Research Article
BibTex RIS Cite

Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying

Year 2023, Volume: 9 Issue: 4, 804 - 821, 22.12.2023
https://doi.org/10.28979/jarnas.1338375

Abstract

In this study, the effects of rotational speed of microwave turntable (0, 6.5, 9.5, and 12.5 rpm) on surface temperature distribution of lemon peels during drying and, on some quality attributes (color, water activity, total phenolic content (TPC), and volatile organic compounds) of dried lemon peel powders were investigated. The quality analyses were also performed in freeze-dried peels. During microwave drying with rotation, speed of turntable affected the surface temperature values and TPC depending on the power level but did not exert a clear effect on the homogeneity of the surface temperature distribution and the color parameters. The percentage amount of major monoterpene hydrocarbons (limonene, γ-terpinene, myrcene, p-cymene, and α-p-dimethylstyrene) detected in fresh lemon peel decreased after microwave and freeze-drying. At 600W, formation of furan compounds (furfural, furfuryl alcohol, tetrahydrofurfuryl alcohol, 2-acetyl furan, 5-methyl furfural, and HMF) were identified. Microwave drying without rotation (0 rpm) caused uneven heating which led to the production of peel powders with unacceptable dark color especially at 450 and 600W. Drying at 600W-0 rpm gave the darkest color, the highest amount of TPC (1730.7 mg GAE/100g d.b.) and furan compounds. Therefore, microwave drying at low power levels with rotation function
preserved the quality of lemon peel powder better.

Project Number

B 2127

References

  • Armstrong, D. J., Gómez Maqueo Chew, Y., Faedi, F., & Pollacco, D. (2014). A catalogue of tempera-tures for Kepler eclipsing binary stars. Monthly Notices of the Royal Astronomical Society, 437(4), 3473- 3481. Retrieved from: https://academic.oup.com/mnras/article/437/4/3473/1006401
  • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The chemical composition of the Sun. Annual review of astronomy and astrophysics, 47, 481-522. Retrieved from: https://www.annualreviews.org/doi/full/10.1146/annurev.astro.46.060407.145222
  • Bayo, A., Rodrigo, C., y Navascués, D. B., Solano, E., Gutiérrez, R., Morales-Calderón, M., & Allard, F. (2008). VOSA: virtual observatory SED analyzer-An application to the Collinder 69 open cluster. Astronomy & Astrophysics, 492(1), 277-287. Retrieved from: https://www.aanda.org/articles/aa/abs/2008/46/aa10395-08/aa10395-08.html
  • Borkovits, T., Hajdu, T., Sztakovics, J., Rappaport, S., Levine, A., Bíró, I. B., & Klagyivik, P. (2016). A comprehensive study of the Kepler triples via eclipse timing. Monthly Notices of the Royal Astronomical Society, 455(4), 4136-4165. Retrieved from: https://academic.oup.com/mnras/article/455/4/4136/1264839
  • Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., ... & Prsa, A. (2010). Kepler planetdetection mission: introduction and first results. Science, 327(5968), 977-980. Retrieved from: https://www.science.org/doi/10.1126/science.1185402
  • Choi, J., Dotter, A., Conroy, C., Cantiello, M., Paxton, B., & Johnson, B. D. (2016). Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. The Astrophysical Journal, 823(2), 102. Retrieved from: https://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/meta
  • Conroy, K. E., Prša, A., Stassun, K. G., Orosz, J. A., Fabrycky, D. C., & Welsh, W. F. (2014). Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. The Astronomical Journal, 147(2), 45. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/147/2/45
  • Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. The Astrophysical Journal Supplement Series, 222(1), 8. Retrieved from: https://iopscience.iop.org/article/10.3847/0067-0049/222/1/8/meta
  • Eker, Z., Soydugan, F., Bilir, S., Bakış, V., Aliçavuş., Özer, S., ... & Köse, Y. (2020). Empirical bolo-metric correction coefficients for nearby main-sequence stars in the Gaia era. Monthly Notices of the Royal Astronomical Society, 496(3), 3887-3905. Retrieved from: https://academic.oup.com/mnras/article/496/3/3887/5869829
  • Gaia-Collaboration, Klioner, S. A., Mignard, F., Lindegren, L., Bastian, U., McMillan, P. J., ... & Hodgkin, S. T. (2021). Gaia Early Data Release 3: Acceleration of the Solar System from Gaia astrometry. Retrieved from: https://www.aanda.org/articles/aa/full_html/2021/05/aa39734-20/aa39734-20.html
  • Gaulme, P., & Guzik, J. A. (2019). Systematic search for stellar pulsators in the eclipsing binaries ob-served by Kepler. Astronomy & Astrophysics, 630, A106. Retrieved from: https://www.aanda.org/articles/aa/full_html/2019/10/aa35821-19/aa35821-19.html
  • Kahraman Aliçavuş, F., Handler, G., Aliçavuş, F., De Cat, P., Bedding, T. R., Lampens, P., ... & Leone, F. (2022). Mass transfer and tidally tilted pulsation in the Algol-type system TZ Dra. Monthly Notices of the Royal Astronomical Society, 510(1), 1413-1424. Retrieved from: https://academic.oup.com/mnras/article-abstract/510/1/1413/6449399?redirectedFrom=fulltext Kirk, B., Conroy, K., Prša, A., Abdul-Masih, M., Kochoska, A., MatijeviČ, G., ... & Borucki, W. (2016).
  • Kepler eclipsing binary stars. VII. The catalog of eclipsing binaries found in the entire Kepler data set. The Astronomical Journal, 151(3), 68. Retrieved from: https://iopscience.iop.org/article/10.3847/0004- 6256/151/3/68
  • Kurucz, R. L. (1993). ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-Rom. Re-trieved from: https://ui.adsabs.harvard.edu/abs/1993KurCD..13.....K
  • Lucy, L. B. (1967). Gravity-darkening for stars with convective envelopes. Zeitschrift fur Astrophysik, 65, 89. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1967ZA.....65...89L
  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for experiments in stellar astrophysics (MESA). The Astrophysical Journal Supplement Series, 192(1), 3. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/192/1/3/meta
  • Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., ... & Townsend, R. (2013). Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. The Astrophysical Journal Supplement Series, 208(1), 4. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/208/1/4/meta
  • Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., ... & Timmes, F. X. (2015). Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. The Astrophysical Journal Supplement Series, 220(1), 15. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/220/1/15/meta
  • Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., ... & Timmes, F. X. (2018). Modules for Experiments in Stellar Astrophysics (): Convective Boundaries, Element Diffusion, and Massive Star Explosions. The Astrophysical Journal Supplement Series, 234(2), 34. Retrieved from: https://iopscience.iop.org/article/10.3847/1538-4365/aaa5a8/meta
  • Prša, A., Batalha, N., Slawson, R. W., Doyle, L. R., Welsh, W. F., Orosz, J. A., ... & Borucki, W. (2011). Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. The Astronomical Journal, 141(3), 83. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/141/3/83
  • Ricker, G. R., Latham, D. W., Vanderspek, R. K., Ennico, K. A., Bakos, G., Brown, T. M., ... & Worden, S. P. (2010, January). Transiting exoplanet survey satellite (tess). In American Astronomical Society Meeting Abstracts# 215 (Vol. 215, pp. 450-06). Retrieved from: https://ui.adsabs.harvard.edu/abs/2010AAS...21545006R/abstract
  • Rucinski, S. M. (1969). The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica, 19, 245. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1969AcA....19..245R
  • Schlafly, E. F., & Finkbeiner, D. P. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2), 103. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-637X/737/2/103
  • Slawson, R. W., Prša, A., Welsh, W. F., Orosz, J. A., Rucker, M., Batalha, N., ... & Koch, D. (2011). Kepler eclipsing binary stars. II. 2165 eclipsing binaries in the second data release. The Astronomical Journal, 142(5), 160. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/142/5/160
  • Southworth, J. (2013). The solar-type eclipsing binary system LL Aquarii. Astronomy & Astrophysics, 557, A119. Retrieved from: https://www.aanda.org/articles/aa/full_html/2013/09/aa22195-13/aa22195- 13.html
  • Torres, G., Lacy, C. H. S., Claret, A., & Sabby, J. A. (2000). Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis. The Astronomical Journal, 120(6), 3226. Retrieved from: https://iopscience.iop.org/article/10.1086/316855
  • Von Zeipel, H. (1924). The radiative equilibrium of a rotating system of gaseous masses. Monthly No-tices of Journal of Advanced Research in Natural and Applied Sciences 2023, Vol. 9, Issue 4, Pages: 822-830 830 the Royal Astronomical Society, 84, 665-683. Retrieved from: https://academic.oup.com/mnras/article/84/9/665/951714
  • Wilson, R. E., & Devinney, E. J. (1971). Realization of accurate close-binary light curves: application to MR Cygni. The Astrophysical Journal, 166, 605. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1971ApJ...166..605W
  • Zola, S., Gazeas, K., Kreiner, J. M., Ogloza, W., Siwak, M., Koziel-Wierzbowska, D., & Winiarski, M. (2010). Physical parameters of components in close binary systems–VII. Monthly Notices of the Royal Astronomical Society, 408(1), 464-474. Retrieved from: https://academic.oup.com/mnras/article/408/1/464/105876
Year 2023, Volume: 9 Issue: 4, 804 - 821, 22.12.2023
https://doi.org/10.28979/jarnas.1338375

Abstract

Supporting Institution

Ordu Üniversitesi

Project Number

B 2127

References

  • Armstrong, D. J., Gómez Maqueo Chew, Y., Faedi, F., & Pollacco, D. (2014). A catalogue of tempera-tures for Kepler eclipsing binary stars. Monthly Notices of the Royal Astronomical Society, 437(4), 3473- 3481. Retrieved from: https://academic.oup.com/mnras/article/437/4/3473/1006401
  • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The chemical composition of the Sun. Annual review of astronomy and astrophysics, 47, 481-522. Retrieved from: https://www.annualreviews.org/doi/full/10.1146/annurev.astro.46.060407.145222
  • Bayo, A., Rodrigo, C., y Navascués, D. B., Solano, E., Gutiérrez, R., Morales-Calderón, M., & Allard, F. (2008). VOSA: virtual observatory SED analyzer-An application to the Collinder 69 open cluster. Astronomy & Astrophysics, 492(1), 277-287. Retrieved from: https://www.aanda.org/articles/aa/abs/2008/46/aa10395-08/aa10395-08.html
  • Borkovits, T., Hajdu, T., Sztakovics, J., Rappaport, S., Levine, A., Bíró, I. B., & Klagyivik, P. (2016). A comprehensive study of the Kepler triples via eclipse timing. Monthly Notices of the Royal Astronomical Society, 455(4), 4136-4165. Retrieved from: https://academic.oup.com/mnras/article/455/4/4136/1264839
  • Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., ... & Prsa, A. (2010). Kepler planetdetection mission: introduction and first results. Science, 327(5968), 977-980. Retrieved from: https://www.science.org/doi/10.1126/science.1185402
  • Choi, J., Dotter, A., Conroy, C., Cantiello, M., Paxton, B., & Johnson, B. D. (2016). Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. The Astrophysical Journal, 823(2), 102. Retrieved from: https://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/meta
  • Conroy, K. E., Prša, A., Stassun, K. G., Orosz, J. A., Fabrycky, D. C., & Welsh, W. F. (2014). Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. The Astronomical Journal, 147(2), 45. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/147/2/45
  • Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. The Astrophysical Journal Supplement Series, 222(1), 8. Retrieved from: https://iopscience.iop.org/article/10.3847/0067-0049/222/1/8/meta
  • Eker, Z., Soydugan, F., Bilir, S., Bakış, V., Aliçavuş., Özer, S., ... & Köse, Y. (2020). Empirical bolo-metric correction coefficients for nearby main-sequence stars in the Gaia era. Monthly Notices of the Royal Astronomical Society, 496(3), 3887-3905. Retrieved from: https://academic.oup.com/mnras/article/496/3/3887/5869829
  • Gaia-Collaboration, Klioner, S. A., Mignard, F., Lindegren, L., Bastian, U., McMillan, P. J., ... & Hodgkin, S. T. (2021). Gaia Early Data Release 3: Acceleration of the Solar System from Gaia astrometry. Retrieved from: https://www.aanda.org/articles/aa/full_html/2021/05/aa39734-20/aa39734-20.html
  • Gaulme, P., & Guzik, J. A. (2019). Systematic search for stellar pulsators in the eclipsing binaries ob-served by Kepler. Astronomy & Astrophysics, 630, A106. Retrieved from: https://www.aanda.org/articles/aa/full_html/2019/10/aa35821-19/aa35821-19.html
  • Kahraman Aliçavuş, F., Handler, G., Aliçavuş, F., De Cat, P., Bedding, T. R., Lampens, P., ... & Leone, F. (2022). Mass transfer and tidally tilted pulsation in the Algol-type system TZ Dra. Monthly Notices of the Royal Astronomical Society, 510(1), 1413-1424. Retrieved from: https://academic.oup.com/mnras/article-abstract/510/1/1413/6449399?redirectedFrom=fulltext Kirk, B., Conroy, K., Prša, A., Abdul-Masih, M., Kochoska, A., MatijeviČ, G., ... & Borucki, W. (2016).
  • Kepler eclipsing binary stars. VII. The catalog of eclipsing binaries found in the entire Kepler data set. The Astronomical Journal, 151(3), 68. Retrieved from: https://iopscience.iop.org/article/10.3847/0004- 6256/151/3/68
  • Kurucz, R. L. (1993). ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-Rom. Re-trieved from: https://ui.adsabs.harvard.edu/abs/1993KurCD..13.....K
  • Lucy, L. B. (1967). Gravity-darkening for stars with convective envelopes. Zeitschrift fur Astrophysik, 65, 89. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1967ZA.....65...89L
  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for experiments in stellar astrophysics (MESA). The Astrophysical Journal Supplement Series, 192(1), 3. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/192/1/3/meta
  • Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., ... & Townsend, R. (2013). Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. The Astrophysical Journal Supplement Series, 208(1), 4. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/208/1/4/meta
  • Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., ... & Timmes, F. X. (2015). Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. The Astrophysical Journal Supplement Series, 220(1), 15. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/220/1/15/meta
  • Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., ... & Timmes, F. X. (2018). Modules for Experiments in Stellar Astrophysics (): Convective Boundaries, Element Diffusion, and Massive Star Explosions. The Astrophysical Journal Supplement Series, 234(2), 34. Retrieved from: https://iopscience.iop.org/article/10.3847/1538-4365/aaa5a8/meta
  • Prša, A., Batalha, N., Slawson, R. W., Doyle, L. R., Welsh, W. F., Orosz, J. A., ... & Borucki, W. (2011). Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. The Astronomical Journal, 141(3), 83. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/141/3/83
  • Ricker, G. R., Latham, D. W., Vanderspek, R. K., Ennico, K. A., Bakos, G., Brown, T. M., ... & Worden, S. P. (2010, January). Transiting exoplanet survey satellite (tess). In American Astronomical Society Meeting Abstracts# 215 (Vol. 215, pp. 450-06). Retrieved from: https://ui.adsabs.harvard.edu/abs/2010AAS...21545006R/abstract
  • Rucinski, S. M. (1969). The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica, 19, 245. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1969AcA....19..245R
  • Schlafly, E. F., & Finkbeiner, D. P. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2), 103. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-637X/737/2/103
  • Slawson, R. W., Prša, A., Welsh, W. F., Orosz, J. A., Rucker, M., Batalha, N., ... & Koch, D. (2011). Kepler eclipsing binary stars. II. 2165 eclipsing binaries in the second data release. The Astronomical Journal, 142(5), 160. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/142/5/160
  • Southworth, J. (2013). The solar-type eclipsing binary system LL Aquarii. Astronomy & Astrophysics, 557, A119. Retrieved from: https://www.aanda.org/articles/aa/full_html/2013/09/aa22195-13/aa22195- 13.html
  • Torres, G., Lacy, C. H. S., Claret, A., & Sabby, J. A. (2000). Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis. The Astronomical Journal, 120(6), 3226. Retrieved from: https://iopscience.iop.org/article/10.1086/316855
  • Von Zeipel, H. (1924). The radiative equilibrium of a rotating system of gaseous masses. Monthly No-tices of Journal of Advanced Research in Natural and Applied Sciences 2023, Vol. 9, Issue 4, Pages: 822-830 830 the Royal Astronomical Society, 84, 665-683. Retrieved from: https://academic.oup.com/mnras/article/84/9/665/951714
  • Wilson, R. E., & Devinney, E. J. (1971). Realization of accurate close-binary light curves: application to MR Cygni. The Astrophysical Journal, 166, 605. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1971ApJ...166..605W
  • Zola, S., Gazeas, K., Kreiner, J. M., Ogloza, W., Siwak, M., Koziel-Wierzbowska, D., & Winiarski, M. (2010). Physical parameters of components in close binary systems–VII. Monthly Notices of the Royal Astronomical Society, 408(1), 464-474. Retrieved from: https://academic.oup.com/mnras/article/408/1/464/105876
There are 29 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Işıl Barutçu Mazı 0000-0002-5324-8451

Sevilay San 0000-0003-2223-0221

Project Number B 2127
Early Pub Date October 5, 2023
Publication Date December 22, 2023
Submission Date August 5, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Barutçu Mazı, I., & San, S. (2023). Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying. Journal of Advanced Research in Natural and Applied Sciences, 9(4), 804-821. https://doi.org/10.28979/jarnas.1338375
AMA Barutçu Mazı I, San S. Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying. JARNAS. December 2023;9(4):804-821. doi:10.28979/jarnas.1338375
Chicago Barutçu Mazı, Işıl, and Sevilay San. “Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel As Affected by Rotational Speed of Turntable During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 4 (December 2023): 804-21. https://doi.org/10.28979/jarnas.1338375.
EndNote Barutçu Mazı I, San S (December 1, 2023) Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying. Journal of Advanced Research in Natural and Applied Sciences 9 4 804–821.
IEEE I. Barutçu Mazı and S. San, “Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying”, JARNAS, vol. 9, no. 4, pp. 804–821, 2023, doi: 10.28979/jarnas.1338375.
ISNAD Barutçu Mazı, Işıl - San, Sevilay. “Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel As Affected by Rotational Speed of Turntable During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences 9/4 (December 2023), 804-821. https://doi.org/10.28979/jarnas.1338375.
JAMA Barutçu Mazı I, San S. Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying. JARNAS. 2023;9:804–821.
MLA Barutçu Mazı, Işıl and Sevilay San. “Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel As Affected by Rotational Speed of Turntable During Microwave Drying”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 4, 2023, pp. 804-21, doi:10.28979/jarnas.1338375.
Vancouver Barutçu Mazı I, San S. Volatile Organic Compounds, Total Phenolic Content, Color, and Heating Uniformity of Lemon Peel as Affected by Rotational Speed of Turntable During Microwave Drying. JARNAS. 2023;9(4):804-21.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).