D. (2019). Checking agriculture’s pulse: Field pea (Pisum sativum L.), sustainability, and phosphorus use efficiency. Frontiers in Plant Science, 10, 1489. https://doi.org/10.3389/fpls.2019.01489
  • Shabaan, M., Asghar, H. N., Akhtar, M. J., Ali, Q., & Ejaz, M. (2021). Role of plant growth promoting Rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. International Journal of Phytoremediation, 23(8), 837-845. https://doi.org/10.1080/15226514.2020.1859988
  • Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1-16. https://doi.org/10.1016/j.foodres.2017.09.026
  • Sun, C. X., Bei, K., Liu, Y. H., & Pan, Z. Y. (2022). Humic acid improves greenhouse tomato quality and bacterial richness in rhizosphere soil. ACS Omega, 7(34), 29823-29831. https://doi.org/10.1021/acsomega.2c02663
  • Ummara, U., Noreen, S., Afzal, M., Zafar, Z. U., Akhter, M. S., Iqbal, S., Hefft, D. I., Kazi, M., & Ahmad, P. (2022). Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere, 290, 133327. https://doi.org/10.1016/j.chemosphere.2021.133327
  • Uslu, A. (2006). Increasing yield of some legume plants by plant growth promoting rhizobacteria (Master Thesis, Ege University).
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893
  • Wilson, P. W., & Knight, S. C. (1952). Experiments in bacterial physiology. Burguess.
  • Zahran, M. M. A. A., Hefzy, M., & Mostafa, H. H. A. (2020). Enhancing the productivity of potato crop under drought stress by using some biological treatments. International Journal of Environment, 9(2), 83-103. https://doi.org/10.36632/ije/2020.9.2.6
Year 2024, Volume: 5 Issue: 1, 50 - 54, 31.03.2024
https://doi.org/10.56430/japro.1446563

Abstract

References

  • Abeed, A. H. A., Mahdy, R. E., Alshehri, D., Hammami, I., Eissa, M. A., Abdel Latef, A. A. H., & Mahmoud, G. A.-E. (2022). Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. Frontiers in Plant Science, 13, 1004173. https://doi.org/10.3389/fpls.2022.1004173
  • Angın, H., & Dadaşoğlu, E. (2022). Effect of PGPR isolates on plant development in some bean genotypes. Journal of the Institute of Science and Technology, 12(4), 2495-2505. https://doi.org/10.21597/jist.1146090
  • Antoun, H., & Prevost, D. (2006). Ecology of plant growth promoting Rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 1-38). Springer. https://doi.org/10.1007/1-4020-4152-7_1
  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by Rhizobacteria. Current Opinion in Plant Biotechnology, 4(4), 343-350. https://doi.org/10.1016/s1369-5266(00)00183-7
  • Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advances in the use of plant growth promoting Rhizobacteria (PGPR) in agriculture. In N. Subba Rao & Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (pp 229-250). Science Publishers Inc.
  • Çakmakçi, R., Dönmez, F., Aydın, A., & Şahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38(6), 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  • de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting Rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088
  • Demir, H., Sönmez, I., Uçan, U., & Akgün, I. H. (2023). Biofertilizers improve the plant growth, yield, and mineral concentration of lettuce and broccoli. Agronomy, 13(8), 2031. https://doi.org/10.3390/agronomy13082031
  • Fuentes-Ramirez, E. L., & Caballero-Mellado, J. (2006). Bacterial biofertilizers. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 143-172). Springer. https://doi.org/10.1007/1-4020-4152-7_5
  • Janusauskaite, D. (2023). Productivity of three pea (Pisum sativum L.) varieties as influenced by nutrient supply and meteorological conditions in boreal environmental zone. Plants, 12(10), 1938.
  • Klement, Z., Rudolph, K., & Sands, D. C. (1990). Methods in phytopathology. Akademiai Kiado.
  • Maharjan, P., Penny, J., Partington, D. L., & Panozzo, J. F. (2019). Genotype and environment effects on the chemical composition and rheological properties of field peas. Journal of the Science of Food and Agriculture, 99(12), 5409-5416. https://doi.org/10.1002/jsfa.9801
  • Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate solubilizing bacteria. Current Microbiology, 43(1), 51-56. https://doi.org/10.1007/s002840010259
  • Nautiyal, C. S. (1997). Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi. FEMS Microbiology Ecology, 23(2), 145-158. https://doi.org/10.1111/j.1574-6941.1997.tb00398.x
  • Niranjan Raj, S., Shetty, H. S., & Reddy, M. S. (2006). Plant growth promoting Rhizobacteria: Potential gren alternative for plant productivity. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertlization (pp. 197-216). Springer. https://doi.org/10.1007/1-4020-4152-7_7
  • Poblaciones, M. J., & Rengel, Z. (2016). Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains. Food Chemistry, 212, 427-433. https://doi.org/10.1016/j.foodchem.2016.05.189
  • Powers, S. E., & Thavarajah, D. (2019). Checking agriculture’s pulse: Field pea (Pisum sativum L.), sustainability, and phosphorus use efficiency. Frontiers in Plant Science, 10, 1489. https://doi.org/10.3389/fpls.2019.01489
  • Shabaan, M., Asghar, H. N., Akhtar, M. J., Ali, Q., & Ejaz, M. (2021). Role of plant growth promoting Rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. International Journal of Phytoremediation, 23(8), 837-845. https://doi.org/10.1080/15226514.2020.1859988
  • Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1-16. https://doi.org/10.1016/j.foodres.2017.09.026
  • Sun, C. X., Bei, K., Liu, Y. H., & Pan, Z. Y. (2022). Humic acid improves greenhouse tomato quality and bacterial richness in rhizosphere soil. ACS Omega, 7(34), 29823-29831. https://doi.org/10.1021/acsomega.2c02663
  • Ummara, U., Noreen, S., Afzal, M., Zafar, Z. U., Akhter, M. S., Iqbal, S., Hefft, D. I., Kazi, M., & Ahmad, P. (2022). Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere, 290, 133327. https://doi.org/10.1016/j.chemosphere.2021.133327
  • Uslu, A. (2006). Increasing yield of some legume plants by plant growth promoting rhizobacteria (Master Thesis, Ege University).
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893
  • Wilson, P. W., & Knight, S. C. (1952). Experiments in bacterial physiology. Burguess.
  • Zahran, M. M. A. A., Hefzy, M., & Mostafa, H. H. A. (2020). Enhancing the productivity of potato crop under drought stress by using some biological treatments. International Journal of Environment, 9(2), 83-103. https://doi.org/10.36632/ije/2020.9.2.6
There are 25 citations in total.

Details

Primary Language English
Subjects Enzyme and Microbial Biotechnology in Agriculture
Journal Section Research Articles
Authors

Esin Dadaşoğlu 0000-0003-3515-5056

Early Pub Date March 28, 2024
Publication Date March 31, 2024
Submission Date March 3, 2024
Acceptance Date March 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Dadaşoğlu, E. (2024). Effect of Plant Growth-Promoting Bacteria (PGPB) on the Development of Pea crop (Pisum sativum L.). Journal of Agricultural Production, 5(1), 50-54. https://doi.org/10.56430/japro.1446563